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Abstract. We consider the initial boundary value problem for a Boussi-
nesq-type equation with a logarithmic damping term and variable-exponent
nonlinearities, which was introduced to describe some physical phenomena
such as propagation of small amplitude and long waves on the surface of
shallow water. The blow-up of solutions is proved for positive as well as
negative initial energy.

1. Introduction. In this paper, we study the variable-exponent fourth-
order wave equation with a logarithmic damping term,
(1.1) utt −∆u− a∆utt +∆2u+ div(∇u · ln |∇u|p(x))− b∆ut = |u|q(x)−2u

for (x, t) ∈ Ω × [0, T ), with the initial conditions
(1.2) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

and the boundary conditions
(1.3)

u(x, t) =
∂u

∂n
(x, t) = 0 or u(x, t) = ∆u(x, t) = 0, (x, t) ∈ ∂Ω × [0, T ),
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where Ω ⊂ Rn (n ≥ 1) is an open bounded domain with smooth boundary
∂Ω, T > 0 is the maximum existence time of u and n is the unit outward
normal on ∂Ω. Here a, b > 0 and the exponents p(·), q(·) are given measurable
functions on Ω̄ such that

0 < p1 ≤ p(x) ≤ p2 <

{
∞, n < 3,
2n
n−2 , n ≥ 3,

2 ≤ q1 ≤ q(x) ≤ q2 <

{
∞, n < 3,
2n
n−2 , n ≥ 3,

with
p1 := ess inf

x∈Ω
p(x), p2 := ess sup

x∈Ω
p(x),

q1 := ess inf
x∈Ω

q(x), q2 := ess sup
x∈Ω

q(x).

In recent years, there has been an increasing activity on models involving
nonlinear fourth-order partial differential equations. For example, Di et al. [9]
considered the equation

utt +∆2u = |u|pu,
and obtained the global existence and uniqueness of regular solution and
weak solution by using Galerkin approximation and potential well methods.
In another study, Yang et al. [29] investigated a fourth-order wave equation
with a strong damping term of the form

utt +∆2u−∆u−∆ut = f(u).

They proved the finite time blow-up of solutions at three different initial en-
ergy levels. Di and Shang [8] studied the following double dispersive-dissipa-
tive fourth-order wave equation with nonlinear damping and source terms:

utt −∆u+∆2u−∆utt −∆ut + a|ut|m−2ut = b|u|p−2u,

and proved the global existence and asymptotic behavior of solutions by
using the Galerkin and monotonicity compactness methods. Later, Chen and
Xu [7] considered the following fourth-order dispersive wave equation with a
nonlinear weak damping term, linear strong damping and logarithmic source
terms:

utt −∆u+∆2u− ω(∆utt +∆ut) + |ut|r−1ut = u ln |u|.
Under several conditions for initial data, they established the global existence
of solutions and infinite time blow-up, by using the potential well method.
Also, they compared and discussed the blow-up of solutions from two differ-
ent strategies. In the first one, the authors assumed that the blow-up result
is bound to the original logarithmic source by weakening the dispersive-
dissipative structure, while the second one is based on the nonlinear wave
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equation with complete dispersive-dissipative structure, but the logarithmic
source is replaced by an enhanced version. Recently, Zhang and Zhou [30]
considered the sixth-order Boussinesq equation with logarithmic nonlinearity:

utt − a∆utt − 2b∆ut − α∆3u+ β∆2u−∆u+∆(u log u) = 0,

in a bounded domain of Rn. They proved the well-posedness and dynamical
behavior of solutions. The main ingredient of their work is the introduction
of several conditions on initial data leading to global existence of solutions
with finite time blow-up. In another study, Pang et al. [18] studied the global
existence and blow-up in infinite time for the following fourth-order wave
equation with damping and logarithmic strain terms:

utt + α∆2u− β∆u+
n∑

i=1

∂

∂xi
(|uxi | ln |uxi |p)−∆ut + |ut|r−1ut = |u|q−1u,

where α, β > 0 and in a bounded open subset of Rn (n ≤ 3).
On the other hand, wave equations with variable-exponent nonlineari-

ties and nonstandard growth conditions attracted the attention of many re-
searchers in recent years. Ferreira and Messaoudi [12] considered a nonlinear
viscoelastic plate equation with a lower-order perturbation of the form

