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Unconditional ideals in Banach spaces
by

G. GODEFROY (Paris and Columbia, Mo.), N. J. KALTON (Columbia, Mo.)
and P. D. SAPHAR (Haifa)

Abstract. We show that a Banach space with separable dual can be renormed to
satisfy hereditarily an “almost” optimal uniform smoothness condition. The optimal con-
dition oceurs when the canonical decomposition X*** = X+ & X* is unconditional. Mo-
tivated by this result, we define a subspace X of a Banach space Y to be an h-ideal (resp.
a u-ideal) if there ig an hermitian projection P (resp. a projection P with ||I — 2P| = 1)
on Y* with kernel X1, We undertake a general study of h-ideals and u-ideals. For ex-
ample we show that if a separable Banach space X is an h-ideal in X™* then X has the
complex form of Pelezyriski’s property (u) with constant one and the Baire-one functions
Ba{X)in X™ are complemented by an hermitian projection; the converse holds under a
compatibility condition which is shown to be necessary. We relate these ideas to the more
familiar notion of an M-ideal, and to Banach lattices.

We further investigate when, for a separable Banach space X, the ideal of compact
operators K{X) is a w-ideal or an h-ideal in £{X) or K(X}**. For example, we show
that K(X) is an h-ideal in K(X)™ if and ouly if X has the “unconditional compact
approximation property” and X is an M-ideal in X™*".

1. Introduction. If X is a subspace of a Banach space ¥ we will say
that X is a summand of ¥ if it is the range of a contractive projection; we
will gay that X is an ideal in ¥V if X 4 ig the kernel of a contractive projection
on ¥* (this differs from the terminology in [8]). A simple example is that X
is always an ideal in its bidual X**. It can be shown that X is an ideal in ¥
if it is “locally” a summand; more precisely, X is an ideal in ¥ if and only if
for every finite-dimensional subspace F of ¥ and for every & > 0, there exists
an operator §: F - X with ||S|| < 14+¢ and Sz =z for z € X N F. For
the case when Y == X** this is known as-the Principle of Local Reflexivity
(see [48]); see also [43] for similar results in the isomorphic version.

In this paper we will be concerned with special classes of ideals where
additional constraints are imposed on the projections. There is an extensive
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literature concerning a special class of ideals known as M-ideals ({1], [34]).
We say that X is an M-ideol in ¥ if X is an L-summand in Y*, i.e. there is
a projection P : ¥* — Y™ with ker P = X+ and |y*|| = || Py*||+ | v* — Py*|
for all y* € Y*. Thus in this case Y* = V @; X+ where V = P(Y*). We say
X is an M-ideal {without reference to any other space) if it is an M-ideal in
X

In [10] a somewhat less restrictive notion was introduced. We say that
X is a u-ideal in Y if there is a projection P : V* — ¥ with ker P = X+
satisfying || I — 2P} = 1. Equivalently, if x € X* and ¢ € V then |¢ + x| =
[l¢ ~ x||- In [10] it is shown that if X is a separable reflexive space with
the approximation property then the space of compact operators K(X) is a
u-ideal in £(X') (its bidual) if and only if X has the so-called unconditional
metric approximation property (UMAP).

For complex Banach spaces, there is a natural strengthening of the defi-
nition. We say that a complex Banach space X is an Ai-ideal in Y if there is
an hermitian projection P : ¥* — ¥* with ker P = X~ This is equivalent
to requiring that if x € X+, ¢ € V and |A| == 1 then ||¢ + x|| = [|& + Ax]l-

The natural examples of u-ideals or h-ideals (with respect to their bid-
uals) are order-continuous Banach lattices. Much of this paper is devoted
to a general study of v-ideals and h-ideals and it will be seen that they in-
herif many of the properties of order-continuous Banach lattices. It should
be stressed, however, that there are many examples of u-ideals (or h-ideals)
which are not Banach lattices (for example any M-ideal and, as we shall see
in Section 8, certain spaces of operators). Tt will also be seen that the the-
ory of h-ideals is considerably more satisfactory than the theory of u-ideals
because of our ability to exploit the rich theory of hermitian operators.

We now turn to a detailed discussion of our results. In Section 2, moti-
vated by some ideas of Godun [33] we introduce the Godun set of a Banach
space X, G(X), which is defined to be the set of all scalars A such that
[|[I — Ar| = 1 where = is the canonical projection of X*** onto X*. If X
contains a copy of £1 then the Godun set G(X) reduces to {0}. If X is sep-
arable and X* is nonseparable then G(X) C [0,1] and equality is possible
with X = JT. If X~ is separable and if 1 < A < 2 we show that X can
be renormed so that [0, \] C G(X). This gives us an improvement of a re-
sult of Finet-Schachermayer [18] on renormings so that the characteristic of
every proper closed subspace of X* is at most 1/2 -+ ¢; we show that such a
renorming can be made so that the same property is inherited by subspaces
and guotients,

In Section 3 we make a preliminary study of u-ideals in a given space ¥
and show for example that if X is a u-ideal in ¥ which contains no copy

of ¢g then X is a u-summand (i.e, there is a projection @ onto X with
12— 2Q] = 1). -
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In Section 4 we male some preliminary observations about u-ideals and
h-ideals (with respect to their biduals), and give some examples. If X is a
u-ideal such that the range V of the induced projection on X *** is norming
then X is called a strict u-ideal. If X is separable or does not contain #;,
it then follows (Section 5) that V = X*. M-ideals are automatically strict
u-ideals, but in Section 4 we give an example to show that there exist strict
u-ideals which cannot be renormed to be M-ideals. In [27] (for a special
case see [30]) it was shown that M-ideals have Petczynhski’s property (u)
with constant one. In Section 5 we show that a separable Banach space
not containing £) is a strict u-ideal if and only if it has property (u) with
constant one. Our argument is rather different and more elementary than
in [27]. There is an analogous characterization of strict h-ideals in terms of
the complex version of property (u).

In Section 6, we turn to the study of general h-ideals (with no strictness
assumptions). Here, using the powerful theory of hermitian operators [4], [5];
we give a complete characterization of separable h-ideals in Theorem 6.5. Let
X be aseparable complex Banach space and let Ba(X) denote the subspace
of all #** € X™* which are of the first Baire class on By for the weak¥-
topology, or equivalently @™ € Ba{X) il and only if there is a sequence (z,,)
in X converging weak® to **. We show that if X is an h-ideal there is an
hermitian projection of X** onto Bo(X) and X has the complex property
(n) with constant one. These two conditions, however, are not sufficient
to make X an h-ideal; the example is presented later in Section 8. The
necessary and sufficient condition is that there is an hermitian projection T°
onto Ba(X) so that for every «** € X** there is a sequence (x,) in X such
that litmy,—ee Tn = T2 weak* and limsup, ., [|2** — (1 + Az.| = |z** ||
whenever |A| = L.

We conclude Section 6 by studying subspaces of h-ideals and applying
our results to subspaces of order-continuous lattices, Thus for example a
subspace of Ly is an h-ideal if and only if it is nicely placed ([25]).

Section 7 considers the less satisfactory theory of u-ideals. Our results
here are not nearly as complete as in the complex (h-ideal) case. A typical
example is that if X is an h-ideal containing no copy of £, then X is nec-
essarily a strict h-ideal, but the corresponding result for u-ideals is known
(Theorem 7.4) only under certain restrictive hypotheses (e.g. that X has
property (u) with constant less than two). We also give a partial result on
the problem of whether ¢y is isomorphically the only predual of £, with
property {(u). o

It Seetions 8 and 9 we consider operator spaces. In Section 8, which may
be read directly after Section 6, we consider two basic problems: characterize
those X so that K(X) is a wideal or an h-ideal in £(X) and characterize
those X so that }C(X) is an h-ideal (in C(X)™*). In fact; if we assume X
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is separable, reflexive and has the approximation property, hoth problems
were considered (in the u-ideal case} in [10] where it is shown that (X ) is a
u-ideal in £{X) if and only if X has the unconditional metric approximation
property (UMAP). We extend this result in Theorem 8.3, in particular omit-
ting the hypothesis of the approximation property, and considering certain
nonreflexive spaces.

The problem of when KX(X) can be an h-ideal in K(X)** turns out to
have a rather intriguing answer. If we assume that X is separable and has
the metric compact approximation property it is not difficult to see that two
necessary conditions are that X * is separable and that X has the complex
(UKAP), ie. given £ > 0 there is a sequence (A,,) of compact operators
such that ¢ = >\ Aqx for z € X and for every n € N, and |ay| < 1 for
1<k <n, | Zhey @rdill < 14, Under these two conditions ¥ = K(X) has
complex property (u) with constant one and there is an hermitian pro jection
of Y** onto Ba(Y'). Nevertheless, these conditions are not sufficient for K(X)
to be an h-ideal. In Theorem 8.6 we show that if X is separable and has the
metric compact approximation property then X(X) is an h-ideal if and only
if X is an M-ideal with complex (UKAP). It is then easy to give examples
of spaces X with a l-unconditional basis so that X* is separable and yet X
is not an M-ideal, and for such spaces K(X) provides the example promised
in Section 6.

In Section 9, we relate u-ideals to a problem suggested by [10]: if a
separable Banach space has (UMAP), does it have commuting (UMAPF)?
Finally, in Section 10 we take the opportunity to list some problems which
arise in connection with this work.

Before continuing, we introduce some notation. If X is a Banach space,
real or complex, we denote By = {z : ||z|| € 1} and Sx = {z : |lz|| = 1}.
We use K to denote either B or C.

Acknowledgement. This work was completed while the first-named
author was visiting the University of Missouri-Columbia during the year
1990/1. Tt is his pleasure to give his warmest thanks to UMC for its hospi-
tality and support.

2. The Godun set and renormings of separable Banach spaces.
We begin by discussing a general situation related to the notion of locally
complemented subspaces introduced in [43]. A subspace X of a Banach gpace
Y is locally complemented if there is a constant ) such that whenover F is a
finite-dimensional subspace of ¥ then there is a linear operator T 1 F — X
withTs = 2 for x € FNX and | T|| < A. It is shown in [43, Theorem 3.5| that
this is equivalent to the existence of a bounded projection P on Y™* whose
kernel is X+ (see condition (4) of [43, Theorem 3.5]). Our first results will
relate to this general situation, although we will be specifically applying the
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results to the case ¥ = X™* with P being the canonical projection of X ***
onto X*. (In this case the local complementation of X in X** is essentially
the Principle of Local Reflexivity [48].)

Let ¥ be a (real or complex) Banach space and suppose that X is a
closed subspace of Y. Let us suppose that P is a bounded projection on ¥™*
such that ker P = X*; weset V = P(Y*). Let Rx : ¥* — X* be the natural
restriction map, Then we may define a bounded operator T : ¥ — X *" such
that fory € Y, y* € Y™* we have

(Rxy™ Ty) = {y, Py"} -
It is clear that |T|| < ||P| and that if 2 € X then Tz = z. Let us also note
that we will preserve the notation introduced here for P, T,V throughout
the papet. However, when dealing with spaces of operators we will use P, T
in place of P, T

LemMMa 2.1. The following conditions are equivalent:

(1) V is weak®-closed.

(2) P is weak™-continuous.

3) T(Y)C X.

Proof. (1)(2) is standard. For (2)=>(3) let P = Q" where @ : ¥ — Y.
Tt is readily seen that @ is a projection of ¥ onto X and hence that @ =T
For (3)=(2) simply observe that P =T". w

LEMMA 2.2, Suppose K is a compact subset of K = R or C and that
a > 0. Then the following conditions are equivalent:

(1) ||I — AP|| € a, whenever A € K.

(2) Whenevere >0,y €Y and A is a conver subset of X such that Ty
is in the weak® -closure of A then there exists x € A with [ly—Az|| < ally|[+e,
forall A € K. '

(3) For anyy €Y, there is a net (z4) in X such that limg zq = Ty for
the weak®-topology and limsupy ||y — Azl < ally|l, for all A € K.

Proof. (1)=(2). For convenience we suppose that [ly[| = 1. It clearly
suffices to consider the case when K is finite, say K = {Ag}i-y. If the
conclusion is false then by the Hahn-Banach theorem there existlyj: e Y
with 2% |lvzll € 1 and such that 3, Rup(y — Mez) > a + 3¢ for all
z & A. Thus

i i i N
S 8y, (T - AuPyi) + 3 Rowly, Pyi) — ) Ralz, Pyf) = a+

k=1 k=1 : k=1
for # € A. This can be rewritten as

n n . e
SRy, (- AP)) + Y ROw(Rxy Ty —a)) > o+ 5
k=1 k—..

[ SRy}
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Now since T’y is in the weak*-closure of A this implies that

n
Dol (T = NPl 20+ % >a,
k=1
which is a contradiction.
(2)=(3). It is enough to take any convex weak™-neighborhood W of Ty
and apply (2) to A=W nX.
(3)=(1}. Let A € K. Suppose y* € Y™ with [|y*|| = 1 and suppose y & ¥
with |ly|| = 1. Then we may find a net (zq) in X with limazy = Ty weak®
and limsup ||y ~ Az4| < a. Then

(v, (T ~ AP)Y™) = (u,v*) — MBxy*, Ty)
= (10" — Alim{Bxy", 24) = lim{y — Azq, y*)
and the lemma follows. a

Let us now consider a special case when ¥ = X** and P = x is the
canonical projection of X*** onto X* (or more precisely j;(X™*)) given for-
mally by 7w = ji178, where jo : X — X** and 51 : X* — X*** are the
canonical embeddings; of course ker 7 = X . In this case T reduces to the
identity operator on X**. We then have:

PROPOSITION 2.3. The following conditions are equivalent:

(1) | = Ar|| < a.

(2) For ony € > 0, and for any ** € X** and any conver subset A
of X such that z** is in the weak*-closure of A there emists ¢ € A with
[ — Az|| < aljz**|| +e.

{(3) For any =** € X** there 15 a net (zq) tn X such that imgzg = z**
weak” and limsup, ||2** — Azg| < afjz**|).

