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BOUNDS ON MEAN VARIANCE HEDGING IN
JUMP DIFFUSION

Abstract. We compare the maximum principle and the linear quadratic
regulator approach (LQR)/well-posedness criterion to mean variance hedg-
ing (MVH) when the wealth process follows a jump diffusion. The compar-
ison is made possible via a measurability assumption on the coefficients of
the process. Its application to determine an interval range for the MVH is
explained. More precisely, in the MVH setup we show that

0 ≤ inf
u∈U

1
2E

[ T�

0

y′sys ds+ y′T yT

]
= 1

2y
′P 0

0 y + f(P 0
0 ) ≤ 1

2y
′P0y + f(P0),

where P 0 and P satisfy a backward stochastic differential equation (BSDE)
and f is a measurable function affine in its only argument. The upper bound
holds under the measurability assumption that all coefficients including the
intensity of the jumps that drive P are in fact predictable with respect to
the filtration generated only by the Brownian motion. The lower bound is
achieved expectedly under perfect hedging when the Föllmer–Schweizer min-
imal martingale probability measure is equivalent to the physical measure.

1. Introduction. It is well-known that the MVH problem is quantified
as a quadratic optimization criterion over a set of allocations of portfolio
wealth V between u risky assets and 1 − u riskless asset(s) to minimize
the overall variance of the wealth of the portfolio. A stochastic control
approach called Linear-Quadratic Stochastic control (LQSC) is used to solve
the MVH.
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For its generic illustration, consider a typical LQSC problem of the form

(1) dVt = (AtVt +Btut)dt+ (VtCt + utDt)dWt, V0 = v,

with random coefficients and with objective function

(2) F (v, u) = E
[ T�

0

(V ′
tQtVt + V ′

t Ptut + u′tNtut)dt+R(T )|VT −O(T )|2
]

We can immediately see that for A ≡ 0, B = b = µ − re, C ≡ 0, D = σ,
Q ≡ 0, P ≡ 0, N ≡ 0, R(T ) = 1, O(T ) = ξ, the objective function becomes
E[(VT−ξ)2]. If ξ is an option payoff, the above optimization criterion is called
mean variance hedging of the option. This option will be of a European type
that is priced at the terminal time T . American type option hedging alludes
to the presence of a running cost in the objective function. This makes the
resulting optimization MVH problem complicated due to the presence of
nonhomogeneous terms as would be encountered later.

When the value of option hedging is positive, it is called market incom-
pleteness. Market incompleteness results in a nonunique option valuation.
Then the problem broadens to determining a valid range of option valua-
tion. In the jump-diffusion context, this problem was solved by Bellamy and
Jeanblanc (2000) in a special case when the intensity of the jumps occur-
ring is deterministic. As with valuation, we guess that a concept similar to
a range of mean variance hedging values exists. This financial motivation
is studied here. To the best of our knowledge this is the first work on that
subject. While the lower bound is evidently zero (corresponds to a complete
market), the upper bound likely needs to be the largest of the MVH objec-
tive function values generated between the well-posedness and the maximum
principle method. The well-posedness related governing equation is deduced
via assuming that all the coefficients in (5) below (including the jump inten-
sity) are predictable with respect to the filtration generated by the standard
Brownian motion. This measurability assumption is what we henceforth col-
lectively refer to as Lim’s measurability assumption. This assumption is also
important in another respect. In a relatively recent application, Goutte and
Ngoupeyou (2015) found out that when the MVH is considered of the form
θt(Q[V ])+ξt, Lim’s assumption makes it possible to interpret θ as a variance
optimal martingale probability measure and hence the objective function as
a quadratic function of V . In our context, we understand here the influence
of Lim’s assumption in the context of finding bounds to the MVH problem
as made formal in the following result.