(1.4) ∂ttu+∆2
xu−

n∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xj
∣∣∣∣pi(x,t)−2 ∂u

∂xi

)
+

t�

0

µ(t− s)∆xu(s) ds

− ϵ∆x∂tu+ f(u) = 0.

They proved a general decay result under suitable conditions on g, f and the
variable exponent of the p⃗ (x, t)-Laplacian operator

∆p⃗ (x,t)u :=

n∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xj
∣∣∣∣pi(x,t)−2 ∂u

∂xi

)
.

Later, Antontsev and Ferreira [1] proved a blow-up result for (1.4) with
negative initial energy under suitable conditions on g, f and the variable-
exponent of the p⃗ (x, t)-Laplacian operator. Recently, Shahrouzi [25] stud-
ied the following variable-exponent fourth-order viscoelastic initial boundary
value problem:

|ut|ρ(x)utt +∆[(a+ b|∆u|m(x)−2)∆u]−
t�

0

g(t− s)∆2u(s) ds

= |u|p(x)−2u, x ∈ Ω, t > 0,{
u(x, t) = 0, x ∈ Γ0, t > 0,

a∆u(x, t) =
	t
0 g(t− s)∆u(s) ds− b|∆u|m(x)−2∆u, x ∈ Γ1, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
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where Ω ⊂ Rn (n ≥ 1) is a bounded domain with smooth boundary ∂Ω =
Γ0 ∪ Γ1. Under suitable conditions on variable exponents and initial data,
he proved that the solutions will grow up as an exponential function with
positive initial energy level. See also [2–5, 13, 16, 17, 19, 20, 24, 26–28].

In addition to the introduction, this paper consists of two sections. Firstly,
in Section 2, we present the definitions and some properties of the variable-
exponent Lebesgue spaces Lp(·)(Ω) and the Sobolev spaces W 1,p(·)(Ω) and
we introduce the energy functional. In Section 3, we prove the blow-up of
solutions for positive initial energy E(0) < 0 and negative initial energy
E(0) < 0.

2. Preliminaries. In this work, we use the standard Lebesgue space
Lp(Ω) and Sobolev space Hk

0 (Ω) with their usual scalar products and norms.
We denote by ∥ · ∥q the Lq-norm over Ω. In particular, the L2-norm in Ω is
denoted ∥ · ∥.

To investigate problem (1.1)–(1.3), some information about the Lebesgue
and Sobolev function spaces with variable exponents is required (for more
details, see [6, 10]).

Suppose that p : Ω → [1,∞] is a measurable function, where Ω is a
subset of Rn. The variable-exponent Lebesgue space is defined by

Lp(·)(Ω)

=
{
u
∣∣∣ u is measurable in Ω and

�

Ω

|λu(x)|p(x) dx <∞ for some λ > 0
}
.

The Lebesgue space Lp(·)(Ω) is equipped with the Luxemburg-type norm

∥u∥p(·) := inf

{
λ > 0

∣∣∣∣ �

Ω

∣∣∣∣u(x)λ
∣∣∣∣p(x) dx ≤ 1

}
.

Lemma 2.1 ([10]). Let Ω be a bounded domain in Rn. The space
(Lp(·)(Ω), ∥ · ∥p(·)) is a Banach space, and its conjugate space is Lq(·)(Ω),
where 1

q(x) +
1

p(x) = 1. For any f ∈ Lp(·)(Ω) and g ∈ Lq(·)(Ω), we have the
generalized Hölder inequality∣∣∣ �

Ω

fg dx
∣∣∣ ≤ (

1

p1
+

1

q1

)
∥f∥p(·)∥g∥q(·) ≤ 2∥f∥p(·)∥g∥q(·).

