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Any family consisting of 3-element subsets of a v-element set, with
the property that each pair of the set is contained in one and only one
triple of the family, is called a system of Steiner iriples in the v-element
set and will be denoted by B(3, 1, v). As has been known since long [4],
a system of Steiner triples does exist if and only if

v =1 or 3 (mod 6).

Let N(v) be the number of all non-isomorphic systems of Steiner
triples in a v-element set and let N, (v) be the number of all those non-iso-
morphic systems of Steiner triples in the v-element set which contain
some B(3,1,k).

The aim of the present paper is to give a lower estimate for N, ,(v)
and N ,(v) with respect to v.

In the proof we use the construction of Hanani [1] and its modifica-
tion by Pukanow [2], [3]. Recall some definitions and theorems.

Let m be a positive integer and let 7,, 7y, ..., 7,,_; be mutually disjoint
sets consisting of ¢ > m —1 elements each. A system of #* m-tuples such
that each m-tuple has exactly one element in common with each set z;
and any two m-tuples have at most one element in common will be de-
noted by 7'(m, t). The set of numbers ¢ for which there exists at least one
system T (m,t) will be denoted by T(m). We shall also use the notation
T,(m,1) (0<e<t) instead of T'(m,?) to indicate that among the m-tup-
les belonging to T'(m,t) there are at least ¢ disjoint sets of ¢ mutually
disjoint m-tuples. The set of numbers ¢ for which systems T',(m,t) exist
will be denoted by T,(m).

Let t = py1-... -p;», where p; are distinct primes and o; are posi-
tive integers. The following assertions have been known since long
(see [1]):

(A) If piizmfori =1,...,n,thent e T)(m).
(B) If pizm—1 fori =1,...,n, then t € T(m).
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Let w,, ..., w,, be mutually disjoint sets such that each of w,, ...
.e.y Wy,_, consists of ¢ elements and w,, consists of t — ¢ elements. A system
of ¢-(t—¢q) m-tuples and ¢-q (m —1)-tuples will be called a semi-T-system,
denoted by T(m,t, q), if

1° each m-tuple and each (m —1)-tuple has exactly one element in
common with each of the sets w;;

2° every pair consisting of two (m —1)-tuples, or one (m —1)-tuple
and one m-tuple, or two m-tuples has at most one element in common.

The set of all numbers ¢ for which there exists at least one T'(m,t, q)
will be denoted by T'(m,t).

The following proposition is known (see [2], Theorem 8).

(C) If there exists a system T (m,t) and if q<t, then there exists a
semi-T-system T'(m,t, q).

Let E be a v-element set, let K = {k;},_, , be a finite set of inte-
gers such that 3 <k, <vfor¢ =1,...,n, and let 4 be a positive integer.
Each system of subsets of £ such that the number of elements in each of
them belongs to K, and each pair of elements of E is contained in exactly
A subsets of the system will be denoted by B(K, 4, v). Elements of
B(K, 4, v) are called blocks. The set of numbers v for which there exists at
least one B(K, A, v) will be denoted by B(K, ). If K = {k}, we write
B(k, 4,v) and B(k, ), and so B(3,1,v) is a system of Steiner triples.

THEOREM 1. Let K, = {3,4}. If w #6 and v =0 or 1 (mod 3),
then w € B(K,, 1).

Proof. We -first consider the case
(*) u = 24, 28, 40, 42, 46, 48, 52, 58, 60,64 or u > 66.

In that case we are able to construct semi-7-systems T (m,t, q)
for m = 4,t = (u+q)/4, and the values of ¢ shown in Table 1. In fact,
these values are chosen to satisfy ¢ = 1 (mod 6). Consequently, there
exist systems 7'(4, t) in view of (A). It follows from Table 1 that, for
u > 66 and all ¢, we have u > 3¢ and 80 ¢ <t. For smaller  in () the
same can be checked by taking the corresponding q. Hence, using (C)
for m = 4, we see that there exists a semi-7-system T, = T'(4, t, q)
(t=(u+q)/4).