Theorem 1.0.1. Let y be the residual risk in hedging a claim using a
stochastic portfolio in a jump diffusion market. In the mean variance hedging
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(MVH ) setup, for some measurable function f defined in (23), we have (1)

0 ≤ inf
u∈U

1

2
E
[ T�

s=0

y′sys ds+ y′T yT

]
=

1

2
y′P 0

0 y + f(P 0
0 ) ≤

1

2
y′P0y + f(P0),

where P and P 0 satisfy the backward stochastic differential equations (BSDE)
(8) and (13) respectively. The upper bounds holds under the Lim’s measura-
bility assumption. The lower bound corresponds to market completeness and
is achieved via the equivalence of the physical measure and the Föllmer–
Schweizer minimal martingale measure.

Proof. The deduction of the lower bound is given in Corollary 3.1.1, while
the upper bound can be deduced from (21), (24) and (26).

In the next section we discuss the LQSC framework to MVH, attributed
in the jump diffusion context to Lim (2005). We make the upper bound
precise, by discussing the gap (if any) between the notions of the maximum
principle and the well-posedness criterion. Some related yet unexplained con-
ceptual measurability related assumptions made in Lim’s work cited by Jean-
blanc et al. (2012) are addressed at the end. The standard formal proof for
the lower bound on the MVH is provided in the Appendix.

2. An LQSC approach to the MVH. Motivated by (2), we consider
minimizing the following quadratic objective function:

(3) J(v, u(·)) = 1

2
E
[ T�

0

|Vt − E[ξ|Ft]|2 dt+ |VT − ξ|2
]

with u ∈ U a.e.,

where the Rn-valued wealth process V satisfies (5) below subject to an admis-
sible process u defined on a closed convex set U ⊂ Rn consisting of all (Ft)-
predictable processes. Here we define Ft to be generated by the Brownian
motion FW (say) and the Poisson random measure FN (say). The quadratic
payoff has a special interpretation when we regard E[ξ|Ft] as the expected
value of an American option payoff. In this context, as seen from (3), the
wealth process V is to be kept as close as possible to E[ξ|Ft] at any time
T ≥ t ≥ 0. Hence the above optimization does not lead to hedging of a plain
vanilla American option without imposing any additional constraints on the
wealth process. Based on the assumption made by Tang and Li (1994), we
assume that u satisfies

(4) ∥u(·)∥ := sup
0≤t≤T

[E|u(t)|8]1/2 <∞.

To solve the problem of minimizing (3), we need to determine the nec-
essary conditions (that every control should satisfy in order to be an op-

(1) For an array M , we denote by M ′ its transpose.
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timal control), also called the maximum principle, and/or well-posedness
conditions (that guarantee finiteness of the objective function) for the MVH
problem. Let us first discuss the maximum principle approach.

2.1. The maximum principle. Deduction of the necessary constraints
in the optimal control problem comes originally from the work of Pontrya-
gin and his students (Gamkrelidze, 1999). Pontryagin’s maximum principle
states that any optimal control along with the optimal state trajectory must
solve the so called (extended) Hamiltonian system, which is a two-point
boundary value problem plus a maximum condition for a function called
the Hamiltonian. Its mathematical significance lies in that maximizing the
Hamiltonian is much easier than solving the original control problem, which
is infinite-dimensional. The idea of Pontryagin’s maximum principle is to
slightly perturb the optimal control (i.e. spike variation) and then consider
the first order term in a sort of Taylor expansion with respect to this pertur-
bation. By sending this perturbation to zero, one obtains a kind of variational
inequality which is a two-point boundary value problem.

For the diffusion case, due to presence of a control in the diffusion coef-
ficient, one uses the second-order term in the Taylor expansion of the spike
variation. This results in a forward backward SDE and a maximum con-
dition. Tang and Li (1994) extend the necessary conditions for an optimal
control problem with jump diffusion state process given by

(5)

dVt = (At−Vt− +Bt−ut−)dt+ (Ct−Vt− +Dt−ut−)dWt

+
�

[0,1]

(Et−(y)Vt− + Ft−(y)ut−) ν̃(dt, dy),

V0 = v,

where A,C,E ∈ Rn×n and B,D,F ∈ Rn×m are bounded and satisfy Lim’s
measurability assumption and u ∈ Rm, v ∈ Rn. The compensator of the
martingale jump process ν̃ is λ(dy)ds. Hence the Poisson random measure
quantifying the jump term is ν(ds, dy) := ν̃(ds, dy) + λ(dy)ds.