(4) For any sequence (v,,) in Bx and any £ > 0 there emist n and u €
co{zp}h g, ¢ € cofzp}fl,  with |t — M| < a +e. '

Proof. The equivalence of the first three conditions is immediate from
Lemma 2.2. Let us prove {2)=-(4). Let 2** be a weak*-cluster point of the
sequence (z,). Letting A be the convex hull of {z5}32, and applying (2)
we find u € co{w }}.., for some n such that [Jo™* — M| < alja**| + te. Now
if [it~ Aul| > a+e for all ¢ € co{zy}psn it follows by the Hahu Banach
theorem that there exists ™ € Bx. such that «*(z) — Au) > o+ 2e for all
k > n + 1, which leads to a contradiction and so (4) is proved.

Now let us show that (4) implies (3). Indeed, if (3) fails we can find
T & Sx--, € > 0 and a closed convex weak™-neighborhood W of z**
with ||z*" — Aw|| > a+e for all w € W N X. Now by induction we may
pick a sequence (zn)n,>1 in W N X and a decreasing sequence (W),
of weak*-closed convex neighborhoods of z** so that z,, & Wa_1 and if
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w € Wy and z € O, = co{z;}p., then |lw — Az|| > a + . To start the
induction pick z1 € W and then let W, C W be chosen to be a weak*-
closed convex neighborhood of z** such that |w — Az || > a+& on Wy, Next
agsume that xy,...,2z,1, Wy,...,W,_1 have been chosen where n > 2.
Since ACh -1 + (o + )By-+ is weak*-compact and fails to include z** we
can find a cloged convex weak*-neighborhood W,, © W,_1 of &** so that
ifwe W, and z € U,y then |jw — Az|| > o + &. Then pick 2, € W,.
This compietes the induction and now if 4 € C,, while ¢t € co{zg }isn then
t € W, and hence ||t — Auj| > a + £, which contradicts (4). m

Let us now define the Godun set G(X) of X (cf. [32], [33]) to be the
collection of all scalars A such that |7 — Anf| = 1. It is routine to observe
that 0 € G(X), and that G(X) is a closed convex set. Further notice that
we have (I — Am)(I —pm) =T — (A4 g — Ap)w so that A, € G(X) implies
T—(1-X)1-p)eG(X).

LevMA 2.4. (1) In the real case G(X} C {0,2] and in the compler case
GXyc{h|A-1 <1}

(2) If G(X) contains any A # 0 then G(X) contains the interval [0, 1].

(3) If G(X) contains any A & [0,1] then G(X) contains some A > 1.

Proof Notice that 1 — a € G(X) implies 1 — o™ € G(X), for every n.
This gives (1). For (2) notice that if 1—a € G(X) for some & # 1 then we can
find such a point with || < 1 by a convexity argument and then iteration
shows that 1 is in G(X). (3) is obvious in the real case; for the complex
case suppose 1 —re*® € G(X) where r > 0, and 8 is not a multiple of =. If
G(X) does not contain 14 4 for any § > 0 then there exist, by a separation
argument, @, b ¢ R such that a*+5? = 1, a > 0 and r*(a cos nf+bsinnd) > 0
for all n. This is clearly impossible. m

LemMA 2.5. Let Z be a closed subspace of X. Then G(Z) O G{X) and
G(X/2Z) > G(X). Furthermore, A € G(X) if and only if A € G(Z) for every
separable subspace Z of X.

Proof These ohservations follow very quickly from equivalence (4} of
Proposition 2.3. a

The next proposition extends Proposition 2 of [8].

PROPOSITION 2.6. If X contains a subspace isomorphic to £y then for
cvery A € K we have [|[T — dn] =14 |A and so G{X) = {C}.

Proof. For every & > 0, X contains a sequence (x,,) in the unit ball

k0
such that for all @y, ..., 0, we have | Y po; @ata]l = (1 =€) 30 || (see
[40)). The result follows easily from Proposition 2.3(4). w

Let us recall that if X is a Banach space and M is a closed subspace of

X* then the characieristic r(M) of M is defined to be the greatest constant
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r such that
sup |3"(z) = rllz]]
¥ EM
[EIES
for every z € X.

PrOPOSITION 2.7. Suppose 1 < A < 2 and that ||{ — Axf| =a < A. Then
for any proper closed subspace M of X* we have r(M) < aA™L.

Proof It is enough to consider the case when M = kerz** where z** &
X** with ||z**{| = 1. Let (z4) be a net in By with limz, = z** weak” and
limsup ||a** — Az4l| < a. Then

A osup z%(z)] £ flz™ — Azl
¥ eM
fle” <1
for all d and the proposition follows.

The following is now immediate.

PROPOSITION 2.8. Let X be a separable Banach space so that G(X)
contains some A > 1, or ||I — 27| < 2. Then X* is separable.

We now turn to a converse statement.

THEOREM 2.9, Let X be a separable Banach space for which X* is sep-
orgble. If 1 <A < 2 then X can be equivalently normed so that A € G(X).

Proof. We first note a recent deep result of Zippin [64] that X is iso-
morphic to a closed subspace of a Banach space with a shrinking basis. It
therefore suffices to consider the case when X has a shrinking basis. Let
(S5) denote the associated partial sum operators. Then ([10]) X can be
equivalently normed so that [|S,|| = [T — AS,,|| = 1 for all n. Now suppose
€™ & X** with |2l = 1. Then », = §%*z** converges weak* to z** and
|#** — Az, || < 1. The result now follows. =

CoroLLaRy 2.10. If X 4s a separable Banoch space with separable dual
and if € > 0 then X can be equivalently renormed so that any subspace Z of

a quotient space of X has the property that whenever M is a proper closed
subspace of Z* then r(M) < 1/2+¢.

Remark. This improves the main result of [18]. There are several con-
sequences which follow for such a space. It follows that for any & > 0 and
any Banach space X with a separable dual there is a renorming so that
every basic sequence with basis constant less than 2 — ¢ is shrinking {17,
Corollary 1.4]). More generally ([31, Proposition 4.3]), any subspace of X,
under this renorming, with the (2 ~ £)-commuting bounded approximation
property in fact has the metric approximation property {or the commuting
metric approximation property [10]}. Also any subspacc or quotient of X
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with distance less than 2 ~ ¢ to a dual space is automatically reflexive (this
improves some results from [14]).

Let us conclude by mentioning that the James tree space JT provides
an. example where ||T — 7| = 1 but JT* is nonseparable (see [7]). Of course
by Proposition 2.8 there is no renorming of JT such that ||I — Ax|| = 1 for
any A > 1.

3. u-ideals and h-ideals. We now introduce some terminology. Suppose
Y is areal or complex Banach space. A closed subspace X of V' is a summand
if there is a contractive projection of ¥ onto X. We will say that a closed
subspace X of ¥ is a u-summand if there is subspace Z (the u-complement
of X)sothat X® Z =Y and if z € X, 2 € Z then |z + z|| = ||z - =]
If Y is a complex Banach space we will say that X is an h-summand with
fi-complement Zf X ®Z =Y and ifz € X, z € Z and |A] = 1 then
|z + Az|| = ||l + z||. If X is a u-summand then the induced projection
P:Y — X with P(Y) = X and ker P = Z satisfies |/ 2P| = 1. If X is an
h-summand then |7 — (14 a)P| = 1 whenever || = 1 and this is equivalent
to the requirement that P is hermitian (cf. [4], [5]).

By way of motivation, let us also mention that X is called an L-summand
(resp. M-summand) in Y if there is a subspace Z so that X @ Z = Y and
o2, = |al] + iz]| (resp. |e + 21l = max(le]], [ 2])) for every & € X, z € Z.
See [34] for more details.

The most elementary example of a u-summand is any band in an order-
continuous (or, more generally, order-complete) Banach lattice; in the com-
plex case this will yield an example of an h-summand. In particular, any sub-
sequence of a l-unconditional basis generates a u-summand (or an
h-summand in the complex case}. Let us mention two slightly more subtle ex-
amples. Set X to be the subspace of C[0,1] of all f such that f(1—1t) = f(¢).
Then X is a u-summand which is not an M-summand; in the case of complex
scalars X is a u-surnmand which fails to be an h-summand. Similarly, if X
is the subspace of L[0,1] of all f such that f(z) = f(1 ~ z) then X is a
u-summand which fails to be an L-summand. These examples demonstrate
that the concept of a u-summand is much broader than the existing notions
of T-summands and M-summands.

We first observe that if X is a u-summand (and a fortier: if X is an
h-summand) then its u-complement Z is unique, and is also a u-summand
(or an h-summand if X is an h-summand).

LEMMA 3.1. Suppose X is a closed subspace of Y. Then there is at most
one projection P of Y onto X satisfying || — 2P| = 1.

Proof. Suppose @ is another projection onto X with I —2Q| = 1.
Then (I —2P)(J —2Q) = I+ 2(Q — P) since QP = P, PQ = Q. Thus
(I-2P)(I-2Q)"=I+2n(Q-P)andso P=0Q. =m
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We recall from the introduction that a closed subspace X of ¥ is an ideal
in Y if X is the kernel of a contractive projection on ¥'*, (This is equivalent
to the existence of a linear norm-preserving extension operator from X* to
Y*; see [38], [58] where it is essentially shown that every separable subspace
of a nonseparable Banach space is contained in a separable ideal.) Next we
will say that X is a u-ideal in Y if X+ is a u-summand in Y*, and an h-ideal
if X1 is an h-summand. We recall that X is an M-ideal in ¥ if XL is an
I~summand in Y*. Thus a real M-ideal is a u-ideal and a complex M-ideal
is an h-ideal.

The simplest example of a u-ideal is an order-ideal in an arbitrary Banach
lattice; indeed, if ¥ is a Banach lattice and X is an order-ideal then X+ is
a band in Y*. Again, in the complex case, this will give an example of an
h-ideal. Later, in Section 4, we will discuss examples of spaces X which are
u-ideals in their biduals and give other examples.

Assuming that X is a w-ideal in ¥, let V' be the u-complement of X+ in
Y*: let P be a projection on Y* so that ||I ~ 2P| = 1 and whose range is
V and ker P = X+

Lemma 2.1 yields immediately:

Lemma 3.2, If X is a u-ideal in ¥ then X is o u-summand if and only if
V' is weak*-closed.

Proof. Obviously if V is weak*-closed then P is weak*-continuous and
so P = Q" where [T - 2Q| =1 and Q(Y) = X. Conversely, suppose X is
a u-summand and let Q be a projection onto X with |[1 — 2@ = 1. Then
T — Q" has range X~ and so / — Q* = I — P by Lemma 3.1. Hence P is
wealk™-continuous. =

Motivated by this lemma we will say that X is a strict u-ideal or h-ideal
if ¥ is a norming subspace of Y'*.

If X is an arbitrary Banach space and z** € X** we will define its
u-constant £y (@™*) to be the infirnum of all ¢ such that we can write o** =
E:;l Ty in the weak*-topology with z,, € X and such that for any n and
O =+1for 1 <k <nwehave

n
I3 e <o
k=1

We set wy(2™*) = oo if no such a exists. Let Bu(X) be the collection of
z** € X such that there is a sequence () in X with limz, = z**. We
recall that X has property (u) if every z** € Ba(X) has r,(2**) < co. Tt
then follows from the closed graph theorem that there is a constant ¢ so
that k(™) < O™ for all z** € Ba(X). The least such constant €' will
be dencted by x, (X} :
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If X is a complex Banach space we define also x{z**) to be the infimum
of all a so that £** = 3> | z,, and for any n, and any |fx| = 1for 1 < k < n,

we have
L
k=1

Clearly ky(z™) < wp(z™*) < 2x,(z*). If X has property (u) we define
#,(X) to be the least constant € so that s, (z**) < C|lz**| for z** € Ba(X).
Thus £, (X) < & (X) < 26, (X).

We now prove a lemma which refines Lemma 2.2. Assume X is a u-ideal
in Y, and that P is the associated projection on Y* with ker P = X1. We
use the definition of the operator T': ¥V — X** from the previous section so
that fory € ¥, y* € Y™, (Rxvy*, Ty) = {y, Py*}. In this case ||T|| < |P||=1
and of course Tz = z if z € X.

LeMMA 3.3. Suppose that X is o u-ideal (resp. an h-ideal) in Y. Suppose
that y € Y, and € > 0. Lel A be a convez subset of X such that Ty is in the
weak" -closure of A and that B is any compact subsel of X. Then there exists
z € A such that |y — (L + XNz — Xz| < |ly + 2| + & whenever =1 < A <1
{resp. |A| € 1) and z € B.

Proof. We give the proof in the h-ideal case as this is slightly more
complicated. We may assume that 0 € B. Let M = max{|z]| : z € B} and
pick 0 < & < 1 s0 that (M + 4+ 2||y|l)d <&

Let {A1,...,A;m} be a §-net for the closed unit disk, which we suppose
inciudes zero, and let {z1,...,2,} be a §-net for B, also including zero. For
any subset J of 2 = [m] x [n] define H7 to be the set of z € A such that

ly = (L4 Ag)z — Azl < lly + 2l + 8

whenever (j,k) € J. (Hy = A.) We will show that Hg is nonempty. In
fact, if Hp is empty then there is a maximal proper subset J of (2 such
that Ty is in the weak*-closure of H 7. Pick any (j, k) € J. Then there is a
weak*~open convex set W in X** containing Ty such that WnH = @ where
K=JU{{jk)} However, A’ = W N Hy is convex and Ty is in its weak”-
closure. Thus T(y-+2x) is in the weak*-closure of A’ +2z;. Now by Lemma 2.2
there exists z € W N Hy such that ||y +2e — (14 A7) (426} < ly+ 2zl + 6
On re-organization this implies that @ € W Hy contrary to assumption. It
follows that Ho is nonempty. Pick any x € Hp. Then if z € B and [A <1
we may find (5, k) € 2 such that [A — A;| <& and [z — | < 6. Thus

ly = (14 Nz = Az]| < lly = (1+ Az — Agzell + 81+ [ll] + fiz])
<y + 2l + 6@ + el + Nzl
< iy + =l + 63 + =l + 1=xi) -
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Zero appears in both §-nets so we have |ly — 2|l < [ly| + & and thus Iz <
9|yl + 1. Hence (3 + |lz|| + |lz&]|) < (M + 4+ 2|jy[)6 < &, and the lemma
is established. =

The next lemma is fundamental for the results of the paper.