The following formula is used to determine the relationship between the
modular

	
Ω |f |p(x) dx and the norm:

min(∥f∥p1p(·), ∥f∥
p2
p(·)) ≤

�

Ω

|f |p(x) dx ≤ max(∥f∥p1p(·), ∥f∥
p2
p(·)).
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The variable-exponent Sobolev space W 1,p(·)(Ω) is defined by

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω) : ∇xu exists and |∇xu| ∈ Lp(·)(Ω)}.
It is a Banach space with respect to the norm

∥u∥W 1,p(·)(Ω) = ∥u∥p(·) + ∥∇xu∥p(·).

Furthermore, let W 1,p(·)
0 (Ω) be the closure of C∞

0 (Ω) in W 1,p(·)(Ω) with
respect to the norm ∥u∥1,p(·). For u ∈ W

1,p(·)
0 (Ω), an equivalent norm is

defined as
∥u∥1,p(·) = ∥∇xu∥p(·).

Let the log-Hölder continuity condition be satisfied by the variable compo-
nent p(·): there are constants A > 0 and 0 < δ < 1 such that

|p(x)− p(y)| ≤ −A
log |x− y|

for all x, y ∈ Ω with |x− y| < δ.

Lemma 2.2 (Poincaré inequality [6, 10]). Suppose that Ω is a bounded
domain of Rn and the log-Hölder condition is satisfied by p(·). Then

(2.1) ∥u∥p(·) ≤ cp∥∇xu∥p(·) for all u ∈W
1,p(·)
0 (Ω),

where cp = c(p1, p2, |Ω|) > 0.

Lemma 2.3 ([6, 10]). Let p(·) ∈ C(Ω̄) and q : Ω → [1,∞) be a measurable
function that satisfy

ess inf
x∈Ω̄

(p∗(x)− q(x)) > 0.

Then the Sobolev embedding W 1,p(·)
0 (Ω) ↪→ Lq(·)(Ω) is continuous and com-

pact, where

p∗ =

{
np1
n−p1

if p1 < n,

∞ if p1 ≥ n.

Moreover, if the log-Hölder condition is satisfied by p(·), we have

p∗(x) =

{
np(x)
n−p(x) if p(x) < n,

∞ if p(x) ≥ n.

Lemma 2.4 (Young inequality [10]). Let q, q′, s : Ω → [1,∞) be measur-
able functions such that

1

s(x)
=

1

q(x)
+

1

q′(x)
for a.e. x ∈ Ω.

Then, for all X,Y ≥ 0,

(XY )s(·)

s(·)
≤ Xq(·)

q(·)
+
Y q′(·)

q′(·)
.
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By taking s = 1, it follows that for any θ > 0,

(2.2) XY ≤ θXq(·) + C(θ, q(·))Y q′(·),

where C(θ, q(·)) = 1
q′(·)(θq(·))

− q′(·)
q(·) .

In order to prove the blow-up result with positive initial energy, we use
the following lemma that was introduced in [15] and called the modified
concavity method.

Lemma 2.5. Let µ > 0, c1, c2 ≥ 0 and c1 + c2 > 0. Assume that L(t) is
a twice differentiable positive function such that

L(t)L′′(t)− (1 + µ)[L′(t)]2 ≥ −2c1L(t)L
′(t)− c2[L(t)]

2

for all t ≥ 0. If

L(0) > 0 and L′(0) + γ2µ
−1L(0) > 0,

then there exists a finite time t∗ such that

L(t) → +∞ as t→ t∗.

Here
γ1 = −c1 +

√
c21 + µc2 and γ2 = −c1 −

√
c21 + µc2.