Let F 2
p ([0, T ],Rn) be the space of R1×n-valued Ft-predictable square in-

tegrable vector procesess f̂(·, ·, ·) defined on [0, 1] × [0, T ] × Ω such that		
[0,1]×[0,T ]E[|f̂(z, t, ·)|2]λ(dz) dt < ∞. We write ⟨ , ⟩ for the scalar product

of Euclidean spaces. The Hamiltonian as defined by Tang and Li (1994) is

H(t, v, u, p, q, r(·, ·)) = 1

2
(v − E[ξ|Ft])

′(v − E[ξ|Ft]) + ⟨p,Av +Bu⟩(6)

+ ⟨q, Cv +Du⟩+
�

[0,1]

⟨r(·, z), (Ev + Fu)⟩λ(dz).

This map acts from [0, T ]× Rn × U × Rn × Rn × F 2
p ((0, T ),Rn) into R.
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Expectedly, the stochastic maximum principle yields two backward stoch-
astic differential equations, viz. the dynamics of p(T ) ∈ L2(Ω,FT ,Rn) and
P (T ) ∈ L2(Ω,F ,Rn×n) satisfy

(7) pt = pT +
�

(t,T ]

Hv(s, vs, us, ps, qs, r(s, ·)) ds−
�

(t,T ]

qs dWs

−
�

(t,T ]

�

[0,1]

r(s, z) ν̃(ds, dz)

= VT − ξ +
�

(t,T ]

(
(Vs − E[ξ|Fs]) +Asps + Csqs +

�

[0,1]

⟨E, r(s, z)⟩λ(dz)
)
ds

−
�

(t,T ]

qs dWs −
�

[0,1]

�

(t,T ]

r(s, z) ν̃(ds, dz) a.s.,

and, suppressing the z-dependencies in E, we get

(8) Pt = PT +
�

(t,T ]

(
AsPs + P ′

sA
′
s + CsPsCs + CsQs +Q′

sC
′
s

+
( �

[0,1]

(
EsPsEs + EsR(s, z)Es + EsR(s, z) +R′(s, z)E′

s

)
λ(dz) + I

))
ds

−
�

(t,T ]

QsdWs −
�

[0,1]

�

(t,T ]

R(s, z) ν̃(dz, ds) a.s.,

for PT = I. Both these backward stochastic differential equations admit
unique solutions that are càdlàg processes. We refer to Tang and Li (1994)
for the technical proofs of the existence and uniqueness.

For completeness, we mention the necessary and sufficient condition for
the MVH problem solved via the stochastic maximum principle.

Theorem 2.1.1. Let the drift, diffusion and jump coefficient in (5) sat-
isfy Assumption 1 of Tang and Li (1994). Then a necessary and sufficient
condition for an admissible pair (u, v) to be optimal for the MVH problem
(3) is

(9) Hu(t, vt−, ut, pt−, qt, rt) = 0 a.e. a.s.

Proof. See Theorem 4.1 of Meng (2013) for a similar result.

Now we elaborate on the other tool, the LQR method, where a BSDE is
deduced from the perspective of having the cost criterion (3) to be well-posed,
i.e. finite.
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2.2. The LQR method. Problem (3) in terms of yt = Vt−E[ξ|Ft] ∈ Rn

is

(10) J(s, y, u(·)) = 1

2
E
[ T�

0

y′sys ds+ y′T yT

]
.

Since E[ξ|Ft] is an Ft-martingale, by the martingale representation theorem
there exist Z ∈ L2

FW (0, T ;Rn) and U(·, ·) ∈ F 2
p ([0, T ];Rn) such that

(11) E[ξ|Ft] = Eξ +

t�

0

Zs dWs +

t�

0

�

(0,1]

U(s, a) ν̃(ds, da).

