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ON SUMMATION FORMULAS IN PROBABILITY THEORY

Abstract. We offer some summation formulas that appear to have great
utility in probability theory. The proofs require some recent results from
analysis that have thus far been applied to basic hypergeometric functions.

1. Introduction and main theorem. In considering discrete random
variables, there are a great many useful formulas for calculating probabilis-
tic quantities. For example, a well known fact is that if X is discretely dis-
tributed (takes nonnegative integer values), then E[X] =

∑
n≥0 nP (X = n)

=
∑

n≥0 P (X > n). Another interesting example is offered in the following
lemma.

Lemma 1.1. If X and Y are discretely distributed, then

(1.1)
∞∑
n=0

P (X ≤ n)P (Y = n) = 1−
∞∑
n=0

P (X = n+ 1)P (Y ≤ n).

Proof. As usual, let Ω be the set of all possible outcomes. Let

Z := #{(x, y) : x ≤ y, x ∈ X(Ω), y ∈ Y (Ω)}.
Then the left side of (1.1) represents

∑
n≥0 P (Z = n) if X and Y are in-

dependent. Taking the complement of the left side with the concept that
P (Zc) = 1 − P (Z), we obtain the right hand side. Interestingly, (1.1) also
has a proof using summation by parts, a simple tool from analysis, which we
leave for the curious reader.

The objective of this paper is to apply some recent results in analysis
regarding power series to obtain summation formulas for probability theory.
In order to prove our main theorem we will require a result due to Andrews
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and Frietas [1]. As usual, the Pochhammer symbol is given as (n + 1)N =
(n+ 1)(n+ 2) · · · (n+N).

Proposition 1.2 ([1, Proposition 1.2]). Let f(z) =
∑∞

n=0 αnz
n be an-

alytic for |z| < 1, and assume that for some positive integer N and a fixed
complex number α we have (i)

∑∞
n=0(n + 1)N (αN+n − αN+n−1) converges,

and (ii) limn→∞(n+ 1)N (αN+n − α) = 0. Then

1

N
lim

z→1−

(
∂N

∂zN
(1− z)f(z)

)
=

∞∑
n=0

N−1∏
j=1

(n+ j)(α− αn+N−1).

This formula has been fruitful in applications to basic hypergeometric
functions. As the present author has shown in [5], it has applications to
other areas of analysis. Our main result is the next theorem, and generalizes
the expected value.

Theorem 1.3. Let N be a positive integer. We have

1

N
lim

z→1−

(
∂N

∂zN
E[zX ])

)
=

∞∑
n=0

N−1∏
j=1

(n+ j)P (X > n+N − 1)

=
1

N
E[X(X − 1) · · · (X −N + 1)].

Proof. We apply Proposition 1.2 and set αn = P (X ≤ n), for a discrete
random variable X. The right side is clear since

α− αn+N−1 = (1− P (X ≤ n+N − 1)) = P (X > n+N − 1).

Now by summation by parts (or shifting summation indices) we know that

(1.2)
∞∑
n=0

P (X = n)zn = (1− z)

∞∑
n=0

P (X ≤ n)zn.

On the other hand, the left side of (1.2) is precisely E[zX ], the probability
generating function for P (X = n). The result now follows.

Next we consider an application of our main theorem by appealing to
From’s work [4] on discrete random variables, where it was found that the
factorial moment provides for the most effective upper bound for the survival
function P (X ≥ x).

Corollary 1.3.1. For x > 0, we have

P (X ≥ x) ≤ inf
0≤N<x

(N + 1)
∑∞

n=0

∏N
j=1(n+ j)P (X > n+N)

x(x− 1) · · · (x−N)
.

Proof. This follows from [4, p. 214, (3)–(4)] together with Theorem 1.3.
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Another interesting identity follows from considering [6, Theorem 5.2].
Let Sn =

∑n
i=1Xi, where Xi are discrete random variables. As in [6, p. 334,

(5.1)–(5.2)], define

(i) ηn to be the number of i such that Si > 0 and 1 ≤ i ≤ n;
(ii) Tn to be the first i such that max1≤i≤n Si is achieved, and if 0 ≥

max1≤i≤n Si then Tn = 0.