LeMMA 3.4. Assume X is o u-ideal (resp. an h-ideal) in Y. Suppose
y € Y, e >0, and that (A,) is o sequence of conver subsets of X such
that Ty is in the weak*-closure I, of each Ay, Then there erists x** &
N, Hn with xu(z*) < |lyll + ¢ (resp. wn(z**) < |yl 4 ) and such that
d(z**, X) 2 £d(Ty, X). In particular, if Ty € Ba(X) then su(Ty) < |yl
(resp. wn(Ty) < |lyli)-

Proof. Let us assume that X is a u-ideal {resp. an h-ideal} in ¥ and that
lluil = 1. Let sg = 0. Then we will construct by induction a sequence (s»)3%,
in X and a sequence of weak*-open convex neighborhoods (W,,)72., of Ty so

that if &, = Sn — $n—: and F}, is the linear span of {sg,...,sp-1} for n > 1,
then we have d(w, Fr) > (1 —1/n)d(Ty, X) for w € Wy, s, € W N Ay, and

™
oo 2eses
j=1

whenever |#;] < 1 for 1 < j < n. Suppose the construction has been carried
out to determine {s}7y and {Wi}joy'. We will show how to determine
$m and W, In fact, it is clear that the seminorm z** — d(a™, F,,} is
weak*-continuous on X** and so we may clearly determine a convex open
neighborhood W, of Ty with the specified property. Now let 0 < & < ¢ be
such that

<l+e

s - S o] <10
i=1

whenever |6;] < 1. Let B be the collection of all z = 54,1 z;f:':ll g;z; for
|6;] < 1. According to Lemma 3.3 it is possible to find s, € Am N Wy, 80
that whenever (A| < 1and z € B,

ly = (1 + Ao — 2| < |ly+ 2| +e—a.
Thus if {f;| = 1 for 1 £ < m,

“y—sm—iﬂjwj“ = Hym(1+6)m)sm~—8m (smwl—knf 0;;,‘18;;-'15;,')” < l+e.
j=1 g=1

By a convexity argument we obtain the inductive hypothesis.

Now the series Y, z; is a w.u.c. series which converges to some z** €
X** such that su(2™) < 14 ¢ (resp. kp(2**) < 1+ g). Clearly =** €
(Y Hy. Further suppose « € X, and let v = ||2** — z|. Then for any m
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and any & > 0, there exist n > m and t € co{sm41,...,8n} such that
[t — «|} <« + &. Similarly, there exist p > n and u € co{sn41,..-,5,) such
that jlu — @l| < v -+ 6. Hence ||t — uil < 2(y + §). However, u € Wy, so
that it —wl| = (1 — 1/n)d(Ty, X). It follows that d{Ty,X) < 2v and so
dz**, X) > 1d(Ty,X). a

THEOREM 3.5. Let Y be a Banach space and let X be o u-ideal in Y.
Suppose that X contains no copy of cp. Then X is a u-summend in Y.

Prool We need only show that 7'(Y) € X and then apply Lemma 2.1.
Now if y € ¥ with ||y|| = 1 we let A, = By for all » and apply Lemma 3.4.
We conclude that there exists z** € X™* with d(z**,X) > %d(Ty,X ) and
fa{a™) < oo. Thus (3)) 2™ € X andso Ty e X. m

Before proceeding further we give a local formulation of the notion of a
u-ideal or an h-ideal.

PROPOSITION 3.6, Let ¥ be o Banach space and let X be o closed subspace
of Y. In order that X be a u-ideal (resp. en h-ideal) in Y it is necessary and
sufficient that for every-finite-dimensional subspace F of Y and every e > 0
there is a linear map I - F' — X such that Lz = ¢ forz € FN X and
If—2Lf] < (L+e)|f|| for every € F (resp. |Lf — (14 NEf]| < (L+e) £
for every f € F, and for every X such that |A| = 1).

Proof. We prove this result only in the u-ideal case; the h-ideal case
is a minor modification. Suppose first that X is a u-ideal in ¥, and that
F is a finite-dimensional subspace of ¥. Then we claim that £(F, X) is a
wideal in £(F,Y). In fact, L(F,Y)* can be identified with F ®, ¥ and
so we can induce a projection P on it by P(f @ v*) = f ® Py*. It is clear
that ||[I — 2P| = 1 and that ker P = L(F,X)*. Further P induces a map
T : L{FY) — L(F, X**) in the usual way, as described at the beginning
of Section 2, so that for & & L(F,X)* we have T(L)(®) = P{P)(L). Let
J: F— Y Dbe the identity map.

Let A be the collection of all I € £(F,X) such that Lz = g for all
@ € FNX. Suppose T(J) is not in the weak*-closure of A. Then there exists
® € L{F, X)* so that suppe 4 RE(L) = a < RT{J)(&). Clearly P(8)=0if
S =0 on F M X. It follows that we can write & = 3", f; ® v} where {f;}
is a basis for F NX, and 27 € X™. Let y; be extensions of z7 to ¥*. Then

(&, T(J)) = (J,P(}Efj ® yj)> = i(J, £ ® Py})
| o . |

j=k

= 3t P = D9

=1 j=1
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Now letting S be any projection of F' onto F N X we find that $(9) =
T(J}(®). Thus T(J) is in the weak*-closure of A and so there exists, by
Lemma 3.3, L € A so that [J —2L|| < 1+¢.

Conversely, suppose for every finite-dimensional F' and & > 0 there exists
L=1Lpe: F — Xsothat Lz = g forz € FNX and || f - 2Lf|| < (L+2)||7]|
for f € F. We may regard the collection of all pairs (F,¢) as a directed set
in the obvious way. Extend Lp. to a nonlinear operator Ly, : ¥ — X by
setting Lpe(z) = 0 for z ¢ F. By a compactness argument we can find
a subnet (Lg) of Lp,. so that for every y* € ¥, y € ¥, limy*(Lay) =
h(y*,y) exists. Then y — A(y*,y) is linear and bounded and so we can
define Py* € Y™ by {y, Py*) = h(y*,y). Further P is linear, ker P = XL
and |1 —2P|| =1. =

4. Banach spaces X which are u-ideals or h-ideals in X**. In this
paper our main interest is in spaces X embedded in their biduals. We will
say that X is a u-ideal (resp. an h-ideal) if X is a u-ideal (resp. an h-ideal)
in X™* for the canonical embedding. By Proposition 3.6, it follows that a

space is a u-ideal or an h-ideal if it satisfies a strong form of the Principle
of Local Reflexivity.

PROPOSITION 4.1. A Banach space X is o u-ideal (resp. an h-ideal) if
given a finite-dimensional subspace F' of X** and & > 0 there exists a linear
map L: F— X sothat Le = @ for x € XN F and ||f - 2Lf| < (L4} {|
for f € F (resp. [[f — (1L+ ANLf|| < (1+&)|f| for |A| =1 and f € ).

An immedia_te remark follows.

COROLLARY 4.2. Suppose X is a Banach space so that for every e > 0
there is a u-ideal (resp. an h-idealy Y so that X is (1 + g)-isornorphic to a
(1+ €)-complemented subspace of Y. Then X is a uw-ideal (resp. an h-ideal)

We will say that X is a u-summand (resp. an h-summand) if X is a
u-summand (resp. an h-summand) in X**. Furthermore we will say that X
18 a sirict u-ideal (resp. strict h-ideal) if X is a strict w-ideal (resp. strict
h-ideal) in X™*, In particular (see Proposition 5.2 below for more details),
X will be a strict u-ideal if |7 — 27 = 1 so that X* is a u-cornplement of
X J-_. The following examples illustrate our definitions.

ExampLE (1). If X is an order-continuous Banach lattice then (see [56])
A& is an order-ideal in X** and so XL is a band in X***. Hence X isa
u-ideal (or an h-ideal in the complex case). X is a w-summand if and only if
X contains no copy of cg, i.e. if and only if X is a band in X**. Finally, X

is a strict u-ideal if and only if X** is the band generated by X, i.e. if and
only if X' contains no copy of £;.

icm

Unconditional ideals in Benach spaces 27

ExAMPLE (2). If X is a real (resp. complex) Banach space which is an
M-ideal in X** then X is a strict u-ideal {resp. sirict h-ideal).

ExaMPLE (3). If X is a separable reflexive Banach space with the ap-
proximation property then ([10, Theorem 3.9]) K(X) is a u-ideal if and only
if X hag (UMAP), i.e. if and only if there is a sequence (T},) of finite-rank
operators with lim||J — 27| = 1 and limThz = z for z € X. In fact,
the argument of [10] shows that K(X) is actually a strict u-ideal. In the
complex case it is easy to modify this result to yield that (X)) is a strict
h-ideal if and only if X has complex (UMAP), i.e. there is a sequence (T%)
of finite-rank operators so that lim || — (14 A)T,|| = 1 whenever [A| = 1
and so that Um T2 = x for all z € X. See Sections 8, 9 for more discussion.

We also mention here that if X is a reflexive space with a l-unconditional
FDD and Y is a closed subspace of X then K(Y) is a u-ideal in £(Y") if and
only if ¥ has the compact approximation property (see Theorem 8.3 and
the proof of Theorem 9.2(6)=>(1) below); we refer to [11], [44] and [63] for
similar results for M-ideals.

EXAMPLE (4). Suppose X is a reflexive Banach space. It follows from [39]
that if X has a l-symmetric basis and X is different from £,, 1 < p < oo,
then K(X) is & strict u-ideal which is not an M-ideal. It is shown in [44] that
if X has a l-symmetric basis and is not isomorphic to an Orlicz sequence
space then X cannot even be renormed so that K(X) is an M-ideal.

In view of these examples we now wish to show that there exist separable
gtrict u-ideals X which cannot be renormed to be M-ideals. Tn order T;o do
this we will need a criterion for a separable Banach space to be an M-ideal.

PROPOSITION 4.3. Let X be o separable Banach space (real or complez).
The foilowing conditions on X are equivalert.

(1) X is an M-ideal. .

(2) If r € X and 2™ € X then there 15 a net {(z4) m*X so that
ling 24 = & weak” and limsupy ||z + 2 — z4l] < max(|z]], [|**{)-

(3) If A is a convex subsst of X and o™ € X™ is in the* weak**—closwe
of A then there is a sequence (%,,) in X so that limy 2, = 27 weak® and $0
that for every € X, limsup,, |# + 2* — 2o || < max(fe], |2**])-

Proof. (1)=(3). Since X* is separable this will follow from a cliagonixi
argument if we establish that whenever z € X, e >0, meN and::n —_ T
weak® then there exists ¥ € co{Zm, Tms1,- .-} such that |z +z™ — yll <
max( ||z, |2 |}) + e. If this fails then by the ’I-Iahn—Banach theorem, there
exists ' € X*** with [|z***|| < 1 and Re**(z -+ @™ —2n) = a-+¢, where
a = max(|z]|, ||&**])). Write 2*** = f + ¢ where f = mz***, Then

Rep(a**) + Rf(z+2™" —xn) Za+e.
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Letting n — oo we have
Re(z™ )+ Rf(z) >a+e.

Since || + || fIl = |lz™**|i £ 1 this leads to a contradiction.

(3)=(2). This is immediate:

(2)=(1). Suppose f € X*, ¢ € X For £ > 0 we can find 2 € By so
that Rf(z) > (/] — € and z** € X™** so that R¢{z**) > |l¢]| — . Pick the
net (xg) in X so that 24 — 2** weak* and limsup ||z + #** — 24| < 1. Thus

limdsup R{g(z™) + fla™ —wg+2)) < ¢+ [

and thus
34 + |l — 2¢ < ||¢ + FI|-

The conclusion follows immediately. m

PROPOSITION 4.4. Let X be o separable M-ideal and suppose X has a
boundedly complete Schauder decomposition (E,)°%.,. Then all but finitely
many of the B, are reflexive. '

Proof. It suffices to show that we cannot have all F,, nonreflexive. Sup-
pose every E, is nonreflexive. Pick e}* € Eit with |lef¥|| = d{e*, Fy,) = 1.

This is possible since E,, is an M-ideal and hence proximinal. Now choose
eng € B, s0 that limy e, = e** weak* -and for every o € X,

limsup ||z + e — enr|| < max(1, ||z{|).
}c .

Suppose &, > 0 forn > 1 and 36, < oco. We will pick a sequence (#y,) in
By so that ||zn| > 1/2but {|s,[{ < Gy, = [Ti; (1+6x) where s, = SO0 a4
Let s = 0. Then for n > 1 if {z; : § < n} have been determined we note
that

limhsup [$n—1+ er* — enn < Cn.
Hence there exists k so that
801 + € — enrl < Ci -

It follows that we can find a sequence (g;) in F,, converging weak* to err —eyn
so that ||s,_1 - gi] < Cn. Of course liminf, ||g|| > d{e**, E,) = 1. Thus we
may pick z, so that ¢, € By, ||z, > 1/2 and |[s,,_; + Lo || < Cy.

Now observe that Z’,L-l % is bounded and not convergent, contradicting

the fact that (£, ) is a boundedly complete decomposition. =

ExaMPLE (). Tt is now possible to givé an example of a space X which
is a strict u-ideal but X has no equivalent norm in which it is an M-ideal.
For we may take X = {3(cg) which is a strict u-ideal (or a strict h-ideal in
the complex case) by Example (1) above but cannot be renormed to be an
M-ideal by Proposition 4.4.
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EXAMPLE (6). We conclude this section by giving examples of strict
u-ideals which fail important properties enjoyed by M-ideals.

First, we give an example of a u-ideal which is not proximinal. To do
this equip ¢p with the norm ||z|le + (300, 27|2,[?)Y/2. This is a lattice
norm so that ¢ is a u-ideal for this norm. However, if e is the constantly
one sequence in £, then d(e, ¢g) = 1 but the distance is not attained.

Second, consider the space IR @1 cp. This is the space of real sequences
(Zn)nzo under the norm |2g| + max,»1 |T,|. Again we have a u-ideal norm.
Here the functional £ — zg has a normi-preserving extension to £ given by
T — 2 -+ Hmy 2, where I is any nonprincipal ultrafilter on N. Thus Ry eg
is not Hahn-Banach smoocth.