Hence,

(12)

dyt = (Atyt +Btut +Aξ)dt+ (Ctyt +Dtut + Cξ,z)dWt

+
�

[0,1]

(Et(a)yt− + Ft(a)ut + Eξ,u(a)) ν̃(dt, da),

y0 = y,

where Aξ := AtE[ξ|Ft], Cξ,z := CtE[ξ|Ft] − Zt, E
ξ,u
t (a) := Et(a)E[ξ|Ft] −

U(t, a). Let Sn be the space of n×n symmetric matrices, and Lp
F (a, b;X) =

{ϕ(t, ω) : a ≤ t ≤ b} be the space of Ft-adapted X-valued measurable
processes on [a, b] with E

	b
a ∥ϕ(t, ω)∥

p dt <∞, ∥ · ∥ being the uniform norm
on Sn. Further, L2(Ω;X) is the Hilbert space of X-valued square integrable
functions on Ω with values in a given Hilbert space X. Let C(0, T ;X) be the
Banach space of X-valued continuous functions on [0, T ] endowed with the
maximum norm ∥ · ∥ for a given Hilbert space X. Introduce the stochastic
Riccati equation (SRE) given by

(13)

dP 0
t =

{
−
(
P 0
t At +A′

tP
0
t + CtP

0
t Ct + ΛtCt + C ′

tΛ
′
t + I − L′

tK
−1
t Lt

+
�

[0,1]

Et(a)P
0
t Et(a)λ(da)

)}
dt+ ΛtdWt

P 0
T = I, P-a.s., ∀t ∈ [0, T ],

for Kt = DtP
0
t Dt+

	
[0,1] Ft(a)P

0
t Ft(a)λ(da) > 0 and Lt = BtP

0
t +DtP

0
t Ct+

DtΛt. Further, let some ϕ solve the BSDE

(14) dϕt = Γ̃tdt+ Λ̃tdWt, ϕT = 0.

The coefficients Γ̃ and Λ̃ will be made precise soon. Define the following
non-homogeneous (NH) terms:

NH1
t := 2P 0

t A
ξ
t + 2Cξ,z

t P 0
t C

ξ,z
t +

�

[0,1]

(2Et(a)P
0
t E

ξ,u
t (a))λ(da)(15)

+ 2ΛtC
ξ,z
t ,



Bounds on mean variance hedging in jump diffusion 7

NH2
t := 2D′

tP
0
t C

ξ,z
t +

�

[0,1]

2F ′
t(a)P

0
t E

ξ,u
t (a)λ(da),(16)

NH3
t :=

�

[0,1]

E′ξ,u
t (a)P 0

t E
ξ,u
t (a)λ(da) + C ′ξ,z

t P 0
t C

ξ,z
t .(17)

An FW -predictable pair (P 0, Λ) ∈ |L2
FW (0, T ;Sn) ∩ L2(Ω,C(0, T ;Sn))| ⊗

L2
FW (0, T ;Sn) is called a solution to the Riccati equation (13) if it satisfies

all constraints in (13). Since the SRE is driven by a standard Brownian
motion, all of its coefficients including the intensity of jumps are assumed to
be predictable with respect to the filtration generated only by the standard
Brownian motion. That is, Lim’s measurability condition readily applies.
We have the following explicit deduction of the stochastic control via well-
posedness.

Theorem 2.2.1. Under Lim’s measurability condition, if the SRE given
by (13) and BSDE (14) admits a solution, then the stochastic LQR problem
is well-posed.

Proof. Under Lim’s measurability condition, P 0 ∈ L2
FW (0, T ;Sn) ∩

L2(Ω;C(0, T, Sn)) can for simplicity be assumed to satisfy

(18) dP 0
t = Γtdt+ ΛtdWt, t ∈ [0, T ].