Table 1
% (mod 24) q u (mod 24) q % (mod 24) q % (mod 24) q
0 4 6 22 12 16 18 10
1 3 7 21 13 15 19 9
3 1 9 19 15 13 21 7
4 0 10 18 16 12 22 6
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Since ¢ =1 (mod. 6), for ¢ = 1,2, 3 there exists a system B(3,1, 1)
in w;. We denote it by B,.

If ¢ =0 (mod 2), then t—¢q =1 or 3 (mod 6) and we can construct
B, =B(3,1,t—¢q) in w,.

Putting

4
(x%) B=T,uU B,
i=1

we see that B is a B(K,, 1, u), and so the assertion of Theorem 1 follows.

If ¢ =1 (mod 2), thent—q = 0 or 4 (mod, 6) and we have to consider
four cases.

(1) t—qg =4 (mod 12).

By virtue of [1], we may construct B, = B(4, 1,t—¢q) in w, and
use (*x*).

(2) t—q = 0 (mod 12).

We adjoin to w, one auxiliary element and in the ({ — g +1)-element
set we construct B(4,1,t—¢+1). Then we remove the adjoined element
from the quadruples in which it appears and we get B, = B(K,,1,t—q),
which has (t—¢q)/3 triples and [(t —q)(t —q—3)]/12 quadruples. Now (*x)
gives the result.

(3) t—¢ =10 (mod 12).

We adjoin to w, three auxiliary elements and in the (! — g +3)-element
set we construct B(4,1,{—¢+3) in such a way that the three adjoined
elements are in one quadruple. Thus any other quadruple has at most
one adjoined element. Removing the quadruple that contains all three
adjoined elements and the adjoined elements from the quadruples in which
they appear single, we get B, = (K,,1,t—q) which has ¢t —q—1 triples
and [(!—q—1)(t—q—6)]/12 quadruples. We use again (**).

(4)t—q = 6 (mod 12).

In this case we remove some three elements a,, a,, a; from the set in
which B, should be constructed. In the remaining set there exists a sys-
tem of Steiner triples B, = B(3,1,?t—q—3) satisfying Kirkman’s con-
dition [4]. Since t—q > 6 (in view of (*) and Table 1), B, splits into
more than three groups according to this condition. Let C,, C,, and C,
be any three of them. We adjoin a; to every triple in C;, thus getting
B, = B(K,,1,t—q). Again (*x) gives the result.

It remains to consider # < 66 distinct from the values listed in (*).
For v =1 or 3 (mod 6), v < 66, we construct B(3, 1, «).

For v = 16 there exists B(4, 1, 16).

For u = 18 we construct B(3, 1, v —3) satisfying Kirkman’s condi-
tion and we proceed as in case (4) for u instead of t—g, thus getting
B(K,, 1, 18).
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In all cases which follow, the existence of the corresponding 7-systems
or semi-T-systems is guaranteed by assertion (B).
If v =10, we construct 7,, = T'(4, 3, 2) and check that U w; VT,

is a B(K,,1,10). =t
If w =12, we take T,, = T,(3, 4) and check that U 7,uT,, is
a B(K,,1, 12) =1

¥ w =22, we find Ty, =T(4,7,6) and in every w; (¢ =1, 2, 3)
3
we take a B; which is a B(3,1, 7). Then | B,uT,, is a B(K,,1, 22).
: =1
If w = 30, we construct T'5, = T'(4, 9, 6) and in every w; (¢ =1, 2, 3)
3

we take a B; which is a B(3,1,9). We then put (U B;uT,, to obtain
a B(K,,1,30). =1

If w=34, we take T;, =T(4,9,2) and in w,,w,, w, we find
B(3,1,9)-systems BI,BZ,B:,, respectively, whereas in w, we find

B, = B(3,1, 7). Then U B,uT,, is a B(K,, 1, 34).
If w -36 we fmd T36 —T(4 9) and m every 7; (¢ =1, 2, 3,4)
we eonstrueta,B which is a B(3, 1, 9). Then U B,uT, is a B(K,,1, 36).