5. Btrict u-ideals. In this section we consider strict 1-ideals, i.e. Banach
spaces X which are strict u-ideals in their biduals X **. We remark that &4
is a u-ideal because it is in fact a n-summand in £3*; it is therefore not a
strict u-ideal (by applying Lemma 3.1). The following theorem extends this
remark considerably.

TueoreM 5.1. Suppose that X is a separable Banach space containing
£y, Let P be a contractive projection on X*** with ker P = X+ and such
that V = P(X**) is norming. Then ||I — P|| > 2. In particular, X cannot
be o strict u-ideal.

Proof. Since V is norming the associated operator T' : X** — X™*¥ ig
an isometry. If X contains a copy of £, ther by a theorem of Maurey [50]
(see [37]), there exists ™ € X** with |2**| = 1 and such that ||z** 4+ z| =
|z** — z|| for all z-€ X. If | — P|| = a then by Lemma 2.2 we can find
a net (z4) in X, converging weak* to Tz**, with limsup ||Tz** — z4]| < a.
Since T is an isometry limsup||z™ —z4| < a and thus limsup ||[2** + 24| =
limsup || T2** + 24| < a. However, imsup ||T2* +2q]| > 2. =

PROPOSITION 5.2. Let X be either o separable Bondch space or a Banach
space containing no copy of 4.

(1) X is a strict wideal if and only if |[I — 27| = 1, i.e. if and only if
2eG(X).

(2) (If X is complex) X is a strict h-ideal in X** if and only 4f ||T— (1+
M| = | whenever |A| < 1, de. if and only if G(X) = {1+ A: [A] <1}

(3) If X 15 o strict u-ideal (resp. strict h-ideal) then every subspace of a
quotient space of X is also a strict u-ideal (resp. strict h-ideal).

Proof. (1) and (2). Note first that if X is separable then Theorem 5.1
implies that X contains no copy of £;. These statements follow iminediately
if we show that V', the u-complement of X in X***, coincides with (the
canonical image of) X*. However, V is norming and it is shown in [26]
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(see [23] for the separable case) that under the hypothesis that X contains
no copy of £, X* is contained in every norming subspace of X***. Hence
X* C V from which the result is immediate.

For (3) we need only appeal to Lemma 2.5. »

LEMMA 5.3. Let X be a Banach space not containing £y, Then || 27| <
ko (X); further, if X is complez and |A — 1] < 1 then [T - Ar|| < ki (X).

Proof. By using condition (4) of Proposition 2.3 it is easy to see that
it will suffice to prove this when X is separable. In that case suppose #** €
Sye«. Then, by [51], z** € Ba(X) and so, for ¢ > 0, there is a series
Yz = o** weak* such that for all -1 < ), <1 and all n,

”Zn:’?icxk” < fim inf | 3 o —im” < kalX) + 2.
k=1 k=1

k=n-41
Hence if s,, = 3 p_; #& then
|z** = 28, < mul{z™) +E.

By Proposition 2.3 again, ||[I — 2x|l £ &,(X) + . The complex case is
similar. m

Now we come o our main theorems characterizing spaces which are strict
u-ideals (in their biduals). It was shown in [27] that if X is an M-ideal in X~
then X has property (u) with constant one, i.e. ky(X) = 1. The proof given
there is quite different. (See [34] for the M-ideal analogue of Lemma 3.4.)

THEOREM b5.4. Let X be @ Banach space containing no copy of £1. Then
X is a strict u-ideal if and only if Ky (X) =1 (i.e. X has property (u) with
constant one). X 4s a strict h-ideal in X** if and only if k(X)) = 1.

Proof. Suppose X is a strict u-ideal (resp. strict b-ideal) in X **, Then
by Proposition 5.2, the projection P = 7 and the associated operator T :
X* — X** is the identity. Now if 2** € Ba(X) then we select a sequence
(z,) converging weak™ to z**. Now let A, be the convex hull of {zy : k = n}
and apply Lemma. 3.4. If H,, is the weak*-closure of A, then N, H,, = {z*"}
so that we conclude that sy(z**) = ||2**| (resp. kp{z**) = [la**||).

For the other direction, Lemma 5.3 gives the implication. =

The next theorem gives an hereditary characterization of strict w-ideals.

THEOREM 5.5. Let X be an arbitrary Banach space. Then the following
conditions are eguivalent:

(1) X does not contain a copy of £y and X is o strict u-ideal.
(2) For every closed subspace' Y of X and every y*™* € Y** with |y**|| =1,

inf *E =1
Jof Iy -2y =1
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Remark. If X isseparable then it is not necessary to assume X containg
no copy of £ in (1).

Proof. The direction (1)=»(2) is immediate from Proposition 2.3. We
consider the converse; assume (2). First assume X is separable. We will show
that X™ is separable. In fact, let N be a closed norming subspace of X*.
Then if ** € N we have ||¢** — zl| > ||z|| for all z € X. In particular,
infregy |&** = 22| > 2. We conclude that N = X* and the fact that X*
containg no proper norming subspaces implies that X* is separable.

Thus X™ has the Radon-Nikodym Property and (see e.g. [6]), the norm
on X™** is Fréchet-differentiable at each point of a norm-dense subset of Sxees .
Let us consider such a point #**. Let (H,,) be an increasing sequence of finite-
dimensional subspaces of X* whose union is norm-dense in ker 2**. For any
n we can pick z,, € (Hy)1 C X sothat ||z, = 1 and |jz™* —2z,[ < 1+n~t

Consider any weak*-cluster point y of the sequence (z,). Clearly x €
(ker z**}* so that x = pz** for some u and of course |u| < 1. Pick z* € Sx-
so that «} (z,) = L. Then

[(zf, 2™ —22,) < 1+n"t

and it follows that lim z**(z*) = 1. Since the norm is Fréchet-differentiable
at. 2 this implies by Shmulyan’s lemma that lim ||z* — 23| = 0 where
z* € Yx» is the differential of the norm at this point. It follows that
limz*(z,) = 1. However, u is a cluster point of the sequence z*(x,) so
fo= 1l

Our conclusion is that there is a sequence {z,) converging weak™® to 2**
go that limsup||2** — 2z, || = 1. By a density argument this holds for all
7™ € Sx+~ and an appeal to Proposition 2.3 shows that || — 27}] = 1. Thus
2 e G(X) and by 5.2 we have (1).

In general if X is nonseparable, we observe that the above argument
gives that every separable subspace Y satisfies x,(Y) = 1. This trivially
implies gy (X) = 1 and so X is a strict u-ideal in X** not containing £;. m

Rewmark. It follows from Proposition 2.7 and Lemma 2.5 that if X is a
strict u-ideal in X** (and contains no copy of £; if X is nonseparable) then
every subspace ¥ of a quotient of X has the property that every proper
closed subspace of Y™ has characteristic at most 1/2. We do not know of
any general converse to this result (see Section 10, Question 2).

Before cur next result we prove two general results concerning isometries
which use the ideas of [26] and will also be used in Section 6. We refer also
to [24] and [29] for sitnilar results.

LEMMA B.6. Let X be a Banoch space and {et U+ X — X™* be an
invertible isometry. Then:
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(1) If X contains no copy of & then U is weak™-continuous.
(2) In general, if (z4") 1s @ weakly Cauchy sequence such that 1y, e 21
= z** weak® then limp U:nj,‘L* = [Jz*™* weok".

Proof. U is necessarily continuous for the ball topology bx« on X**
(cf. [26]).

(1) By Corollary 5.5 of [26] if X contains no copy of £; the ball topology
on X** coincides on Bx-+» with the weak*-topology and so U is weak™-
continuous on By«~, which implies the resulf.

(2) In this case Uz} is clearly weakly Cauchy and limUaj* = Ua™
for the ball topology bx--. Suppose lim Uzi* = x for the weak®-topology.
Let A be the norm-closed absolutely convex hull of the set {Ux})" : n € N}
U {T7z**, x}. Then it is not difficult to show that A is weakly precompact,
i.e. every sequence in A contains a weakly Cauchy subsequence. Thus A is
a Rosenthal set (Definition 3.2 of [26]) and by Theorem 3.3 of [26], bx..
is Hausdorff when restricted to this set. Now since the sequence (Uz}")
converges to both Uz** and to x for the ball topology we have x = Uz™ as
required. m .

In our next result (1) is proved for M-ideals irl {35], by a similar method.

THEOREM 5.7. Let X be a Banach space which contains no copy of £y,
and 15 a strict u-ideal. Then:

(D) If U: X** — X** is an invertible isometry, there ezists an isometry
Ug: X — X sothat U =Ug".
(2) X is the unique isometric predual of X which is o strict u-ideal.

Proof. (1) By Lemma 5.6, U*(X*) = X*. Now U*(X?1) is a u-com-
plement of X* and so by Lemma 3.1, U*(X*) = X . This implies that
U(X) = X and that U = U§* where Uy is its restriction to X,

(2) By Lemma 3.1, X1 is the unique u-complement of X*. =

Remark. Thus 4, for example, has exactly one isometric predual X
with &, (X) = 1, namely X = cq. It is an open question whether an isomor-
phic predual X of 4; with k,(X) < oo is isomorphic to ¢q (see [21], 28],
[64]). We will give some partial results in Section 7.

6. h-ideals. We now turn to the general theory of h-ideals, with no
strictness assumptions. The theory of h-ideals is particutarly simple because
we are able to exploit the theory of hermitian operators on a general Banach
space. We begin with a general result on such operators. -

LEMMA 6.1. Let X be an arbitrary complez Banach space. Let H : X** —
X be an hermitian operator such that Hzx =0 forz € X
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(1) In general, Hz** =0 for z** € Ba(X).
(2) If X contains no copy of &, then H = 0.

Proof. For all real ¢, the operator exp(itH) is an invertible isometry on
X which satisfies exp(itH)z = = for z € X. In case (1), Lemma 5.6(2)
gives that exp(itH )z** = 2** for all ** € Ba(X). It follows that Hz**

= 0. In case (2), exp(itH) is weak*-continuous and hence coincides with the
identity for all t, whence H =0. u

Let us now suppose that X is an h-ideal and that P is the associated
hermitian projection on X*** with ker P = X+, Let T : X** — X** be
defined as usual by the formula {z*, T2**} = (z**, Pz*), for z* € X* and
m-»w e Xslnk.

LEMMA 6.2. T is hermition on X* and Tx =z forz € X.

Proof By Theorem 2, p. 11 of [5] it suffices to show that if z* € Sx+,
** € Sy and z**(z*) = 1 then {z*, T2**) is real. But this is immediate
since P is hermitian. The last statement has already been noted. e

LemMa 6.3. Let X be an arbitrary real or complex Banach space and
suppose o** € Sy« salisfies ky(z**) < 2. Then ker ™ cannot be a norming
subspace of X*.

Proof. Let ** = 3 &, weak® where if 6, = +1 then || 37 _; fexx| <
2 —§ for some § > 0. If 5, =}, Zi then {|z** —2s,]| < 2— 6. Then there
is a sequence of convex combinations i, of s, so that t, converges weak™ to
z** and lim |t || = 1. Thus |jz** — 2¢,|| < 2— &, which leads to the fact that
if £* € kerz** and ||z*| = 1 then |z*(t,)| < 1 — §/2. Thus ker ™ cannot
be norming. '

Remark If X is a separable Banach space containing no copy of £;
and such that £,(X} < 2 then this lemma yields that X™ is also separable
since it has no proper norming subspace. We note that the James Hagler
space JH is a space with property (u) [46] but JH* is nonseparable; thus
s (JH) > 2 for any renorming.

THrOREM 6.4. Let X be an h-ideal. Then sp(X) =1,

Proof. By Lemmas 6.1 and 6.2 we have Tz** = o™ for ™ € Ba(X).
Hence by Lemma 3.4, £, (2**) < |z**{| and so ka(X) =1. =

Of course the condition xu(X) = 1 is not sufficient for X to be an
h-ideal. Tn the case when X is separable, we can, however, give a fairly
complete deseription of h-ideals.

THREOREM 6.5. Let X be o separable cornplex Banach spoce. Then in

order that X be an h-ideal i is necessary and sufficient thal there erists an
hermitian projection T of X** onto Ba(X) such that for every ** € X**
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with ||z**|| = 1 there is a net (sequence) (zg) in X so that limg zg = T'z**
weak™ and for every |A| = 1, limsupy [lz** — (L + M)zq| < L

Proof. First assume that X is an h-ideal. In this cage the conclusion will
be immediate from Lemmas 2.2 and 6.2 once we show that T is a projection
onto Ba{X). As observed in Theorem 6.4, T'z** = «** for £™* € Ba(X).

We first claim that if z** € Ba(X) is such that ker #** is norming then
z** == (. This follows immediately from the fact that sy (z**) = ||&"*||, and
Lemima 6.3.

Now if X is separable there is a separable norming subspace M in X*.
By Lemma 34 if 2** € Sx« and £ > 0 we can find x € Ba(X) with
fa(x) < 1+ £ and such that x(f) = Ta**(f) for f € M. Now suppose
z* is an arbitrary element of X*. Then there exists x; € Ba(X) so that
x1(f) = Tz**(f) for f € M and y1(z*) = Tz**(2*); this follows by applying
the same argument to the span of M and z*. Thus x; — x € Ba(X) and
M C ker{x1—x). It follows that x; = x and hence that T¢**(a*) = x(a*) for
all z* € X*. Thus Tz** = x € Ba{X). Hence T is an hermitian projection
onto Ba(X).