Let (y, u) be any admissible pair. Apply Ito’s formula to get

(19) d(y′tP
0
t yt) =

{
y′t

(
P 0
t At +A′

tP
0
t + ΛtCt + C ′

tΛ
′
t + Γt

+ CtP
0
t Ct +

�

[0,1]

Et(a)P
0
t Et(a)λ(da)

)
yt

+ y′t

(
P 0
t Bt +B′

tP
0
t + CtP

0
t Dt +D′

tP
0
t Ct

+
�

[0,1]

[F ′
t(a)P

0
t Et(a) + E′

t(a)P
0
t Ft(a)]λ(da) + ΛtDt +D′

tΛ
′
t

)
ut

}
dt

+
[
u′t

(
D′

tP
0
t Dt +

�

[0,1]

F ′
t(a)P

0
t Ft(a)λ(da)

)
ut

]
dt

+ [y′tNH
1
t + u′tNH

2
t +NH3

t ]dt+ {. . .}dWt + {. . .}ν̃(ds, da).
and

d(y′tϕt) =
(
ϕ′tAtyt + ϕ′tA

ξ
t + y′tΓ̃t + y′tC

′
tΛ̃t + u′tD

′
tΛ̃t + Cξ,z

t Λ̃t

)
dt(20)

+ martingale terms.

Integrate (19)–(20) from 0 to T , taking expectations Es := [·|Fs], and add
them. Via a completion of squares argument we get the final form

(21) J(u∗, y) = 1
2y

′
0P

0
0 y0 + f(P 0),
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by setting

(22)

Γ̃t =
1

2
(DtD

′
t)
−1Dt(NH

2
t + 2B′

tϕt),

Λ̃t = − 1

2
(NH1

t + 2C ′
tΓ̃t + 2A′

tϕt),

Γt = −
(
P 0
t At +A′

tP
0
t + C ′

tP
0
t Ct + ΛtCt + C ′

tΛ
′
t

+ I − L′
tK

−1
t Lt +

�

[0,1]

E′
t(a)P

0
t Et(a)λ(da)

)
,

(23) f(P 0) := y′0ϕ0 + Es
[ T�

0

(ϕ′sA
ξ
s + Cξ,zΛ̃s +NH3

s ) ds
]

and by choosing the optimal control

u∗ = −K−1Ly(24)

= −
(
D′

tP
0
t Dt +

�

[0,1]

F ′
t(a)P

0
t Ft(a)λ(da)

)−1

×
(
BtP

0
t +

�

[0,1]

F ′
t(a)P

0
t Et(a)λ(da) +D′

tP
0
t Ct +DtΛt

)
yt.

Of course u∗ in (24) is unique, since it can be rewritten in terms of y and
this formula for y substituted back to the objective function would then be
a quadratic function in u.

If we can connect the LQR deduced SRE (P 0, Λ) with the stochastic
maximum principle deduced BSDE’s (p, q, r) then the sufficiency result (i.e.
Theorem 2.1.1) applied to the latter will hence be applicable to the former,
i.e. the LQR. We now formalize this connection.

Lemma 2.2.1. Let the drift, diffusion and jump coefficient in (12) satisfy
Assumption 1 in Tang and Li (1994). Let (p, q, r) satisfy (7) and u satisfy (9).
Then the u so deduced is also sufficient for the LQR problem provided that

pt = P 0
t yt,

qt = (P 0
t Ct + Λt)yt + P 0

t Dtut + P 0
t C

ξ,z
t ,(25)

rt(a) = P 0
t Et(a)yt + P 0

t Ft(a)ut + P 0
t F

ξ,u
t (a) ∀t ∈ [0, T ], a ∈ [0, 1].

Proof. Apply Ito’s formula to (P 0y) and compare it with (p, q, r).

2.3. On the gap between the maximum principle and the LQR
criterion. In the deterministic LQR problem, it is well-known that the
Hamiltonian system completely characterizes the optimal control. In a sense,
the maximum principle and the well-posedness of the LQR problem are
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equivalent to each other. It is then natural to expect that in the stochas-
tic case, the solvability of the Hamiltonian system would yield the well-
posedness of the LQR. This is unfortunately not true in general. However, if
we use Lim’s assumptions on measurability, then this fact could at least be
tested. In that respect we have the following result.

Proposition 2.3.1. Under Lim’s measurability condition, Pt from (8)
and P 0

t from (13) satisfy

(26) Pt ≥ P 0
t , P-a.s., ∀t ∈ [0, T ].