For the sake of completeness, the local existence result for problem (1.1)–
(1.3) is stated as follows. This theorem could be proved by the Faedo–
Galerkin approximation method. For details we refer the reader to [11, 14,
18, 21–23].

Theorem 2.6 (Local existence). Let (u0, u1) ∈ H2
0 (Ω)×H1

0 (Ω) be given.
Assume that variable exponents are bounded. Then problem (1.1)–(1.3) has
a weak solution such that

u ∈ L∞(0, T ;H2
0 (Ω) ∩ Lq(·)(Ω)), ut ∈ L∞(0, T ;H1

0 (Ω)),

utt ∈ L2(0, T ;H1
0 (Ω)).

The energy of the system is defined by

E(t) =
1

2
∥ut∥2 +

a

2
∥∇ut∥2 +

1

2
∥∆u∥2 + 1

2
∥∇u∥2 + 1

4

�

Ω

p(x)|∇u|2 dx(2.3)

−
�

Ω

1

q(x)
|u|q(x) dx− 1

2

�

Ω

|∇u|2 ln |∇u|p(x) dx.

Lemma 2.7 (Monotonicity of energy). Assume that u(x, t) is a local so-
lution of (1.1)–(1.3). Then, along the solution, we have

(2.4) E′(t) = −b∥∇ut∥2 ≤ 0.
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Proof. Multiplying equation (1.1) by ut and integrating over Ω, inequal-
ity (2.4) can be obtained for any regular solution. By a simple density argu-
ment, the inequality is fulfilled for weak solutions.

3. Blow-up results. This section has two parts. First, we assume that
problem (1.1)–(1.3) has positive initial energy and prove that under suitable
conditions on the data, there exists a finite time such that the solutions
blow-up at this time. Next, the blow-up of solutions with negative initial
energy under appropriate conditions on the variable exponents is proved.

3.1. Blow-up result for positive initial energy. In order to prove
the blow-up result for positive initial energy, we define, for any ε > 0,

(3.1) ψ(t) =
�

Ω

u(ut − a∆ut) dx+
b

2
∥∇u∥2 − 2

ε
E(t).

Regarding the functional ψ(·), we have

Lemma 3.1. Assume that u(x, t) is a local solution of (1.1)–(1.3) and
a ≥ max {c2, 4b2/p1} where c2 satisfies inequality (2.1) for p(x) ≡ 2. Then,
along the solution, the functional ψ(·) satisfies

ψ(t) ≥ ψ(0)e
2b
a
t.

Proof. Differentiating (3.1), we obtain

ψ′(t) = ∥ut∥2 + a∥∇ut∥2 +
�

Ω

u(utt − a∆utt) dx+ b
�

Ω

∇u∇ut dx(3.2)

− 2

ε
E′(t)

= ∥ut∥2 +
(
a+

2b

ε

)
∥∇ut∥2 +

�

Ω

u(utt − a∆utt) dx

+ b
�

Ω

∇u∇ut dx,

where (2.4) has been used.
Multiplying (1.1) by u to estimate the integral terms on the right hand

side of (3.2), we get

ψ′(t) = ∥ut∥2 +
(
a+

2b

ε

)
∥∇ut∥2 − ∥∇u∥2 − ∥∆u∥2(3.3)

+
�

Ω

|∇u|2 ln |∇u|p(x) dx+
�

Ω

|u|q(x) dx.

At this point, since ε is an arbitrary positive constant, we infer from (3.3)
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that

ψ′(t)− εψ(t) = ∥ut∥2 +
(
a+

2b

ε

)
∥∇ut∥2 − ∥∇u∥2 − ∥∆u∥2

(3.4)

+
�

Ω

|∇u|2 ln |∇u|p(x) dx+
�

Ω

|u|q(x) dx

− ε
�

Ω

u(ut − a∆ut) dx− εb

2
∥∇u∥2 + 2E(t)

= −ε
�

Ω

uut dx− εa
�

Ω

∇u∇ut dx− εb

2
∥∇u∥2 + 2∥ut∥2

+ 2

(
a+

b

ε

)
∥∇ut∥2 +

�

Ω

|u|q(x) dx+
1

2

�

Ω

p(x)|∇u|2 dx

− 2
�

Ω

1

q(x)
|u|q(x) dx.