Now consider the converse direction. In this case we can define P :
X — X by P = T*n, Clearly #T* is a projection of X*** onto X*
and so P is a projection whose kernel is X*. It is now possible to use
Lemma 2.2 to show P is indeed hermitian, since T' coincides with the oper-
ator T induced from P as in Section 2. By hypothesis for each 2™ € Syw
there is a net (xg) with limxg = Tz** weak* and so that if |A] = 1 then
lim sup ||2**— (1+A)z,|| < 1. By Lemma 2.2 it follows that |7~ (1+A)P|| = 1
if |A| = 1 and this shows that ||exp(itP)| = 1 for all real ¢, i.e. P is
hermitian. =

Remark. Thus if X is a separable h-ideal then we can conclude both
that there is an hermitian projection of X ** onto Ba(X') and that k£ (X)=1,
i.e. X has complex property (u) with constant one. The converse is false but
we postpone giving a counterexample until Section 8. Theorem 6.5 ingtead
requires some interaction between property (u) and the projection 7'

Next we characterize strict h-ideals.

THEOREM 6.6. Let X be an h-ideal. Then the following are equivalent:
(1) X is a strict h-ideal.

(2} X* is an h-ideal.

@I =2 <1if|A—1| < 1.

(4) Bvery separable subspace of X hos separable dual.

(5) X contains no copy of £;.

Proof. (1)=(2). (Note this is immediate from Proposition 5.2 if X is
separable.) In this case the operator T : X** — X**isan isometry. Since T'is
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hermitian it follows that ({4]) T(X) = T2(X) and so T is invertible on T(X).
This implies that 1" is surjective and so its spectrum is contained in the unit
circle. Since it is hermitian o(T') C {£1}. However, ||[I — (1 + \)T| =1 for
Al = 1 and so it follows that the spectrum of T is reduced to {1}. Thus
the spectrum of 7' — I reduces to {0} and since T — I is hermitian it follows
from Sinclair’s theorem ({4, p. 73], [59]) that T — I = 0. Hence T = I and
P = so that X* is an h-summand in X***.

(2)=(3). We argue first that X* can contain no copy of cg. Indeed, if
s0, then since it is a dual space £, embeds into X* and so £, has property
(u); this is cleatly false. We conclude that X™ is an h-summand in X ***
(Theorem 3.5). Let @ : X** — X* be an hermitian projection. Let P -
X*% . V be the hermitian projection associated with the fact that X is
an h-ideal. Then i(PQ — QP) is hermitian ({4, p. 47]).

We now use the fact (cf. [55, Corollary to Theorem 2}) that if T is an
hermitian operator on a space ¥ and if R is a norm one projection, then RT
is hermitian on the space R(Y). It follows that ix(PQ — QP) is hermitian
on X*. However, 7P = 7 and 7@ = @. Hence i(Ix- — @P) is hermitian
on X™*. Note that () is also a norm-one projection onto X * and so QF is
hermitian on X*. Hence Iy« — QP is hermitian. This implies [y« — QP =0
on X* and thus QP is another contractive projection onto X*. Hence P
ig a contractive projection.

Now PQ(PQ — @QP)QFP = PQ(PQ — QP)PQ = 0 etc. so that (PQ —
RP)? = 0. Since i(PQ — QP) is hermitian this implies (again by Sinclair’s
theorem, or other more elementary arguments) that PQ = @QP. Hence X* =
Vand P=m.

(3)=>(4). This follows by Lemma 2.5 and Proposition 2.8.

(4)=>(5). Immediate.

{5)=(1). Here Lemmas 6.1 and 6.2 imply that T is the identity on X"
and so P = and X ig a strict b-ideal.

ExAMPLE. Suppose X is an h-ideal with the property that X™** is iso-
metric to a von Neumann algebra. Then X™* is an L-summand (see [61]).
Thus the above theorem yields that X is a strict h-ideal and moreover X
has the Radon Nikodym Property (since every separable subspace of X has
separable dual). Thus ([20, Theorem VIL8), X* is isometric to an {£i-sum
of projective tensor products of Hilbert spaces. It follows from Theorem 5.7
that X must be isometric to a space (3,0 BX(Hi)) e

We now consider the problem of identifying h-ideals, by first considering
subspaces. ' :

THEOREM 6.7. Let X be u separable h-ideal and T be the induced hermai-
tian projection of X** onto Ba(X). If Z is a subspace of X such that 2+~
is T-invariant then Z is an h-ideal.
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Proof Of course Z-+ can be identified with Z** and T restricts to
an hermitian projection on Z** whose range includes Z. If z** & Z**
with [[e**|| = 1 then T'2** is in the weak*-closure of Bz and so by use
of Lemma 2.2 there is a net (zz) in Z with limzy = Tz** weak* and
limsup||z2** — (1+ A)zz|| < 1 whenever |A| = 1. The result follows by Theo-
rem 6.5. =

We will prove a converse to this result. First we introduce a definition.
We will say that a separable h-ideal is nondegenerate if whenever y € ker T
and z** € Ba(X) then [|x-+z**| = [|x|| implies that z** = 0 (Le. Ba(X) isa
Chebyshev subspace of X**). The simplest example of a degenerate h-ideal
is C oo £1; note that in this case X = Ba(X).

PROPOSITION 6.8, Let X be o separable h-ideal and suppose x € Sxn
satisfies Tx == 0. Suppose E is a finite-dimensional subspace of Ba(X).
Then, whenever (A,) is a sequence of convex subsets of X so that x is in
the weak™-closure of ench A, and & > 0 then there is a sequence (zy,) in A,
such that for any =** € E, and any complex (a)7_, and 5,

| o+ (3 el +181)]
k=1

and, in particular,

|3 e+ o] = (1= (3 el + ).
k=1 k=1

Proof. This is essentially a rewording of an argument of Maurey [50).
We suppose &, > 0 are chosen so that [J(1 —§,) =1 —ec.

We select z,, € A, by induction. To start the induction let Fy = E and
then set F,, = [F,x1,...,%,]. We choose z,, € A,, so that

If + azn + Bx|| 2 (1= 8,)([if + (Jal + |8))x])

whenever f € F,,_; and o, 8 € C.
We now describe the selection of z,,. Let Gy, = [, F\,—1}, and then choose
a finite set {=},...,z}} in Bx+ so that if g € G, then

i
'+ Z Ly + ﬁx” > (1~ E)}
k=1

_ 1
1I<1'.;C&<XN |-’L'k, )l ?, ( 2671,)H9H

Pick #, € Ay so that for 1 <k < N we have |5(2,) — x(z})| < 16,. Now
for f € Fry_1, @ >0, f € C we have
17 + czn + Bxll = || f + awn + 8]x||

> 1I<I?<XN |25 (f) + oy (2n) + |Blx(x})|

> max, |z (F) + (el +18D)x(25)] — %|exlén
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2 (1= 8) 17 + (lod +18)x]) — 36alal
2 (1= 81 + (lod + 181l

and this inequality must hold for all complex « by homogeneity.
Now it follows quickly by induction that

for all 2** € E, oy, ...

**+Zak$k+ﬁ)€”> 1*5k|

II (Zmz +181)x|

, 0y, 8 € C and the tesult follows. =

THEOREM 6.9. Let X be a separable nondegenerate h-ideal. Then a closed
subspace Z of X is an h-ideal if and only if Z1+ is T-tnvariant.

Proof We need only consider the case when Z is an h-ideal. Tet Tz :
Z* — Ba(Z) be the associated hermitian projection. In this case the £;-sum
X @ Z is also an h-ideal, and the associated projection of X ** EB; Z** onto
Ba(X) @1 Ba(Z) is given by T & Tz

Suppose x € Z** satisfies Tz = 0 and ||x|| = 1. Identifying Z** with
Z*++ ¢ X** in the natural way we may consider y in X**. Then Ty € Ba(X)
and so there is a sequence (u,,) in X converging weak* to Tx. Let € = y—Ty
(note here that y = T'x is impossible since Ty € Ba(X) but x € Ba(Z)).
Let C, € X @1 Z be the set of all (x,2z) such that z — z € co{ug : k = n}.
Then (£, x) is in the weak*-closure of each C,,.

If § > 0 then (£,x) is also in the weak*-closure of 4, = {(z,2) € C,, :
el < (1+8)€l, [0 < 1+6}. In fact, # B = {(z,2) : || < [I€], 1] < 1}
then for any weak*-neighborhood W of (€, x), 0 is in the weak-closure of
(WnCy) — B and hence also in the norm-closure. Hence 0 € (W N C,) —
(1 + 6)B, whence W N C, N (L4 §)B is nonempty.

It follows that we can pick {z,, zn,) € 4, so that for all scalars a, ..., ay
and all n € N,

k(3

H ZamH +| ZamH (1= 6L+ 1€l) S el

k=1

By construction lim(z, —,) = Tx weak* and so lim(zz,, — Zon1 — Ton +
Zant1) = 0 weakly. Thus there exist n € N, f; > 0 such that 3 8, =1 and

T i
|| Z ﬁk,(zzk - sz+1) - Z ﬁk(-’f% - $2}=+1)H <6
k=1 k=1
It follows that

HZﬁk(zzk — Zok+l ” 21+ §)IIEN + 6,
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and hence that
H i,@k(z.‘zk - z2k+1)” + H iﬁk(m - $2k+1)” <41 +8)]¢li + 6.
k=1 k=1

Hence
201 =&)L+ i€y < 41+ )€l + 6

and as § > 0 is arbitrary this implies that ||£|] > 1. Hence ||€]| = 1 and
as £ +Tx = x and X is a nondegenerate h-ideal this in turn implies that
Ty =0.

It now immediately follows that Tzx = Tx for any ¥ € Z+L and so 2+
is T-invariant. =

CORGOLLARY 6.10. Let X be a separable complex M-ideal. Then a closed
subspuce Z of X* is an h-rtdeal if and only if it is weak*-closed.

Proof In this case X is also separable and is an L-summand. Thus it
is, in particular, a nondegenerate h-ideal and the operator T coincides with
the canonical projection = of X*** on X™. A subspace Z is w-invariant if
and only if it is weak*-closed. m

‘The above corollary is false if we assume X is merely a strict h-ideal;
similarly the preceding theorem fails for degenerate li-ideals. In fact, let
X =C®rcy so that X* = CP 1. Let ¥y € X*™* = C By b be the
element (1,e) where ¢ is the constantly one sequence. Then ker X 18 isomet-
ric to £; and hence is an h-ideal. In this case X* is a degenerate h-ideal
(actually h-summand). Notice also that kery is a summand (contractively
complemented) subspace of X*: in fact, if Z is an h-ideal and Z* is a non-
degenerate h-summand then any summand of Z* is wealc*-closed.

CoROLLARY 6.11. Let X be o separable complex Banach space such that
X" is an L-summand. Let Y be o quotient of X. Then Y is an M-ideal if
and only if Y is a strict h-ideal.

Proof. Since X* is an T-summand, Y™ is also an L-summand (Theo-
rems 6.6 and 6.9). But if ¥ is also a strict b-ideal this means that 7y :
Yy Y is an L-projection by Lemma 3.1. =

Remark. This corollary applies in particular when X is a C™-algebra.

We now turn to some examples. The simplest and most natural exarmple
of an b-ideal is a (complex) order-continucus Banach lattice X. In this case
X1 s a band in X***. If we assume X is separable then Ba(X) coincides
with the band generated by X in X** and T is the natural band projection
(see [56]).
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Now suppose ({2, X, 1) is a o-finite measure space and that X is a sep-
arable order-continuous Kéthe function space on (12, p) (cf. [49]). By the
above remarks X is an h-ideal.

PROPOSITION 6.12. Let X be a separable order-continuous Kéthe Junc-
tion space on (12, ). Let Z be a subspace of X. Consider the properties:

(1) If (fn) is o sequence in Bz which converges p-a.e. then there is a
weakly Couchy sequence (g,,) in Bz such that im(f, — g,) = 0 p-a.e.
(2) Z is an h-ideal.

Then (1)=(2) and, if X is a nondegenerate h-ideal, (2)=-(1).

Proof. We first make some observations about X. We can identify X*
with a Kéthe function space on (2, ) and further Ba(X) can be identified
with the Kdthe function space Xy, consisting of all measurable f so that

[l 3 mee = sup{ilgllx : g € X, |g] < |Fi} < 00.

We may select a weak order unit v for X—then u > 0 a.e. Similarly, there
exists v € X* s0 that v > 0 a.e. The F-norm

If1= [ vmin(|f], u) du
defines the topology of convergence in measure.

We now claim that if z** € X** and £ > 0 then there is a convex subset
Ag{x**) of the set N.(Ta**) = {f € X : ||f — Ta**|| < €} such that z**
is in the weak*-closure of A {z*"). This is clear if ** € Ba(X) = Xyay,
since there is a sequence (f,) in X so that f, converges both weak® and
almost everywhere to z**; thus we can take A.(z**) to be one of the sets
co{fx : k > n}. We next suppose z** > 0 and Tz™™ = 0; then z** is in the
weak”-closure of the set Aw = {f € X : f > 0,f € W} for any weak*-
neighborhood W of 2**. We claim that for suitable W we have Aw C N.(D).
Indeed, if not there is a net {fq) converging weak™ to =™ with f3 > 0 but
Ifall > &. But then min(fq,u) is contained in a weakly compact set and
any limit point g satisfles 0 < g < 2™; as g € X this implies g = 0 by
the definition of the band projection, and hence [ vmin(fq,u) dp converges
to zero, contrary to assumption. Now any general z** can be written as
Ta** 4 xy — g wherve T'yy = Txy = 0 and x3,x» > 0; it is then clear that
by adding sets we obtain the general claim.

Finally, our theorem is proved if we can show that Z++ is T-invariant if
and only condition (1) holds. First suppose (1) holds. Then suppose z** €
Z*~*; let ||z**|| = 1. Then, for £ > 0, z** is in the weak*-tlosure of A.(Tz**)
and by a Hahn-Banach argument there exist z € Bz and f € A(T2**) with
|z~ f|| < &, Thus there is a sequence (f,) in Bz converging in measure to
Tz**. By passing to a subsequence we may assume f,, converges a.e, and
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thus by {1) there is a similar sequence (g,} which is weakly Cauchy. Thus
Tz ¢ Z+4.