In other words, the solvability of the Hamiltonian system would not yield the
well-posedness of the LQR when the inequality in (26) is strict.

Proof. Since Lim’s measurability condition holds true via assumption (5)
on our dynamics, for comparison’s sake, we proceed from (5) and equation
(2.4) of Lim (2005) to obtain C ≡ E = 0. Hence the generators of the
BSDEs (13) and (8) henceforth referred to as f1(s, P,Q,R) = A′P 0+P 0A+
I − LK−1L and f2(s, P,Q,R) = A′P + P ′A + I satisfy f1(s, P,Q,R) ≤
f2(s, P,Q,R) for all s ∈ [0, T ]. To use the comparison result of Theorem 2.5
of Royer (2006) it remains to prove that f1 satisfies all conditions enumer-
ated in Hex and f2 satisfies Hcomp in that article. In that respect, via (24),
f1 is Lipschitz with respect to the diffusion component Λ and trivially Lip-
schitz with respect to the jump component. Further f1 driven by P 0 is fur-
ther driven by a diffusion on the compact interval [0, T ]. Thus, it is con-
tinuous and bounded. There exists an α ∈ R such that for all t ≥ 0 and
p0, p̂0 ∈ R, (p0 − p̂0)(f1(s, p

0, Λ, u) − f1(s, p̂
0, Λ, u)) ≤ α|p0 − p̂0|2 P-a.s.,

the thus satisfying the monotonicity assumption of Hex. Now it remains to
show that f2 satisfies Hcomp. By definition we have f2(s, 0, 0, 0) = I. Thus
E[

	T
0 f2(s, 0, 0, 0)

2 ds] <∞. Secondly, f2, being linear in P and independent
of the diffusion component, is Lipschitz in P and Q. Thirdly, f2, having zero
jump component, obviously satisfies the (Aγ) condition of Royer. Thus f2
is now shown to satisfy Hcomp. Hence by positive definiteness of K we have
f1(P,Q,R) ≤ f2(P,Q,R), while P 0

T = PT = I, implying P 0 ≤ P for all
t ∈ [0, T ].

Therefore for the same residual risk y, the well-posedness principle pro-
vides an upper bound for the optimization criterion, viz. 1

2y
′P0y + f(P0).

In the work of Lim (2005), in addition to the coefficients of V , it is assumed
that the filtration used for the payoffs ξ and the strategy u is generated
by Ft. These assumptions were also noted to be conceptually unclear by
Jeanblanc et al. (2012). We clarify those here. Unlike the BSDE P 0, BSDE
p is driven by jump diffusion. Since pT = VT − ξ, ξ is generated by F .
Further, from its definition, y and therefore u in (24) will also be generated
by F .
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3. Appendix

3.1. The lower bound. The analysis is not new but tailored to the
problem as stated in the abstract. The work presented here is originally due
to Colwell and Elliott (1993) who in particular contextualize the results of
Schweizer (1991) for jump diffusion asset dynamics.

Consider the following general risky asset(s) value process under a phys-
ical measure (or EMM) P (say):

(27) dXt = αtdt+ σtdWt +
�

[0,1]

ϕt(z) ν̃(dt, dz), 0 ≤ t ≤ T <∞.

We want to determine the conditions that guarantee the martingale prop-
erty,EQp [V (T,DT−XT−, u)|Ft] = V (t,Dt−Xt−, u) a.s. for portfolio wealth V
and where the Radon–Nikodym density is informally defined as dQp

dP |Ft = Dt

for an EMM Qp. The claim to be hedged, g := ξ, is assumed attainable,
implying that the martingale expression will lead to perfect hedging under
the assumed existence of Qp. Let L(Xc) represent the class of predictable
processes for which the stochastic integral with respect to the continuous
part of the semi-martingale X exists. On the set Ω× [0, T ] we define P (resp.
P̃) as the sigma-field generated by adapted and continuous processes (resp.
predictable processes). Gloc(ν̃) is assumed to contain P̃ functions. We restate
the equivalent probability measures Qp by the Girsanov density for processes
j ∈ L(Xc) and h− 1 ∈ Gloc(ν̃):

Dt = 1 +

t�

0

Ds−j(s,Xs−) dWs(28)

+

t�

0

�

[0,1]

Ds−[h(s,Xs−, y)− 1] (ν(ds, dy)− λ(dy)ds).