Corollary 1.3.2. Suppose that
∑

n>0 P (Sn > 0)/n converges. Then

(1.3)
∞∑
n=0

N−1∏
j=1

(n+ j)P (η > n+N −1) =
∞∑
n=0

N−1∏
j=1

(n+ j)P (T > n+N −1).

Proof. Let mn = P (Sn > 0). Then if
∑

n>0mn/n converges, [6, Theo-
rem 5.2] says that ηn → η, Tn → T as n → ∞. It follows that Theorem 1.3
together with [6, Theorem 5.2] implies (1.3).

2. The Kolmogorov–Prokhorov formula. The main object of this
section is to create what appears to be a new Kolmogorov–Prokhorov formula
based on the ideas presented in [2]. To accomplish this task, we will recall
some probabilistic concepts on convergence of sequences of random variables.

Definition 2.1 ([3, p. 129, Definition 6.1.1]). The sequence Xn converges
in probability to X if

P (|X −Xn| > ϵ) → 0 for any ϵ > 0 as n → ∞.

Definition 2.2 ([3, p. 132, Definition 6.1.3]). The random variable Xn

converges to X in the r-order mean if

E|X −Xn|r → 0 as n → ∞.

Lemma 2.3 ([3, p. 138, Theorem 6.1.8]). Suppose Xn converges to X
in probability, and let g(x) be continuous with respect to the values of the
random variable X. If g(Xn) is uniformly integrable, then

E |g(X)− g(Xn)| → 0 as n → ∞.

Furthermore, E[g(Xn)] → E[g(X)] as n → ∞.

Recall that an integer-valued random variable is a type of discrete ran-
dom variable. The Kolmogorov–Prokhorov formula [3, p. 77, Theorem 4.4.1]
says that if w is an integer-valued random variable, not dependent on the
future (i.e. [3, p. 75, Definition 4.4.1]), and

∑
n≥1 P (w ≥ n)E|Xn| converges,

then

(2.1) E[Sw] =

∞∑
n=1

P (w ≥ n)E[Xn].

The formula (2.1) is useful in studying Markov random variables [3, p. 76].
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From [2, Lemma 3.3] we find a variation on [1, Proposition 1.2]. Suppose
that the power series in the variable z of the sequences αn, βn, and αnβn are
all analytic for |z| < 1, and that

∑∞
n=0(α−αn) and

∑∞
n=0(β−βn), as well as∑∞

n=0(αβ−αnβn) converge. Assume limn→∞ n(αn−α) = limn→∞ n(βn−β)
= 0, and also limn→∞ n(αnβn − αβ) = 0. Then

(2.2) −
∞∑
n=0

βn(α− αn) = α
∞∑
n=0

(β − βn)−
∞∑
n=0

(αβ − αnβn).

Theorem 2.4. Suppose Xn converges in mean to X. For w an integer-
valued random variable not dependent on the future,

E[Sw] =

∞∑
n=1

(E[X]− E[Xn]P (w < n))−
∞∑
n=1

(E[X]− E[Xn]),

provided the series on the right side converge, and the stopping time w is
finite.

Proof. By [3, p. 132], since Xn converges in mean, it follows that Xn also
converges in probability by Chebyshev’s inequality. Hence we may apply
Lemma 2.3. We choose g(x) = x, and select αn = P (w < n + 1) and
βn = E[Xn+1] in (2.2). Note that limn→∞ P (w < n + 1) = 1 by [3, p. 75,
Definition 4.4.1], and the hypothesis that the stopping time w is finite. This
gives us the theorem after some rearranging.

Some remarks on convergence of the series in Theorem 2.4 are worth
noting. Recall that f(x) ≪ g(x) means there is some constant C and x′ such
that |f(x)| ≤ Cg(x) for all x ≥ x′. Since 0 ≤ P (w < n) ≤ 1 for each n, we
know that if Xn ≥ 0 almost everywhere, then

|E[X]− E[Xn]| ≪ |E[X]− E[Xn]P (w < n)|.
The sequence Xn would then satisfy convergence in mean as well as conver-
gence of the series in question if we imposed the condition

|E[X]− E[Xn]P (w < n)| ≪ n−ϵ−1

for every ϵ > 0, by a simple comparison test with ζ(ϵ+ 1) =
∑

n≥1 n
−ϵ−1.
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