If w=>54, we find T,, = T(4,15, 6) and in w,, w,, w; we find
B(3, 1, 15)-systems B,, B,, B, respectively, whereas in w, we find
4

B, = B(3,1,9). Then | B,uUT,, is a B(K,, 1, u).
i=1

Remark 1. Constructions used in the proof of Theorem 1 allow us
to evaluate precisely the number of triples and quadruples in B(K,, 1, %).
It is evident that we may also take values for ¢ and ¢ other than those
used in that proof without breaking conditions » > 3¢q and ¢ > m. We may
putt = (u+¢q;)/4, ¢; = 24¢+ q,, Where ¢, is ¢ taken from Table 1 according
to u, and 0<<17< (u—3q)/72.

COROLLARY 1. For u sufficiently large there are [v[72] non-isomorphic
systems of blocks B(K,, 1, u).

Proof. Given u, we can repeat all the described constructions for
¢; instead of ¢. For different ¢,’s the resulting systems B(K,, 1, «) will con-
tain different numbers of triples, and so different numbers of quadruples.
In this way we get the conclusion.

For a given natural » let
K, =1{3,4,3n,3n+1} and N = (p,* ... p;) (3n+1),

where p,, ..., p, are all primes less than 3n.

THEOREM 2. For each n, if u =0 or 1 (mod 3), and » > 3nN, then
there exists a system of blocks B(K,,1,u) in which blocks consisting of 3n
and 3n+1 elements do occur.
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Proof. Let n be fixed and let « satisfy the assumption. For m = 3n +1,
t = (u+4q)/m, and ¢q being the least positive integer such that

u+q

=1 (mod p;° ... P

and

t—q # 6,

we are able to construct a semi-T-system T (m,t, q); denote it by T,.
In fact, since

t =1 (mod p,- ... p),

there exists a system 7'(3n+1, t) in view of (A). It follows from » > 3nN
that 4 > (m —1)-q, whence the required 7', exists by virtue of (C). In
Table 2 we give values of g that correspond to ¥ =0 or 1 (mod 3) in
the case where n =2, m =7, N = 210.

Table 2
w q u q u q ] q u q
(mod 210) (mod 210) (mod 210) (mod 210) (mod 210)
0 7 45 4 90 1 135 40 180 37
1 6 46 3 91 42 136 39 181 36
3 4 48 1 93 40 138 37 183 34
4 3 49 42 94 39 139 36 184 33
© 1 51 40 96 37 141 34 186 31
7 42 52 39 97 36 142 33 187 30
9 40 54 37 99 34 144 37 189 28
10 39 55 36 100 33 145 30 129 27
12 37 57 34 102 31 147 28 192 25
13 36 58 33 103 30 148 27 193 24
15 34 60 31 106 28 150 25 195 22
16 33 61 30 106 27 151 24 196 21
18 31 63 28 108 25 153 22 108 19
19 30 64 27 109 24 154 21 199 18
21 28 66 25 111 22 156 19 201 16
22 27 67 24 112 21 157 18 202 15
24 25 69 22 114 19 159 16 204 13
25 24 70 21 115 18 160 15 205 12
27 22 72 19 117 16 162 13 207 10
28 21 73 18 118 15 163 12 208 9
31 18 75 16 120 13 165 10
33 16 76 15 121 12 166 9
34 15 78 13 123 10 168 7
36 13 79 12 124 9 169 6
37 12 81 10 126 7 171 4
39 10 82 9 127 6 172 3
40 9 84 7 129 4 174 1
42 7 85 6 130 3 174 42
43 6 87 4 132 1 177 40
88 3 133 84 178 39
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Since ¢t =1 (mod 6), we may construct a B; = B(3,1,1?) in every
w, for : =1,...,3n =m—1.

It is easily seen that { —q = 0 or 1 (mod 3). Hence,

(i) if m and » are both even or both odd, then { —q = 1 or 3 (mod 6)
and we may construct a B,, = B(3,1,t—¢q) in w,;

(ii) if m is odd and « is even, or conversely, then{ —g = 0 or 4 (mod 6).