We assume that ψ := j and γ +1 = h = p are such that DX = (DtXt)t≥0 is
a semi-martingale under P. Under Qp, Wt−

	t
0 j(s,Ds−Xs−) ds is a standard

Brownian motion, and the compensator of ν(dt, dy) is h(t,Dt−Xt−, y)λ(dy)dt.
Under Qp, X can be expounded as

(29)
dXt

Xt−
= r(t)dt+ σtdW

p
t +

�

[0,1]

ϕt(y) (ν(dt, dy)− ptλtdydt),

where W p
t = Wt −

	t
0 ψu du is a Qp standard Brownian motion and the

intensity of jumps is λ(dy) = λtdy.
We recall that under the original measure P the process is given by

d(DtXt) = (Ds−σs −Xs−ψsDs−)(dWs − j(s,Ds−Xs−)ds)(30)
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+
�

[0,1]

(Ds−ϕs(z)−Xs−Ds−γs(z)−Ds−ϕs(z)γs(z))

× (ν(ds, dz)− h(s,Ds−Xs−, z)λ(dz)ds)

+
{
Ds−

(
αs −

(
σsψs +

�

[0,1]

ϕs(z)γs(z)λ(dz)
))

+ (Ds−σs −Xs−ψsDs−)j(s,Ds−Xs−)

+
�

[0,1]

(Ds−ϕs(z)−Xs−Ds−γs(z)−Ds−ϕs(z)γs(z))

× [h(s,Ds−Xs−, z)− 1]λ(dz)
}
ds.

We know that ν̃(ds, dz) := ν(ds, dz) − h(s,Ds−Xs−, z)λ(dz)ds and dWs −
j(s,Ds−Xs−)ds are local martingales under the measure Qp. This entails
under certain Qp that DX is a P̃ local martingale iff

(31) ds(z) + vsj(s,Ds−Xs−) +
�

[0,1]

js(z)[h(s,Ds−Xs−, z)− 1]λ(dz) = 0

where ds(z) := αs − (σsψs +
	
[0,1] ϕs(z)γs(z)λ(dz)), v

s := σs −Xs−ψs, js :=
ϕs(z)−Xs−γs(z)−ϕs(z)γs(z). We have the following result on the increments
of V . We state it without proof as it is similar to the one deduced in the
thesis of Vandaele (2010).

Theorem 3.1.1. The Qp-local martingale

V (t, u) = E[e−
	T
u rs dsg(s,DsXs)|Ft] = e−

	T
t rs dsF (s,DsXs, u)

for 0 ≤ t < u ≤ T with an arbitrary smooth payoff function F is given by

(32) V (t, u) = V (0, u) +

t�

0

Fx(s,Ds−Xs−, u)σs(dWs − j(s,Ds−Xs−)) ds

+

t�

0

�

[0,1]

F (s,Ds−Xs− + ϕs(z), u)− F (s,Ds−Xs−, u)

× [ν(ds, dz)− h(s,Ds−Xs−, z)λ(dz) ds].

We know that the Föllmer–Schweizer (FS) decomposition gives a locally
risk minimizing strategy; see Schweizer (1991). Hence it is vital to find this
FS decomposition. In order to do so we impose the following conditions:

(i) V (u, u)(ϕ) = g(u,DuXu),
(ii) V (t, u)(ϕ) = V (0, u)(ϕ) +

	t
0 ϕ

FS(s, u) d(DsXs) + ΓFS(t, u).
(iii) ΓFS(t, u) is a martingale under P and is orthogonal to the martingale

part of the discounted risky asset under P. The functions ϕFS(t, u) and
ΓFS(t, u) in the FS decomposition (ii) of the portfolio are unknown.
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The earlier made requirement

(iv) the chosen EMM Qp is such that DX is a local martingale under Qp

as well as the condition

(v) V (t, u)(ϕ) is a local martingale under Qp

further help us to find the FS decomposition (ii) explicitly. We state this
formally.