Thanks to the additional conditions on the variable exponents, we deduce

ψ′(t)− εψ(t) ≥ −ε
�

Ω

uut dx− εa
�

Ω

∇u∇ut dx+

(
p1
2

− εb

2

)
∥∇u∥2

+ 2∥ut∥2 + 2

(
a+

b

ε

)
∥∇ut∥2 +

q1 − 2

q1

�

Ω

|u|q(x) dx.(3.5)

By using the Young and Poincaré inequalities, we have

ε
∣∣∣ �
Ω

uut dx
∣∣∣ ≤ ε

(
b

4c2
∥u∥2 + c2

b
∥ut∥2

)
(3.6)

≤ εb

4
∥∇u∥2 + εc2

b
∥ut∥2,

εa
∣∣∣ �
Ω

∇u∇ut dx
∣∣∣ ≤ εa

(
b

4a
∥∇u∥2 + a

b
∥∇ut∥2

)
(3.7)

≤ εb

4
∥∇u∥2 + εa2

b
∥∇ut∥2.

Combining (3.6) and (3.7) with (3.5), we obtain

ψ′(t)− εψ(t) ≥
(
p1
2

− εb

)
∥∇u∥2 +

(
2− εc2

b

)
∥ut∥2(3.8)

+ 2

(
a+

b

ε
− εa2

2b

)
∥∇ut∥2 +

q1 − 2

q1

�

Ω

|u|q(x) dx.
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Now, if we set ε := 2b/a then by using the assumption of Lemma 3.1, we get

ψ′(t)− 2b

a
ψ(t) ≥ 0;

integrating from 0 to t, we get the desired result.

Theorem 3.2. Suppose that the conditions of Lemma 3.1 hold. Suppose
the initial data u0, u1 satisfy

(3.9) 0 < E(0) ≤ b

a

( �

Ω

u0(u1 − a∆u1) dx+
b

2
∥∇u0∥2

)
.

Then, along the solutions of problem (1.1)–(1.3), there exists a finite time t∗
such that

lim
t→t∗

(∥u∥2 + a∥∇u∥2) = +∞.

Proof. Define

(3.10) L(t) = ∥u∥2 + a∥∇u∥2,
and therefore

L′(t) = 2
�

Ω

uut dx+ 2a
�

Ω

∇u∇ut dx,(3.11)

L′′(t) = 2
�

Ω

uutt dx+ 2∥ut∥2 + 2a
�

Ω

∇u∇utt dx+ 2a∥∇ut∥2.(3.12)

It is easy to see that

L′′(t) = 2∥ut∥2 + 2a∥∇ut∥2 − 2∥∇u∥2 − 2∥∆u∥2(3.13)

+ 2
�

Ω

|∇u|2 ln |∇u|p(x) dx− 2b
�

Ω

∇u∇ut dx+ 2
�

Ω

|u|q(x) dx

=
4b

a

(
ψ(t)−

�

Ω

u(ut − a∆ut) dx− b

2
∥∇u∥2

)
+ 4E(t) + 2∥ut∥2 + 2a∥∇ut∥2 − 2∥∇u∥2 − 2∥∆u∥2

+ 2
�

Ω

|∇u|2 ln |∇u|p(x) dx− 2b
�

Ω

∇u∇ut dx+ 2
�

Ω

|u|q(x) dx,

where the definition (3.1) of ψ(t) has been used.
Next, by using the additional conditions on the variable exponents and