Thus, since t—¢q # 6, we can apply Theorem 1 to construct a B,,

m
= B(K,,1,{—gq) in w,. In both cases, (i) and (ii), we state that T,u | B;
i=1

is a B(K,,1, ) and that it contains blocks of m —1 or m elements since
each T, consists of such blocks only.

But it is easily seen that w > 3nN implies ¢ < ¢, whence B(K,, 1, «)
containg blocks of 3» and blocks of 3n +1 elements as well.

Remark 2. If n = 2, Theorem 2 is valid for u > 505 instead of u > 3nN
= 1260.

We omit the proof.

Remark 3. We have to be more careful in the sequel when con-
structing systems B(K,, 1, ) in the proof above.

Let 8 = U be any sets and let B(3,1,k)and B(K,, 1, ) be constructed
in § and U, respectively. If for every block a € B(3, 1, k) there exists
peB(K,,1,u) such that a < g, then B(3,1, k) i8 said to be a 3-sub-
system of B(K,,1,u). We may assert that every B(K,,1,u)=1,v U B;
contains two disjoint blocks B, and S, belonging to 7', and such that in
no 3-subsystem of B(K,,1,u) there is a triple {w,y, 2} common with
f1 or B,. This can be done in the following way. If there exists a triple

{z,y,2} € B(3,1, s)Nnp,,

where B(3,1, 8) is a 3-subsystem of B(K,, 1, #), then we can renumber
elements of w, in a way that if-

w,Np, =welz,y, 2},
then we replace # by a certain z, such that
x¢{x,y,2}eB(3,1,s).

This renumbering concerns only the system B(3, 1,!) constructed
in w,, whereas all T-blocks remain unchanged. We may do the same
for B,. Details completing the proof can be found in [3].

A system of blocks B(3, 1, u) i8 said to be prime if it has no subsys-
tems. A system of blocks B(3, 1, ) is said to be 1-prime if it has no sub-
system B(3,1, d), where d =1 (mod 6).

Now we construct B(3, 1, 2u+1) by applying the method of Hanani
([1), Theorem 5.5). Let, namely,

E,={1,...,4} and E,={u+1,...,2u}.
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In E,; we construct B(K,, 1, u). Then we shift it for », thus obtaining
a B(K,,1,u)in E,. For every block

{#1y...y 2} e B(K,,1,u) (kekK,)
we can construct a system of Steiner triples B(3,1,2k+1) in the set
{Byy eeey @iy @y + Uy ooey Bp+u, 2u+1}

in a way such that the union of all these systems is a system of Steiner
triples in {1,...,2u,2u+1}. We have

(1) B(3,1,2u+1) = UB(3,1,2k+1),

where the union is taken over all blocks in B(K,, 1, ). Then, as is easily
seen, we deduce

(«) If a triple in some B(3,1,2k-+1) contains the element 2u 41,
then it must be of the form {x;, #;+ u,2u+1}. Hence every triple not
conta.lmng 2u+1 is of the form {yl,yz, Ys}, where |y;—y;| # u for i,j
=1,2,3.

For our purposes we must consider the summands in (1) to further
conditions:

() Each B(3,1,2k+1) is prime or 1-prime; if ¥ = 0 (mod 3), then
it is prime.

(y) If a triple {w;, x;, #;} belongs to B(K,,1,u), then it belongs
to the corresponding B(3, 1, 7).

Condition (8) can be satisfied according to [7], Lemma 1 and Remark 2,
whereas (y) can be required without breaking (B), since every system
of Steiner triples in a 7-element set is prime.

LEMMA 1. Any subsystem of B(3,1,2u+1) mot containing 2u -1
i8 a 3-subsystem of B(K,, 1, u).

Proof. We define a set of isomorphisms of B(X,,1, ) in the fol-
lowing way. We choose any r elements z,, ..., s, from E' {1,...,u}
and replace every z; (1<j<7r) by z;+u. Denote by B' (1<i<2¥
the: resulting systems, isomorphic to B(K,,1,u). Let T = {x,,...,z,}
be a block belonging to some B'. Then we set 7, = x;+4 if x; < u and
T, =a&;—uw if ;> u, and put T = {7,,..., 7). Hence every summand
in (1)is'a system of Steiner triples in the set TUT U {2u+1}. If 8 is a sub-
system of B(3, 1, 2u +1) constructed in a set not containing 2u 41 (such
a subsystem may exist or not), then we infer from («) that every triple
in § is a subset of a block in some B'. Thus Lemma 1 is proved.