Conversely, assume Z-1 is T-invariant, and assume f,, € By converges
a.e. to x € Ba(X). We may assume that [|[x — fn]l <27 Let A, = co{fy:
k > n}; then for f € A, we have ||f — x|| € 27". Now let 2** be any point
in the weak*-closure of every A,. Then Tz** € Z++. However, for £ > 0
and n € N, we can find, again by a Hahn-Banach argument, z € A, (Tz**)
and f € A, with ||z~ f|| <& Thus T2** = y and so x € Ba(X) N Z+4
it now follows that there exists a sequence (g,) in Bz converging a.e. and
weak” to x. =

Remark. If, in the above theorem, X is weakly sequentially complete
then (1) is equivalent to the statement that Bz is closed for the topology of
convergence in measure.

This has immediate connections with the notion of a nicely placed sub-
space of Ly (cf. [25]).

COROLLARY 6.13. A closed subspace of L110,1} is an h-ideal if and only
if il is nicely placed.

‘We remark here that the real version of Cozollary 6.13 is also true and
can be proved by direct arguments; a closed subspace of L0, 1] is a u-ideal
if and only if it is nicely placed.

‘We also remark without proof that in the nonseparable case X is an h-
ideal so that X* is a nondegenerate h-summand then X is weakly compactly
generated. This follows by arguments similar to those in [15].

7. u-ideals. In the case of u-ideals (and, in particular, for real Banach
spaces) the analogous results are not quite so clear. We first consider the
case when X contains no subspace isomorphic to £1. In this case one expects
that a u-ideal is strict, but we only obtain a much weaker conclusion, unless
we impose additional hypotheses.

PROPOSITION 7.1. Let X be o Banach space containing no copy of £
which is o u~-ideal. Then V is weak-dense in X***.

Proof This amounts to proving that 7" is one-one. Suppose then that
z™ € X**\ {0} and T¢** = 0. Notice that since ||[I — 2P| < 1 it follows
that |7 — 27| < 1. Hence if z € X we have |z** — 2| < ||#** + 2||. This is
impossible by Maurey’s theorem [50] (see also [37]). m

PROPOSITION 7.2. Let X be a Banach space containing no copy of £.
Suppose P is a projection on X*** such thet ker P = X+ and ||P| = 1. Let
V= P{X**). Then VN X* is norming for X,
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Proof. We consider again the associated map T. It is clear from the
definition that if z* € X* and T*2* = z* then z* € V. Now for each
x € X** we consider the set B, = {z* ¢ X*: Tx(z*) = x(z*)}.

Now x is of the first Baire class on (Bx-,w*) ([36], [51]) and therefore the
set C.{x) of points of continuity is a dense Gs-set. Assume z* € C.(x). Let
v = Pz*. Then there is a net (z3) in Bx+ converging in the weak*-topology
of X*** (Le. o(X***, X**)) to v. However, v—2" € X sothat #} converges
for e(X*, X} to z*. Thus

v0x) = lim x{z3) = x(z")

so that Pz*(x) = x(2*). Now Tx(z*) = Pz*(x) so we conclude that z* €
E,. Hence Ey is norming and further by [26] (or [23]) this implies that
H =V ex+ Ey is also norming. However, H C V N X*. =

PROPCSITION 7.3. Under the hypotheses of Proposition 7.2, if moreover
V r-norms X™* and || — AP|| = 1 where rA > 1 then V = X*.

Proof. Suppose [z**] = 1 and that z** € (VN X*)*. Then it is easy to
see that Tz** € (VNX*)%. Thus ker Tz** norms X and so for z £ X we have
(72" + 2| > ||z||. Now by Lemma 2.2 there is a net (z4) converging weak*
to Tx™*, with limsup | Ta** — Azy|| < 1. Hence limsup |Jzg)l < A~* and so
[Tz** || < A~%. However, |[Tz**| > SUpP, ¢ gy, |V(2**)] > r. This contradiction
shows that V' N X™ = X* and the result follows. =

THEOREM 7.4. Let X be o Banach space containing no copy of £1. Sup-
pose X is a u-ideal. Then the following conditions are equivalent:

(1) X* contains no proper norming subspace.

(2) V r-norms X** for somer > 1/2.

(3) |f —2n) < 2.

(4) ra(X) < 2.

(5) X is a strict u-ideal.

Proof. (1)=(5). V = X* by Proposition 7.2. The converse is immediate
(see the remark after Theorem 5.5).

{(2)=(5). We need only apply Proposition 7.3. The converse ig obvious.

(3)=+(1) by Proposition 2.7 and {4)=-(3) by Lemma 5.3. {(5)=>(4) is The-
orem 5.4, m

We now consider the general case of separable u-ideals and prove a result
analogous to but much weaker than Theorem 6.5.

TusoREM 7.5. Let X be a separable u-ideal such that k(X)) < 2. Then
ku(X) =1 and Ba(X) is a u-summand in X**.

Proof. First notice that by Lemma 6.3, if 2** € Ba(X) is such that
ker z** is norming then z** = 0.
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Suppose z** € X**. Let M be a separable norming subspace of X*,
Suppose £ > 0. Then by Lemma 3.4 there exists ¥ € X** with xy(x) <
|lz**]| + € so that x(f) = Tz**(f) for all f € M. Arguing exactly as in
Theorem 6.5 this leads to the conclusion that ¥ = Tx™. Thus T maps X**
into Ba(X).

Next if z** € Ba(X), thenr the argument of Proposition 7.2 shows that
the set of &* € Bx~ such that #**(z*) = Pz*(z**) contains a weak*-dense
(Fs-subset. Hence z** — T'z** vanishes on a norming subspace of X* and is
in Ba(X). Hence Tz = z**. Thus 7' is a projection of X** onto Ba(X)
and of course || — 27|l = 1. Further it follows that if 2** € Ba(X) then
mufz™) = [|z**||. =

‘We conclude this section by considering a special result for M-ideals,
We first need an adaptation of Theorem § of [2] (see also [13, Theorem 2.6]
and [12]).

PrOPOSITION T.6. Let Z be a Banach space and let J be an M-ideal in
E. Let Y be a separable Banach space with (MAP). Then for any bounded

operator § : Y — E/J there evists an operalor 8 : Y — E so that if
g: E — B[J is the quotient map then ¢S5 = S and |S]! = | S|

THEOREM 7.7. Let X be o separable M-ideal {in X**) with (MAP). Let ¥
be & Banach space such that Y* is isomorphic to X*. Suppose that dk—1 <
24~ where d = d(X*,Y*) and k = ryu(Y). Then X is isomorphic to Y. In
particular, X is isomorphic to Y if either

(1) X* is isometric to Y* and x,(Y) < 3, or
(2) d(X*,Y*) <2 and wo(Y) =1 (i.e. ¥ is a strict u-ideal).

- Proof. We will suppose that ¢ : X* — ¥* is an isomorphism which
satisfies a™!|z*| < |l¢2*|| < |lz*| for z* € X*, where 0 < a < oo, We
will also suppose that the canonical projection my : ¥Y*** — Y* satisfies
|7 — 27y || = b. Let g : X** — X**/X be the quotient map. Let S be the
restriction of ¢* to ¥. Thus §: Y -+ X** satisfies a™* |ly|| < | Sv|| < [v]|.

Let us suppose ||gS|| < a™!. We note first that by [31], X* has (AP) and
so Y has (MAP). Thus by Proposition 7.6 there is an operator Sg : ¥ —s X**
such that ||Sp]| < o™ and ¢S = ¢S. Now § — Sy maps ¥ into X and is an
isomorphism onto its range. We claim $ — Sy is onto X. Indeed, if z* € X*
with [lo*]| = 1 and &*(S ~ So)(y) = 0 for all y € ¥ then [Sy(a)| < ||Ss]|l¥ll
so that |(z*Hy)| < {Solll|lyl for all y € Y. This implies |¢z*| < o=t
which is a contradiction. Thus the theorem will be established if we show
that {|¢5]| < a™L.

Suppose y € Sy. Select £ € X+ with ||£]| = 1 and (Sy, &) = ||qSy|.
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Then
||q5'y|§ = (:;S*y, E) = (yré**ﬂ = (y,ﬁy¢**€>
< ry ™€ < Q¢

where Q = ¢~ ny @** is a projection of X*** onto X*. Thus since X is an
M-ideal we have

lgSyll < a(li(I + Q@ ~mx)gll = 1) S e™H (T + Q — x| - 1)

Now
11 +Q—mx|| ~ 1< 3(I7+2Q - 2ux| —1)

and I +2Q - 27y = (I - 2Q)(I — 27x ). Thus |7+ 2Q ~2ax || = |1 — 2Q|-
Now I —2Q = (¢**)" (I — 21y )™ so that |T — 2Q|| < ab. We thus obtain
the estimate [|¢S|| < $a(ab—1) and the theorem will hold if ab— 1 < 2a 7.

Now in case (1) we may assume that a =1 and b= |[I — 27wy || < ka(¥)
< 3. In case {2) we have b=1and then a® - a ~2=(a ~ D(a+1) <O or
a < 2 is sufficient. m

Remarks. The simplest case when this theorem applies is when X is ¢q.
Ag we observed in Section 5, it is unknown whether every isomorphic predual
of ¢, with property {u) is isomorphic to cp. However, if ¥ is an isometric
predual with &£y(¥Y) < 3 or an isomorphic predual with d(Y*,¢;) < 2 and
#u(Y) =1 then ¥ is isomorphic to ¢g.

We conclude this section by showing that cg is the only isometric predual
of £ which is a u-ideal (for strict u-ideals see Theorem 5.7 and the following
remarks).

ProOrPOSITION 7.8. Let X be a real Banach space such that X * is tsometric
to £. If X is a u-ideal then X is isometric to cp. -

Proof. Let P; X*** — X*** be a projection such that ker P = X+ and
|1 - 2P| = 1. We show that P(X***) contains X*, from which it follows
that X is a strict u-ideal and the proof will be complete. Let 7 denote the
canonical projection of X*** onto X*. Let e be an extreme point of Bx-.

Let £ = {t € Byww 1 w(t) = e}. If we let § = 2P — I then it is clear that
S{F) = F. Further if E is the set of extreme points of F' then S(E) = E.
Since iy contained in the set of extreme points of By« and X*** is
isometric to £5* it follows that F is a linearly independent set. If f € E then
Sf+4f=2Pf =2Pe. Thusif f,g € E we have Sf — 8¢ == g—f. Using linear
independence we have Sf = g and Sg = f. As this is true for any pair f. g
we conclude that F contains at most two points. Now, from the fact that
X is separable it is clear that F' is a weak™ Gs-subset of Bx+~». Since F' is
either a point or a line segment we conclude that each f € E is a Gig-point.
Since X* is weakly sequentially complete this means that E C X* and so
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F C X*; thus F' = {e} and so Se = e and Pe = e. Since the norm-closed
span of the extreme points coincides with X ™ this concludes the proof, =

Remark. We do not know if every separable Lindenstrauss space which
is a w-ideal is isometric to ¢p. If X™ is isometric to C[0,1]* then the above
argument shows at least that V' M X* contains all discrete measures.

8. Spaces of operators. Let X be a separable Banach space. We ghall
say that a sequence of compact operators K, : X — X is a compact approg-
imating sequence if imp oo Ky = z for every z € X. If each I, is actually
finite-rank then we will say that (K, ) is an approzimating sequence.

Extending an idea introduced in [10] we will say that a Banach gpace X
has (DK AP) if there is a compact approximating sequence K, : X — X such
that limp oo [[I — 2K, || = 1. If X is a complex Banach space we will say
that X has complex (UKAP) if there is a compact approximating sequence
such that limy, .o || — (1 4+ A) K, || = 1 whenever |A| = 1.

LEmvaA 8.1. (1) Let X be a separable Banach space. Then X has (UKAP)
if and only if for every € > 0 there is a sequence (A,) of compact operators
such that for every z € X and every n and every §; = £1,1 < j < n, we
have Y o s Apz = z and

H Z 0y g

(2) Let X be a separable complez Banach space. Then X has complex
(UKAP) if and only if for every ¢ > 0 there is a sequence (A,) of compact
operators such that for every € X we have ) - Apz = and for every
n and every y,... 0, with |6;] <1 for 1 <j <n,

| < +e)al).

| > 05450) < (1 + el
=1

Proof. We will prove only (2). (Compare [10] for the case when X has
an approximating sequence of finite rank operators.) First assume X has
complex (UKAP). Pick 9, > 0 to be a sequence such that [[(1--7,) < 144,
We may then choose a compact approximating sequence (K,,) such that
| KK — Kp|| < (4m) =10, whenever n < m and such that if [A] == 1 then
1= (1+A) K| € 1+ (4m) = . Let Ky = 0 and then set A, == K, —K,,.,
for n > 1. We will show by induction that if [A;] = 1 for 1 <j < n then

Jr-x+ i,\j,qj“ < ﬁ(l ).
g=1 F=1,
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For n = 1 thig is'clear. Now suppose it is established for n = m. Suppose
Al=1for1 <5 <m+1. Let 8; = X/ A1 for 1 <5< m+ 1. Then if
S=TI~Ky+ Zj:z_q g.iAjl :
m
11 < TT+m).
J=1
Thus

m.
I (1= Ay ) K1) 5] < [ 14 T ,
1T = (1= A1) Eomy) ||_(+4m+4 T+,

Now notice that | K1 4; — A;]] < 2(4m +4) 1n0; for 1 < j < m. Thus

m
I(ﬂL+1S = -Km+1 — I(m + Z QjAj +V

i=1
where
2m =+ 1)1
V] < Cm ot nmin
dm + 4
Thus
m+1
EmpS= > 0;4;+V.
=1
1t follows that
m41
(= (= Anet)Em1)S =1 = Kpy1 + Amgr D 8545 — (1= Amy1) V.
i=1

Combining, we have
m+1 m+1
7= i+ Y 45| < TL 4 my)
j=1 Jj=1

as required. This completes the induction. It now follows by convexity that
if |8;] < 1for 1 €3 £ nthen for all m > n,

j=1

Letting m — oo yields that | 3 8;4;] £ 1 + £ as required.

For the converse, notice that given & we have a sequence (A;) of compact
operators such that if K, = 2;;1 A; then (Kp,) is a compact approximating
sequence and for x € X and [\ =1,

lz = (14 N Enz| = Hf:mjm— f} Azl < (te)a] . =

j=1 j=n+1
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PROPOSITION 8.2. Let X be a separable Banach space. If X has (UKAPF)
(resp. complex (UKAP)) then X is a u-ideal (resp. an h-ideal) and K(X) i
a u-ideal (resp. an h-ideal) in L(X).