(2.3), we see from (3.13) that

L′′(t) ≥ 4b

a

(
ψ(t)−

�

Ω

uut dx− a
�

Ω

∇u∇ut dx
)
+

(
p1 −

2b2

a

)
∥∇u∥2

(3.14)

+ 4∥ut∥2 + 4a∥∇ut∥2 +
2(q1 − 2)

q1

�

Ω

|u|q(x) dx− 2b
�

Ω

∇u∇ut dx.
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Thanks to Lemma 3.1, since q1 ≥ 2 and ψ(t) ≥ ψ(0), we obtain

L′′(t) ≥ 4b

a
ψ(0)− 4b

a

( �
Ω

uut dx+ a
�

Ω

∇u∇ut dx
)
+

(
p1 −

2b2

a

)
∥∇u∥2

(3.15)

+ 4∥ut∥2 + 4a∥∇ut∥2 − 2b
�

Ω

∇u∇ut dx.

Multiplying both sides of (3.15) by L(t) we get

L(t)L′′(t) ≥ 4b

a
ψ(0)L(t)− 2b

a
L(t)L′(t) +

(
p1 −

2b2

a

)
∥∇u∥2L(t)(3.16)

+ 4(∥ut∥2 + a∥∇ut∥2)L(t)− 2bL(t)
�

Ω

∇u∇ut dx.

To estimate the last term on the right-hand side of (3.16), by using the
Young inequality, we obtain

(3.17)
∣∣∣2b �

Ω

∇u∇ut dx
∣∣∣ ≤ 3a∥∇ut∥2 +

b2

3a
∥∇u∥2.

By inserting (3.17) and (3.9) into (3.16), we deduce

L(t)L′′(t) ≥ −2b

a
L(t)L′(t) +

(
∥ut∥2 + a∥∇ut∥2 +

(
p1 −

7b2

3a

)
∥∇u∥2

)
L(t).

(3.18)

On the other hand, by using (3.11), and the Hölder, Young and Poincaré
inequalities, we have

(L′(t))2 = 4
( �
Ω

uut dx+ a
�

Ω

∇u∇ut dx
)2

(3.19)

≤ 4∥u∥2∥ut∥2 + 4a2∥∇u∥2∥∇ut∥2

+ 8a

(
1

2a

[ �

Ω

uut dx
]2

+
a

2

[ �

Ω

∇u∇ut dx
]2)

≤ 4∥u∥2∥ut∥2 + 8a2∥∇u∥2∥∇ut∥2 + 4c22∥∇u∥2∥ut∥2.

Now, there exists a positive constant γ < 1 such that for sufficiently large
p1 and a (see the hypothesis of Lemma 3.1), (3.19) gives

(L′(t))2 ≤ γ

(
4∥ut∥2 + a∥∇ut∥2 +

(
p1 −

7b2

3a

)
∥∇u∥2

)
(∥u∥2 + a∥∇u∥2)

(3.20)

= γ

(
4∥ut∥2 + a∥∇ut∥2 +

(
p1 −

7b2

3a

)
∥∇u∥2

)
L(t).
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Applying (3.20) in (3.18), we obtain

(3.21) L(t)L′′(t)− γ−1(L′(t))2 ≥ −2b

a
L(t)L′(t),

Hence, we see that the hypotheses of Lemma 2.5 are fulfilled with

µ = γ−1 − 1, c1 =
b

a
, c2 = 0.

Therefore, the modified concavity argument shows that there exists a finite
time t∗ such that the solutions blow up at this time, i.e.

lim
t→t∗

(∥u∥2 + a∥∇u∥2) = +∞,

and the proof of Theorem 3.2 is complete.

3.2. Blow-up result for negative initial energy. Our blow-up result
for certain solutions with negative initial energy reads as follows:

Theorem 3.3. Let the conditions of Theorem 2.6 hold and assume that
E(0) < 0. Then there exist positive constants Λ0, Λ1 and sufficiently small
ε > 0 such that solutions of problem (1.1)–(1.3) blow up at a finite time

t∗ ≤ Λ1(1− σ)

εΛ0σϕ
σ

1−σ (0)
,

where 0 < σ < 1 and ϕ(t) is given in (3.23).