LeMMA 2. There is exactly one element b in E such that any triple
from B(3,1, 2u+1) not containing b generates together with b a subsystem
which is prime or l-prime.



160 B. ROKOWSKA

Proof. Now,b =2u+1. If {»,y,2} € B(3,1,2u+1),2, y,2 # 2u+1,
then there exists exactly one system B(3, 1,2k,+1) such that
{x,y,2} e B(3,1,2k,+1), where B(3,1,2k,+1) is a summand of (1)
and a subsystem of B(3,1,2u+1) (ke K,). If this B(3,1,2k,+1)
is prime, then it is the subsystem generated in B(3, 1, 2u +1) by the set
{#,¥,2,2u+1} and the asscrtion follows. If B(3, 1, 2k,-+1) i8 1-prime,
then this set generates either the whole of B(3,1, 2k,+1) or a subsys-
tem thereof. In both cases the generated subsystem is 1-prime, and so
the assertion is satisfied.

Now, we show that, for every x € E, if ¥ # 2u 41, then there exists
a triple {p,r,s8} € B(3,1,2u+1) such that in B(3,1,2u+1) there is
neither a prime nor 1-prime subsystem containing triples with # and the
triple {p, r, 8}.

Let 8, and B, be two blocks described in Remark 3. Denote by fi
and g their images under the mappings defined in the proof of Lemma 1.
Let B, = B(3, 1, 2k +1) be a system of triples in the set g,U B, u{2u +1}.
If v € p,UB,, then we may choose an arbitrary triple {p, r, 8} in B, not
containing 2 +1. To see this we first have to prove that {p, r, s} does
not belong to any 3-subsystem of B(K,, 1, #). In fact, among the isomor-
phisms just mentioned, there is one such that {p,r, s} ¢ ,. But then it
cannot belong to any 3-subsystem of the corresponding B. If, for some j,
{p,r,8) ¢ B, then p ¢ B}, say. But then p does not enter into any block
in B, and so it is trivial that {p, r, s} does not belong to any subsystem
of B’. Thus the latter is true for every B, especially for the original system
B(K,,1,u). According to Lemma 1, {p, r, s} does not belong to any sub-
system of B(3,1, 2« +1) in which 2«4 +1 does not occur. Hence any sub-
system to which the triple {p,r, s} belongs must contain a block with
the element 2« +1. Observe that B, is prime on account of Remark 1
in [7]. Hence any subsystem in which there occur elements p, r, 8 contains
the whole B, as a proper subsystem, and so it is not prime. It also eannot
be 1-prime, since k¥ = 0 (mod 3). If z € 8, UB,, then x ¢ g,U B, and the
proof runs as before.

LeEMMA 3. Let K consist of numbers k,, ..., k, such that every system
B(3,1,2k+1) (1<j<r) is a summand of (1). Then every subsystem
of B(3,1, 2u+1) in (1) constructed in a set of 2k +1 elements (k € K) and
containing 2u +1 is identical with one of the summands B(3,1, 2k +1).

Proof. There must be a triple ¢ in S not containing 2« +1. Such
a triple is of the form {,;,x,+u} or {;, @;+u,x,+u}. Since the
pair z;, #; belongs to exactly one element of B(K,,1, u), ¢ belongs to
exactly one summand B(3,1,2k+1), B, say. But ¢ together with the
element 2% +1 generates the whole of § = B,, as well as the whole B,,
since both these systems are prime. -
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In Corollary 1 we obtained d = [#/72] non-isomorphic systems
B, ..., By of blocks B(K,,1,u) such that any two systems B; and B;,
i #J, have distinet numbers of 3-element blocks and each B; contains
at least one 4-element block. Let B, be a system of triples B(3, 1, 2u4-1)
constructed for B; following the method of Hanani. .