Proof The fact that X is a u-ideal (resp. an h-ideal) follows easily
from Proposition 4.1. The remainder of the conclusion follows easily from
Proposition 3.6. In fact, for the u-ideal version, if F is a finite-dimensional
subspace of K(X) and ¢ > 0 we can find K compact such that ||KS ~ S|| <
g|S| for § € F and ||[I — 2K|| < 14 ¢. Then consider A(S) = K& for

SelL(X) a
Under certain circumstances we can prove the converse.

THEOREM 8.3. (a) Let X be a separable reflevive Banach space. Then X
has (UKAP) (resp. complez (UKAP)) if and only if K(X) is o u-ideal (resp.
an h-ideal) in L£(X).

(b) Let X be a complex Banach space such that X* is separable. Then X
has complex (UKAP) if and only if K(X) is an h-ideal in L{X) and X is an
h-ideal.

Proof We consider (a) for the case of u-ideals. Denote by P : L{X)* —
L{X)* the projection with kec ® = K(X)*+ and by T : £(X) — K(X)**
the induced operator as described in Section 2. For x € X and 2™ € X* let
z @ z* € K(X)* be the linear functional given by (K,z ® z*) = (Kuz, z*).
This functional has a natural extension to £(X), also denoted by z ® z*.

Now let v € X and v* € X* be points of Fréchet smoothness with |ui| =
Jlv*}] = 1. We suppose u* € Sx» and v € Sy satisfly w*(u) = v*(v) = L.
Let A : X — X be the rank-one operator given by Az = v*(z)u. 4 is
a point of Fréchet smoothness in £(X). For real o we have |4 + al| =
1+ cw*(v) + of|e|). Hence in K(X)** we obtain

A4+ aT (D <1+ aw*(v) + o(lal).
In particular,
(veu", A+ aT(I})) <1+ ou*{v)+o|al).
Hence
(weu*, T(I) =u"(v).

Now since the points of Fréchet smoothness form a dense (75 in both X and
X* we have for every x € X, 2* ¢ X*,

(e ®@e", T(I)) =z"(z).

Now by Lemma 2.2, there is a net (Kg) in (X) such that K converges
weak® to 7(I} and limsup |7 — 2Ky]| = 1. But then K; — I for the weak
operator topology. Hence for each d we can find Ly € co{K, : ¢ > d} such
that Ly — I for the strong operator topology. It follows that there is a
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compact approximating sequence (M) in K(X) such that lim|[] — 2M,, |}
= 1.

{b) In this case with X not necessarily reflexive, for z* € X* and z** €
X** we use 2" @z to denote the element of K(X)* given by (S,z*®@z**) =
z**(5*z*). The formula then defines z* @ z** ¢ LXy

Proceeding as in part (a) we define 7 : LX) — K(X)**. It is then
possible to define an operator H : X** — X** such that

(z* ® ™, T(I) = {x*, Ha**).

We will argue that H is hermitian. In fact, suppose |A| = 1. It follows
from the fact that 7 is hermitian that | — (14 A)H|| < 1. Thus if ¢ is a
state on L(X ") then {1 — (1+ A)¢(H)| < 1. Hence ¢(H) is real and further
0 < ¢(H) < 1. Hence H is hermitian.

Next we argue that there is an hermitian Hy : X — X such that H —
Hg”. In fact, for any real t, exp(itH) is an isometric isomorphism on X **.
We recall that X is necessarily a strict h-ideal by Theorem 6.6. Thus we can
apply Theorem 5.7 to deduce that exp(itH) maps X to X and is weak*-
continuous. Differentiating we conclude that # = H3* where Hg : X — X
is the restriction of H.

Next we recall that the collection of points of Fréchet smoothness in X
forms a dense Gy as do the points of Gateaux smoothness in X*, Let us
suppose that © € Sx is a point of Fréchet smoothness and that u* & Sx-
is the exposed functional corresponding to u. Similarly suppose v* € Sx-
is a point of Gateaux smoothness and v** is the corresponding exposed
functional in Sx«. Define, as in (a), the rank-one operator Az = v*(z)u.
We argue that

[ A=+ CIll = 1+ R (™ (u")) + o|¢]) -
In fact, S
lA+ CII| 2 Ro™ (47" + Cu”) = 1+ R(Cv™*(u*)).

Conversely, for any ¢ we may pick £*({) € Sx» so that 0 < z*({)(u) < 1

and _

(A" D)™ (OM = 1A+ ¢TI~ ¢
Letting ¢ —~ 0 we observe that if £* is any weak™-cluster point then 0 <
a*(u) £ 1 and [[Az*| = 1. Hence lim¢ o 2*({) = u* weak*. However, this
implies, since w is a point of Fréchet smoothness, that lime_,g [|2*({) ~ u*||
== (. It now follows imumediately from the Gateaux smoothness of the norm
at v* that

14 + ¢I]| = 1+ R(¢o™ (7)) + o(IC)
Now as in case (a) we have
| 7(A) -+ CT (D] < 1+ R(C™ (™)) + ofI¢])
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and hence
RA™ + CHWw ") £ 1+ R{Co™,uy + of|z]) .
It follows that
(Ho™ w") = (™, u").
If we fix u*, the collection of all v** as v* ranges over all points of

Gateaux smoothness spans a weak”-dense subspace of X**. Since I = H*
is weak*-continuous it follows that

(H:C**,’U,*) = (mw’ u*}
for all ** ¢ X**. Hence Hju* = u*. But again the collection of such
spans a weak*-dense subspace of X* and so Hy = I.

Now by Lemma 2.2 there is a net (&) in K(X) such that Ky — T(I)
weak™ and limsup || — (1 + A)Kq|| = 1 whenever [A] = 1. The remainder of
the argument is as in case (a} since we obviously have Ky — I in the weak
operator topology. &

We now turn to the question of when, for a separable complex Banach
space X, K(X) is an h-ideal (in K(X)**). If X is reflexive and has the
compact approximation property then K(X)** can be identified with £(X)
and so the preceding theorem provides a complete answer: X must have
complex (UKAP). '

We will consider the situation when X™* is separable. In this case a com-
pact approximating sequence (K,,) is called shrinking if (K7) is also a com-
pact approximating sequence for X*.

LemMA 8.4, Let X be an h-ideal such that X™ is separable. If X has o
compact approximating sequence (Ky,) such that limy oo ||[Knll = 1 then X
has a shrinking compact approzimating sequence (Ln) with lim, ee || Ll
=1.

Proof. This is essentially proved in {31], where M-ideals are considered.
We remark first that X is a strict h-ideal by Theorem 6.6. From PPropo-
sition 2.7, X'* has no proper norming subspace. Now let § be any cluster
point of (K*) in L{X™**) for the weak*-operator topology; then ||5]| = 1
and Sz =z for w € X. Hence ([31]) § = [y« ; it follows now that K}* — [
for the o(X™*, X*)-operator topology. It follows that K converges to the
identity for the weak operator topology on X* and so some sequence of
convex combinations L, of K,, is shrinking.

In general let us remark that if X is separable and X has the shrinking
compact approximation property then K(X)™* can be canonically identified
with £(X*, X***). The identification is given by x¥ — A where

<X, :5'* ® m**> - <x**,A$*>
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and weak"-convergence (in K{X)**) coincides with the a{X*** X**)-opera-
tor topology on hounded sets.

Under this identification each § € K{X) is identified with the operator
S¥ Xt — X* C X K(X) is thus identified with the space of operators
with range in X* which are o(X*, X)-norm continuous on bounded sets.

'THEOREM 8.5. Let X be a seporable complex Banach space with the met-
ric compact approzvmation property and such that X* is separchle. Then:

(a) If X is an h-ideal, then there is an hermitian projection T : K(X)**
- Ba(K(X)).

(b) If X has complex (UKAP) then, in eddition, sy, (K(X)) = 1.

Proof. (a) We first observe that X is a strict h-ideal (Theorem 6.6) and
hence X" is an h-summand. In particular, X* = Ba(X*), i.e. X* is weakly
sequentially complete.

We now identify Ba(X(X)) as a subspace of £{X*, X***) using the iden-
tification described above. We claim that Be(KC(X)) = £{X *). First suppose
L € £L{X™*) and that (K} is a shrinking compact approximating sequence for
X.Then LK € K(X) and LK} — A for the o(X*, X**)-operator topology.
Conversely, suppose S, € K(X} and S, — A for the o(X*, X**}-operator
topology. Then if &* & X*, §kz* is weakly Cauchy in X* and converges
weak* in X™* to L*z*. Since X* is weakly sequentially complete we have
LMX*yc X~

Now let m : X*** — X* be the canonical projection. We define 7{L) =
L. Clearly since 7w is hermitian, so is 7. This completes the proof of (a).

(b) In this case, for any & > 0 there is a sequence (A,,) of compact opera-
tors such that 3777 | Adnz = afor z € X and || 377, 8;4;] < 1+ whenever
19;] < 1for 1 £ < n. Clearly since X* is weakly sequentially complete
we have 3, A%z* = z* for * € X*. Now suppose L € L(X* X*).
Then ¥ o0 LAY = L for the o(X*, X**)-operator topology. It follows that
kp{K(X))=1. m

In view of this theorem one might hope that under the hypothesis that

X* ig separable and X has complex (UKAP) we might have that X{X) is an
h-ideal. This, however, is false. In fact, we have the rather surprising result:

THEOREM 8.6, Let X be a separable complex Banach space with the met-
ric comnpact approzimalion property. Then the following conditions are equiv-
aleni: '

(1) K(X) 45 an h-ideal (in K(X)*).

(2) X is an M-ideal (in X**) and has complex (UKAF).

Proof. (1)=(2). Observe first that both X and X* are 1-complemented
in K(X) so that both are h-ideals. Thus by Theorem 6.6, X is a strict h-ideal.
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In particular, X~ is separable and X has a shrinking compact approximating
sequence. Now identifying K (X)** as explained above, we see that [y« €
Ba(K(X)). Since &, (KC(X)) =1 it follows quickly that X has (UKAP). We
also note that the hermitian projection of £{X*, X***) onto Ba{X(X)) is
unique and hence is given by 7(L) = nL as in Theorem 8.5.

We now turn to showing that X is an M-ideal. Clearly it suffices to
consider the case when X is nonreflexive. We first establish the following
claim:

Cra 1. Suppose z € X, ** € X**. Then there exists a net (xy) in X
such that zg — " weak® and

limsup ||z + =™ — 24| < sup oz + Gz*.
a

Jel*+]8]2 <1

Let us prove the claim. Suppose £ > 0. Pick any ¢ € X+ with ||¢| = 1.
It follows from Proposition 6.8 {or more general considerations) that since
X* is an h-summand there exists f &€ Sx+ such that

(I+e)af +Bél = ol + 18]
for all complex «, 8. Pick then x € Sx«~ such that x(f) = ¢(x) = 1 and
Ixl] <1+ 2e.
Consider the operator L : X* — X*** defined by
Lz =™ (&"}(f + ¢) + 2" (2} (¢ - f).
Then
T{L)x* = (2*"(z") — =" (z)) f .

Pick any sequence (y,) in X such that y,, — z** weak®. Then the opera-
tors A, € K(X) given by A%¢* = z*(yn — ) f converge weak* to 7(L). The-
orem 6.5 guarantees a sequence (B,) in X(X) such that B, converges weak*
to 7(L) and limsup |L — 2B}|| < ||L}|. Now by an application of Mazur's
theorem we can find S, € co{dn, Ans1,...} and C, € co{B,, By, -
such that lim [|5, — Cf| = 0. Hence limsup || L — 25%|| < || Z|. Furthermore

Snx® = a*(zy —x)f
where 2, converges weak* to z**.
Now we can write
(L—-280)2" = (2", 2 —zp +2)(f + ¢) + (", 2,) (6 — f).
Thus
(x, (L —280)z") = 2(z*, 2™ ~ &, + ).
It follows that

2|z** = & + 2| < (1+ 2|1 — 257
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Hence

1+ 2

We thus turn to estimating ||L||. In fact, if £** € By. then (i =ua
and ¢(£**) = b where max(|al, |b]) < 1. Thus

(€7, Le™) = (2", (a + b)z™ + (b — @)z}
If we write o = (a +b)/2 and 8 = (b — a)/2 then |a|? + |8|* < 1. Thus

ILI <2 sup [loc™ + fa .
|2+ 5121

limsup |j& + 2™ — z,|| <
>0

We conclude that
limsup [|# 4+ 2™ — 2, < (1+2) sup
e ' le|*+]81 <1
and Claim 1 follows easily.
We now claim:

oz + Sz

CLAIM 2. For any ** € X** and & € X there is a net (x4) in X such that
T4 converges wesk™ to x* and limsup, |z + 2** — 24| < max(]|z|, [lz**])-

In fact, for any such z, z** let us define F': C? — R by
F(a,b) = inf limsup |laz + b(z** — z,)|
(z¢} a4

where (z4) ranges over all nets in X converging weak™ to z**. We claim first
that there is a single net (z4) which suffices for all e,b. This is standard.
Let € > 0 and let (a;,b;)7-, be a finite set of points in C%. Let W be a
convex weak*-open subset of X**. Let C; = {y € W : |lajz+b;(z* —y)f <
F(ay,b;) + 3e}. Consider the set C = {(y;)7_; € X" : y; € C;}. We claim
that infyec 2ex max;(|ly; — 2l)) = 0. Indeed, if not there exist 27 € X* for
1 < j < nosich that 32} = 0 and infyeo R 377, 27(y;) > 0. But then
>i=1 € (2}) # O contrary to assumption. It now follows easily that we
may pick z € W so that [ja;2+bj{z™ — 2)|| < F(a;,b;) + ¢ for all j. Hence
we can pick a fixed net (z4) which works for all @, b. It now also follows that
the lim sup becomes a limit and that F is a seminorm on C?.
Note that for fixed d there is net y, — 2** — 2q weak® so that

im s " 0*F g < ax  |aaz -+ B0z —xzg)|) -
hm:up |z + b(a™ — wg — ye) || < o | Bb( )l

Thus we can pick ag, B¢ with |ay|? + |84* € 1 so that
Fa,b) < ||oaaw + Bab(z™* — za)|| -

By passing to a subnet we can suppose that ag, B4 converge to some «, 3
and hence since (z4) is clearly bounded,

F(a,b) < F{oa, 8b).
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Tterating this condition we find a sequence (o, fn) With |a,|® + 8.2 <1
and (&n,bn)n>o with ag = by = 1 so that a, = apon_y, by = Bpbn_; and
Flan,by) is increasing. Now lay|,[bn| are decreasing. If both converge to
zero then we obtain F'(1,1) = 0. If say |a,| is bounded below then ||
converges to one; thus limb, = 0 and F(1,1) = F(lim|a,/,0) < |z||. In the
other case F'(1,1} < |a**||. Claim 2 is then established.