Proof. Define H(t) = −E(t). By using monotonicity of energy, i.e. (2.4),
we arrive at

(3.22) H ′(t) = b∥∇ut∥2 ≥ 0.

Then negative initial energy and (3.22) give H(t) ≥ H(0) > 0. Also, by the
definition of H(t), it is easy to see that

H(t) ≤
�

Ω

1

q(x)
|u|q(x) dx+

1

2

�

Ω

|∇u|2 ln |∇u|p(x) dx.

Define, for 0 < σ < 1, and with ε > 0 to be specified later,

(3.23) ϕ(t) = H1−σ(t) + ε
�

Ω

u(ut − a∆ut) dx.

By taking the derivative of (3.23) and using (1.1), we get

ϕ′(t) = (1− σ)H ′(t)H−σ(t) + ε∥ut∥2 + εa∥∇ut∥2 + ε
�

Ω

u(utt − a∆utt) dx

(3.24)

= (1− σ)H ′(t)H−σ(t) + ε∥ut∥2 + εa∥∇ut∥2 − ε∥∇u∥2 − ε∥∆u∥2

+ ε
�

Ω

|∇u|2 ln |∇u|p(x) dx− εb
�

Ω

∇u∇ut dx+ ε
�

Ω

|u|q(x) dx.
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By using the definition of H(t) and for any δ > 0, from (3.24) we get

ϕ′(t) = δH(t) +

(
δ

2
+ ε

)
∥ut∥2 + a

(
δ

2
+ ε

)
∥∇ut∥2 +

(
δ

2
− ε

)
∥∇u∥2

+

(
δ

2
− ε

)
∥∆u∥2 + δ

4

�

Ω

p(x)|∇u|2 dx− δ
�

Ω

1

q(x)
|u|q(x) dx

+ ε
�

Ω

|u|q(x) dx+

(
ε− δ

2

) �

Ω

|∇u|2 ln |∇u|p(x) dx

+ (1− σ)H ′(t)H−σ(t)− εb
�

Ω

∇u∇ut dx.

Thanks to the boundedness of p(·) and q(·), we deduce

ϕ′(t) ≥ δH(t) +

(
δ

2
+ ε

)
∥ut∥2 + a

(
δ

2
+ ε

)
∥∇ut∥2 +

(
δ

2
− ε

)
∥∇u∥2

+

(
δ

2
− ε

)
∥∆u∥2 + δp1

4
∥∇u∥2 +

(
ε− δ

q1

) �

Ω

|u|q(x) dx

+

(
ε− δ

2

) �

Ω

|∇u|2 ln |∇u|p(x) dx+ (1− σ)H ′(t)H−σ(t)

− εb
�

Ω

∇u∇ut dx.

Since q1 > 2, we obtain

(3.25) ϕ′(t) ≥ δH(t) +

(
δ

2
+ ε

)
∥ut∥2 + a

(
δ

2
+ ε

)
∥∇ut∥2

+

(
δ

2
− ε

)
∥∇u∥2 +

(
δ

2
− ε

)
∥∆u∥2 + δp1

4
∥∇u∥2

+

(
ε− δ

2

)( �
Ω

|u|q(x) dx+
�

Ω

|∇u|2 ln |∇u|p(x) dx
)

+ (1− σ)H ′(t)H−σ(t)− εb
�

Ω

∇u∇ut dx.

Now, if we set δ := 2ε, then inequality (3.25) takes the form

ϕ′(t) ≥ 2εH(t) + 2ε∥ut∥2 + 2aε∥∇ut∥2 +
εp1
2

∥∇u∥2(3.26)

+ (1− σ)H ′(t)H−σ(t)− εb
�

Ω

∇u∇ut dx.