LeMMA 4. There are at least d = [w[72] non-isomorphic systems
B(3,1, 2u+1). Hach of these systems contains subsystems B(3,1,7) and
B(3,1,9), and so for v = 2u-+1 we get

»—1 »—1
N.(v) > > .
(0) [ 144 ] and Ny(0) [ 144 ]

Proof. We have (see [1])
B, = UB(3,1,2k+1) (k=3 or 4).

By virtue of Lemma 3 any system B, has no subsystems constructed
in 7-element sets containing 2u +1 other than those which occur as sum-
mands in the equality above. Hence the number of such systems is equal
to the number of triples in B;, and so it is different for various values
of 4. Consequently, B, and B, are not isomorphic if i # j.

We may apply Lemma 4 to the construction of systems B, in the proof
of Theorem 1. Let u satisfy the assumption of that Theorem and let ¢ and
t = (u-+q)/4 be chosen correspondingly to u«. This choice determines
sets w; (i =1,2,3) and we have at least [({—1)/144] non-isomorphic
systems B{(3,1,?) in every w, (Lemma 4 for v =1). Hence we obtain
[(t—1)/144T systems B,. There are [«/72] possibilities of choosing ¢
(hence t) for u (cf. Remark 1). Thus we get [(t—1)*/144][«/72] different
systems B,.

~ Since v = 4t—gq, we can find, for u sufficiently large, a constant M,
such that there are at least h = M, -u* different systems B,,. We number
them B,, ..., B, and transfer the numeration into the triple systems
B(3,1,2u-+1), thus getting B,,...,B,.

THEOREM 3. If i # j, then B, is non-isomorphic to B;.

Proof. Let B, (k =1,..., h) contain b; subsystems B(3,1,7) con-
structed in a set, an element of which is 2u+41. We consider two cases.

(2) b;# b;. Since B; and B; have distinet numbers of subsystems
constructed in 7-element sets containing 2« -1, they are not isomorphic.

(b) b, = b;. Every system B(3,1,t) produced in w; or w, or w, is
a 3-subsystem of B(K,,1,u) and, by (y), it is also a subsystem of
B(3,1, 2u+1). _

The assumption b; = b; implies that the value of ¢, hence of ¢, is the
same for B; as for B; (see the proof of Corollary 1). Hence B; contains

1

11 — Cclloquium Mathematicum XXXVIIIL.1
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a 3-subsystem B(3,1,%), B, say, constructed in one _of-the TOWS ' W,-W;
which i8 not isomorphic to any 3-subsystem of B; constructed in one of
these rows. We must show that B, contains no ~subsystem isomorphic
to By. ‘

Let T be a 3-subsystem Gonstructed in a set H, whlch is not: entlrely
contained in one of the rows. The intersection F,nw, consists of :an odd
number of elements. In faect, it cannot consist of two elements, for the
third element in the corresponding triple in B(K,, 1, #) would then belong
to T, in (*x), which is impossible since every triple in T consists of elements
taken from various rows. Neither can |[H,nw,| be an even number greater
than 2. To show this consider the subsystem S generated in B(K,, 1, u)
by Eynw,. This is a subsystem both of B, and of the system B (3,1, 1)
eonstructed inw,;. So 8 is a system of Steiner triples in ;N w,; which 1mphes
that |H,nw,| is odd. As H, is also odd, so must be the number of i’s such
that |E, nwl #* 0 If there are zl, 1g, 13, then

lw; NEy| = o, LNEy| = [w,nHy.