Now by Proposition 4.3, this completes the argument for (1)=-(2).

We now turn to (2)=>(1). This will follow from Theorem 6.5 and The-
orem 8.5 above. Notice first that since X is an M-ideal we know that
X" is separable and X has a shrinking compact approximating sequence
(Ky) so that lim|[J — (1 + A)K,|| = 1 whenever |A| = 1. Thus we iden-
tify K(X)** with £(X* X***). Suppose L € L(X* X**) and consider
T(L) =L € L(X* X*). Then K}wL — 7L for the o{X*, X**)-operator
topology. If £ € Bx« and |A| = 1 we have

IZe* ~ (1 + N KjrLa*|| = ||Le* — mLa® || + |( — (1 + A K*)wLa*|
\ < ||Le* — wLa™|| + |1 = (1 + VK v La*||
S = (L NI || L2

Hence |L — (1 -+ A)KpaL|| < ||T = (1 + M KL|[iL]| and the fact that (X))
is an h-ideal follows from Theorem. 6.5. &

Remark. We are now ready to supply an example promised in Section
6 after Theorem 6.5, Let X be a strict h-ideal with complex (UKAP) which
is not an M-ideal, e.g. X = C®qcpor X = Ly(ep). Then Y = K(X) is not an
h-ideal. However, ky(Y) = 1 and Ba(Y) is complemented by an hermitian
projection in ¥** from Theorem 8.5.

9. Commuting approximation properties. In this section we make
a few remarks concerning connections between some questions for u-ideals
and a problem on commuting approximation properties. For convenience we
restrict attention to the real case. ¥n [10] it is shown that a separable Banach
space with the metric approximation property (MAP) has the commuting
(MAP] or (CMAP). In [53] it is shown that there is a separable reflexive
space X with (CMAP) but failing to have a finite-dimensional decomposition
(FDD}; this space can be supposed to have the property that K(X) is an
M-ideal in L(X) = K{X)*™*, since it is a subspace of (' (see [10], [41]).

Recall that a separable Banach space X has (UMAP) if there is an
approximating sequence {Sy) of finite-rank operators so that lim, . I~
28|l = 1 (see [10]). We say that X has (UCMAP) if further X has a
commuting approximating sequence {5,,) of finite-rank operators such that
limp oo |4 — 28,] = 1.
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. Of course, as observed in the previous section (Proposition 8.2) a space
with (UKAP) must be a u-ideal. We start with a very simple proposition.

PROPOSITION 9.1. Let X be a separable Banach space with (UKAP).
Then:

(1) If X contains no copy of cg then X is a u-summand.
(2) If X contains no complemented copy of £y, then X iz o strict u-ideal.

Prool. (1) is Theorem 3.5. For {2) note that X* cannot contain a copy
of ey. It;c;rc)llows easily that if € > 0 and we choose Aj; asin Lemma 8.1
thriil 2oy Afw" = z* for ¥ € X*. But then if z*** £ X m(z**y =
2jmt A @™ and hence |1 - 2]l < 1 + ¢. Hence H—2r|=1m

THEOREM 9.2, Let X be a separable Banach space containing no comple-
mented copy of £1. Then the following conditions on X are equivalent:

(1) X has (UMAP),

(2) X and X* have (UMAP).
(8) X* has (UMAP) and X is a strict u-ideal.
(4) X has (UCMAP).
(5) For everye > 0, X is isometric to a (1 4+ &)-complemented subspace
of a Banach space Y with a shrinking (1 + £)-unconditional (FDD).

(6) X has (MAP) and for every & > 0 there is a Banach space Y with a
L-unconditional basis and a subspace Z such that d(X, Z) < 1 +¢.

Proof. (1)(2) is easy from the argument of the preceding proposition.
Clearly (1)=-(3) from Proposition 9.1. Also we have (4)={1) immediately.
Let us first complete the proof that the first four statements are equivalent.

(3)=>(1}. Let (S,,) be an unconditional approximating sequence for X*.
Then since X contains no copy of ¢ one may construct a projection P :
X X% by Po** = lim Sg*2***. Clearly || — 2P| = 1. However, if X
is a strict u-ideal then [T — 27| = 1 and so by Lemma 3.1, P = 7.

Now consider the operators S : X™ — X** Let g : X** — X /X be
the quotient map, and let 59 : X — X** be the canonical embedding. Let
Loy =2 qS53 gy ¢ X — X**/X. Then LY maps X to X* and coincides with
95" Thus Ly converges to zero for the strong operator topology, and this
is enough to imply ([42]) that L, converges to zero for the weak topology
on K{X, X*/X). It follows that we can find an approximating sequence
(B3,,) for X* which is a sequence of convex combinations of S, so that
lim [[q B3k 4y 1] == 0.

Now it follows from the Principle of Local Reflexivity (see [16,
Lemma 2.9]) that for each n there is a projection Q. of span({X U B{X))
onto X with [|Qn|} < 4. Now it follows that lim |[({ — Q. )Bjo| = 0. Let
Ry = QuBljy + X ~ X. Then limsup [ - 2R,| < limsup||I — 2B
< 1. Further lim Bra** = ** weak* for all ™ € X™* so it follows that
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lim R,z = = weakly for all z € X. By a further convex combination argu-
ment we can then find a sequence of convex coTbinlations T, of R,, which
i imating sequence with lim ||I — 2T, |} = L.

il a?;)lip(f)%lllere i’ hqas an approximating sequence (8y) such that (S})
is an approximating sequence for X* and such that .hm |{—285,] =1. By
Theorem 2 of [9] it also has a commuting approximating sequence (R,,) such
that (R:) is an approximating sequence for X *'. Then R, — 5n couverges
weakly to zero in JC(X) and so there is an approximating sequence of convex
combinations Ly, of Ry, such that lim [T — 2L,[| = 1. ‘

We now complete the proof by sketching the implications (L)=(5)=

=>(1).
o (1():)>(5) Using the technique of [52] or [57] it is easy to .show that X is
(14 )-isomorphic to a l-complermented subspace of a space with (FDD). r_l?he
proof is completed by using an argument like that of [30] or [47] adapting
the proof of [16, Theorem 3.3]. . N

(5)=>(6). By Theorem 1.g.5 of [48] any space with an 1Tn.cond1t10n'a1
(FDD) is isomorphic to a subspace of a space with unconditional basis,
and the proof shows that the constants can be controlled [47]. The result
then follows by interpolation (see [47]}. N .

(6)=(1). First notice that if ¥ hag a shrinking l-unconditional .basns, it
is a strict u-ideal (see Section 4). Hence if Z is a subspace of ¥, Z is also a
strict u-ideal. Thus X is a strict u-ideal. Hence by Proposition 2.7 and [31,
Proposition 2.5}, X* has (MAP); thus there is an approximating sequence
(R,,) for X so that (R}) is approximating for X*.

Now let J : X — Y be an embedding with [[J||||J ]| < 1+ ¢ and let 5,
be the partial sum operators for the basis of Y. Then 5,J — J R, converges
to zero in IC(X,Y). Thus by passing to a sequence of convex combinations
B, of S, and T, of R, we may assume that lim |BnJ — JT,,|| = 0. Thus
lim ||(I — 2B,)J — J(I — 2T,)|| = 0 and hence limsup |7 — 215 [| < 1+€. As
¢ > 0 is arbitrary X has (UMAP). =

We remark that it is open whether (UMAP) implies (UCMAP) in gen-
eral. For spaces not containing g this can be reformulated:

COROLLARY 9.3. Let ¥ be a separable Banach space nol confoining oy
with (UMAP). Then Y has (UCMAP) if and only if Y is isometric to the
dual of a strict u-ideal,

Proof If Y == X* where X is a strict u-ideal then by the prececing the-
orem X has (UCMAP) and it immediately follows that ¥ has (UCMAP).
Conversely, suppose (S,) is a commuting unconditional approximating se-
quence for ¥. Let X C Y™ be the closed linear span of [ J S} (V*). Then ([60])
(§%) is an approximating sequence for X. We show that X is a predual of
Y. In fact, if z* is a linear functional on X there exists £ € ¥™** so that
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£(z) = z*(x) for £ € X and ||¢|| = [|z*]l. But then S$%*¢ converges to some
y € 14 and clearly [|yi| < f|lz*| but z(y) = z*(z) for x € X. Thus X is an
isometric predual of ¥ which has (UMAPY) and hence is a strict u-ideal. =

Remark. Notice that in this corollary ¥ is a u-summand whenever it
has (UMAP); ¥ has (UCMAP) if and only if ker P is weak*-closed where P :
Y* — Y is the associated projection. Note that L1 (which fails (UMAP))
is a u-summand whose u-complement is not weak”-closed. In this context
we also mention the example of Talagrand {62] of a separable Banach lattice
Y not coutaining ¢p which is a dual of a Banach lattice, but not the dual of
an order-continuous lattice. ¥ is then a u-summand but its u-complement is
not weak”-closed. Similarly, an example is constructed in [28] of a separable
dual space which is an L-summand without being the dual of an M-ideal.

10. Some open questions. In this section we gather together someé
problems which are suggested by the current work.

QUESTION 1. If X* is separable does there exist an equivalent norm on
X so that any proper closed subspace of X* has characteristic at most 1 /27

Of course the answer here is positive for strict u-ideals; however, there
are other cases when the answer is positive, e.g. in [32] it is shown that such
a norm exists when X is quasi-reflexive of order one.

QUESTION 2. Let X be a separable Banach space such that for every

closed subspace Z of X, every proper closed subspace M of Z* has charac-
teristic at most 1/2. Is X a strict u-ideal?

Let us remark that Question 2 has an affirmative answer for the special
case when X = K(Y) where ¥ is a separable reflexive Banach space with the
approximation property. We indicate a brief proof. In this case X ** = L(Y).
Let (¢n) be a dense sequence in {I}* € K(Y)*. We may pick R, so that
$r(Ry) = 0 for k € n, [[Ra] = 1 and for some A, > 0, Al — 2R,] <
L+ 1/n. Clearly liminf A, > 1. However, since d(I,K(Y)) = 1 we clearly
have limsup A, < 1 and hence lim A, = 1. Note also that by passing to
a subsequence we can suppose that lim R, = ul weak* for some real .
Now since the points of Fréchet smoothness are dense in £(Y) there exists
an operator § which is a point of Fréchet smoothness. Then limsup ||§ —
25K, £ |15 and SR, converges weak* to xS. Arguing as in Theorem 5.5
we have p = 1. Thus R, -+ I weak* and so ¥ has (UKAP) and thus
K(Y) = X is a u-ideal.

QuusTioN 3. If X has separable dual and property (u), can X be
renormed to be a strict u-ideal (i.e. to have xy(X) = 1) or, in the com-
plex cage, a strict h-ideal?
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QuESTION 4 ([28], Question IV.2). Let X have property (1) and be such
that X* is isomorphic to £;. Is X isomorphic to eq?

See Theorem 6.7 above for partial results.

QuesTion 5. If X is a separable w-ideal containing no copy of £y, is X
a strict u-ideal?

See Theorem 6.6 for the complex case (h-ideals).

QuEesTION 6. If X is a separable Banach space containing no copy of ¢q,
does (UMAP) imply (UCMAP)?

By Corollary 9.3 this amounts to asking whether the u-complement of
X in X** is always weak*-closed.

QuesTION 7 ([31]). Let X be a subspace of ¢y with (AP). Does X have
(MAP)?

By [31], X has (MAP) if it has the A- (CBAP) for A < 2. By the results of
[10] this will be true if there is a space ¥ with (MAP) so that d(X,Y) < 2.
Of course if X has (MAP) it actually has (UCMAP).

QuesTION 8. If X has (UCMAP) and Y is L-complemented in X, does
Y have (UCMAP)?

In the complex case, if X has a l-unconditional hasis then ¥ has a
l-unconditional basis (see {45], [55], [19]). The answer is also positive if X
is a nondegenerate h-ideal containing no copy of ¢g (i.e. a nondegenerate
h-summand). In fact, in this case X is the dual space of a strict h-ideal and
by Theorem 6.9, ¥ is weak*-closed.and thus also the dual of a strict h-ideal.
Then we can quote Corollary 8.3.

QUESTION 9. Is it true that x£,(X) =1 if and only if X is a u-ideal'in
Ba{X) (or sp(X) = 1 if and only if X is an h-ideal in Ba(X})?

Related to Question 9 is:

QUESTION 10. Let X be a separable Banach space. Is there a norm-one
projection @ on X*** such that ker Q = Ba(X VE? (In particular, what
happens if ky (X) = 17)

QuesTION 11. If X is a Banach space not containing ¢y and I/ is an
invertible isometry on X*, does it follow that U is weak™-continuous?

QUESTION 12. Ts there a u-ideal X such that X* is isometric to [0, 1]*?

Added in proof (December 1992). Recently J. Alaminos has shown that Question
12 has a negative answer for separable X. He kindly allowed us to inchade his proof. Dy
a theorem of Lazar and Lindenstranss (Acta Math. 126 (1971), 165-183, Theorem 2.3)
a separable Lindenstrauss space with nonseparable dual containg a 1-complemented copy
of C(A) and hence also of the space ¢ of convergent sequances. By Corvollary 4.2 and
Proposition 7.8 of this paper X cannot then be a u-ideal.
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