Using the Cauchy–Schwarz and Young inequalities, it is easy to estimate the
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last term on the right-hand side of (3.26) as follows:

εb
∣∣∣ �
Ω

∇u∇ut dx
∣∣∣ ≤ εp1

4
∥∇u∥2 + εb2

p1
∥∇ut∥2 =

εp1
4

∥∇u∥2 + εb

p1
H ′(t),

where (3.22) has been used.
Since H(t) ≥ H(0) > 0, there exists a sufficiently large constant K such

that

(3.27) εb
∣∣∣ �
Ω

∇u∇ut dx
∣∣∣ ≤ εp1

4
∥∇u∥2 + εb

p1
KH−σ(t)H ′(t).

Applying (3.27) in (3.26) we deduce

ϕ′(t) ≥ 2εH(t) + 2ε∥ut∥2 +
εp1
4

∥∇u∥2 + 2aε∥∇ut∥2(3.28)

+

(
1− σ − εbK

p1

)
H ′(t)H−σ(t).

Now, suppose that ε is sufficiently small and K large enough such that
1− σ − εbK/p1 > 0 and (3.27) holds. Then

ϕ′(t) ≥ εΛ0(H(t) + ∥ut∥2 + ∥∇u∥2 + ∥∇ut∥2),(3.29)

where Λ0 = min {2, p1/4, 2a}. Therefore we deduce that ϕ(t) ≥ ϕ(0) > 0 for
all t ≥ 0.

On the other hand, we have

ϕ
1

1−σ (t) :=
(
H1−σ(t) + ε

�

Ω

uut dx+ εa
�

Ω

∇u∇ut dx
) 1

1−σ

(3.30)

≤ 2
2(1−σ)

σ

(
H(t) + ε

1
1−σ

∣∣∣ �
Ω

uut dx
∣∣∣ 1
1−σ

+ (εa)
1

1−σ

∣∣∣ �
Ω

∇u∇ut dx
∣∣∣ 1
1−σ

)
≤ Λ1

(
H(t) +

∣∣∣ �
Ω

uut dx
∣∣∣ 1
1−σ

+
∣∣∣ �
Ω

∇u∇ut dx
∣∣∣ 1
1−σ

)
,

where we have used the following fact:( m∑
i=1

ai

)λ
≤ 2

m−1
λ−1

m∑
i=1

aλi .

By using the Hölder, Young and Poincaré inequalities, for some positive



94 M. Shahrouzi et al.

constants C1, C2 we get∣∣∣ �
Ω

uut dx
∣∣∣ 1
1−σ ≤ ∥u∥

1
1−σ ∥ut∥

1
1−σ ≤ C1(∥∇u∥2 + ∥ut∥2 +H(t)),(3.31)

∣∣∣ �
Ω

∇u∇ut dx
∣∣∣ 1
1−σ ≤ ∥∇u∥

1
1−σ ∥∇ut∥

1
1−σ(3.32)

≤ C2(∥∇u∥2 + ∥∇ut∥2 +H(t)).

Thus, using (3.31) and (3.32) we deduce from (3.30) that

ϕ
1

1−σ (t) ≤ Λ2(H(t) + ∥ut∥2 + ∥∇u∥2 + ∥∇ut∥2) ≤
Λ2

εΛ0
ϕ′(t),

where (3.29) has been used. Therefore

(3.33) ϕ′(t) ≥ εΛ0

Λ1
ϕ

1
1−σ (t).

Integrating (3.33) from 0 to t, we deduce

ϕ
σ

1−σ (t) ≥ 1

ϕ−
σ

1−σ (0)− εΛ0σt
Λ1(1−σ )

.

This shows that solutions blow-up in finite time t∗ = Λ1(1−σ)

εΛ0σϕ
σ

1−σ (0)
, and the

proof of Theorem 3.3 is complete.
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