Hence |E,| =0 (mod 3). Since ¢ = 1 (mod. 6), there is no isomorphism
between B, and 7. A 3-subsystem B, cannot be isomorphic to any subsys-
tem of B containing the distinguished element 2u 1. On the other hand,
Lemma’ ,1_ shows that any other subsystem of B, is a subsystem of B
and so is non=isomorphic to B, by the preceding argument. So ‘B; and Ej
are not isomorphie. ' ;

Since there are at least M, “ut different systems B, Theorem 3 ylelds
immediately

- COROLLARY 2. For a sufficiently small M > 0 and for k = 7 or 9 we
have N, (v) = M -v* »

THEOREM 4. .I'or every i theve exist M;, m;> 0, and v, such that,
Jor v=w; cmdy:lor?) o '

(2 ‘ ) - N61+]( ) M ,vm,,:

Proof. We prove by induection that (2) holds for m; = (3'437"1)-4!
For ¢ = 1 this follows from Corollary 2. ‘Let us suppose that (2) holds
for ¢ =n. We can construct B(K, ,,1,u) using the method described
in the proof of Theorem 2. Thus we form a B(3,1 t) in every w;. By the
induetive assumption this can be done in M, {8 essentially different
manners, and so as many non-isomorphic systems are obtained. Hence we
can construct : :
: (I, - t(3”+3"-1)nl)3n+3 ~ O'lgt(sf_‘+1+3“)(n+l)! (€, = Ju’3n.+3) !

Adifferent systems of type B(K,,;,1,w). Since ¢ = (u+¢)/(3n+4), ¢ <1,
this. number can be expressed as ' :
' ) 0, u(3"+1'+3“)(n+1)1 .
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There are precisely as many systems B,. We number them B,, ..., B,.
On every B, we construct B,— B(3, 1, 24+41) using Hanani’s method.
(We use here the expression “on B,” in order to stress the difference be-
tween the construction of B, starting from B, and the construction of
a Steiner system “in a set”.) Putting v = 24 +1 we have

' N 7 3n+1l,gn n+1)
P _Mn+1 ¢ )(n+1)

 Every B, contains both a subsystem constructed on a (3n +-3)-element
block from T, and a subsystem formed on a (3% -4)-element block from
T,, so every B, contains Steiner triple systems formed from 6n +7 and
6n +9 elements. Hence Theorem 4 will be proved if we show that B are
non-isomorphic to each other.
Let R{® denote the class of subsystems 8, of B, occurring in the union
in (1) and corresponding to triples constructed on the line w,. Let further
B be the set of elements contained in the triples in [ ;. Sinee the lines
w, are disjoint, we have

BYnEY = 2u+1}  for v, # fo;

' . 3n+4
We claim that R{) exhausts all those subsystems in B, which

v=1

are of type B(3,1,7) and are constructed in sets containing the element

2u 1. Suppose tha,t X is another system of this kind, not contained in
3n+1
U RY. Then we can find two elements occurring in X~ and belonging to
v=1
different lines w,. But such elements determine a block g e T, (see (w))

to which they belong.

Let T be a summand in (1) of type B(3,1,2k+1) that correspond
to B. Systems X' and T then contain a common triple. Moreover, the element
2u +1 belongs to both of them. That common triple and 2u -1 generate
together the whole of X. Since » > 1 and since § contains at least 3n 43
elements, 7' is formed from at least 19 elements, whence 7' = X. It follows
that 2 is a proper subsystem of 7', which is impossible because of (B).

Fix an RY). In view of (y) in every 8, € R(® there is exactly one triple
belonging to B(K, ., 1, ). All these triples form a set which is identical
with the system B, of type B(3, 1,%) constructed in w,. Let S be dnother
triple system in a ¢-element subset of B¢ not containing 2u 1. For any
s €[1, u], 8 cannot contain both x, and %+ u, since, otherwise, S had to
contain the triple {x,, z,_,, 2u-+1}. Hence, if x, belongs to w,, then exactly
one of the elements x, and «,,,, occur in S. Denoting it by ¢ we have a well-
defined mapping B,—8 which is obviously an isomorphism.

If 8’ # s, and if B, e B, and B, e B, are the corresponding triple sys-
tems B(3, 1, 7), constructed on the line w,, then B, and B, are non-iso-
morphiec for any u,v € [1, 3n +3]. Since, as we have just shown, the system



164

B. ROKOWSKA

B, (B,) exhausts up to an isomorphism all triple systems formed in. ¢-ele-
ment subsets of E® (E¢)) and not containing 2u-+1, B, and B, are
non-isomorphic systems, which completes the proof of Theorem 4.

(11
[2]

(3]
[4]
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