Theorem 3.1.2. The locally risk minimizing hedging strategy for the
claim g(u,DuXu) can be found by performing a change of measure as de-
scribed in (28). The FS decomposition under P of the associated portfolio,
satisfying conditions (i)–(v), is

V (t, u)(ϕ) = V (0, u)(ϕ) +

t�

0

ϕFS(s, u) d(DsXs) +

t�

0

G(a)(s, u) dWs(33)

+

t�

0

�

[0,1]

G(b)(s, y, u) ν̃(ds, dy)

with

ϕFS(s, u) =
Fxσs(v

s) +
	
[0,1] j

s(z)J(s, x, z)λ(dz)

Ds−(vs)
2 +

	
[0,1] (j

s(z))2 λ(dz)
,(34)

G(a)(s, u) := Fx(s,Ds−Xs−, u)σs − ϕFS(s, u)Ds−(σS −Xs−ψs),(35)

G(b)(s, y, u) := J(s, y, u)(36)

− ϕFS(s, u)Ds−(ϕs(y)−Xs−γs(y)− ϕs(y)γs(y)),

where

(37) J(s, y, u) := F (s,Dx+ ϕ(y), u)− F (s,Dx, u).

The strategy at time t with 0 ≤ t ≤ u is (ϕ(t, u), η(t, u)) with η(t, u) =
V (t, u)(ϕ)− ϕ(t, u)Xt.

Proof. From conditions (v), (i) and the definition of V (t, u)(ϕ), we find
that

(38) V (t, u)(ϕ) = EQp [V (u, u)(ϕ)|Ft] = V (t, u),

in particular

(39) V (0, u)(ϕ) = V (0, u).

Using the required form described in (ii) and the facts that ΓFS(t, u) is a
local martingale under P, orthogonal to the martingale part DM of the risky
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asset under P, yields

ΓFS(t, u) =

t�

0

G(a)(s, u) dWs(40)

+

t�

0

�

[0,1]

G(b)(s, z, u) (ν(ds, dz)− λ(dz)ds)

where G(a)(t, u) and G(b)(t, z, u) are as in (35)–(36), and

(41) ϕFS(s, u) =
Fx(s,Ds−Xs−, u)σsv

s +
	
[0,1] j

s(z)J(s, x, z)λ(dz)

Ds−vs2 +
	
[0,1] (j

s(z))2 λ(dz)
.

Substitute ϕFS using condition (iii) to get

(42) − Fx(s,Ds−Xs−, u)j(s,Ds−Xs−)

+
�

[0,1]

J(s, x, z)(1− h(s−, Ds−Xs−, z))λ(dz)

=

{Fx(s,Ds−Xs−, u)σsv
s +

	
[0,1] j

s(z)J(s, x, z)λ(dz)

Ds−(vs)2 +
	
[0,1] (j

s(z))2 λ(dz)

}
×
{
Ds−

(
αs −

(
σsψs +

�

[0,1]

ϕs(z)γ(z)λ(dz)
))}

.

Multiply (31) by Fx and (42) by vt, and add them to obtain

(43) Fx(t,Dt−Xt−, u)d
t +

�

[0,1]

Fx(t,Dt−Xt−, u)j
t(z)(h− 1)λ(dz)

+ vt
�

[0,1]

J(1− h)λ(dz)

=

{Fx(t,Dt−Xt−, u)σtv
t +

	
[0,1] j

t(z)J(t, x, z)λ(dz)

Dt−(vt)2 +
	
[0,1] (j

t(z))2 λ(dz)

}
×
{
Dt−

(
αt −

(
σtψt +

�

[0,1]

ϕt(z)γ(z)λ(dz)
))}

vt.

A possible solution herein which is independent of the claim to be hedged is
h ≡ 1 and dt = 0. This observation yields the following result.

Corollary 3.1.1. Assume the option claim is attainable. The condi-
tion dt ≡ 0 yields a minimal martingale measure P̃ (say). Additionally, the
condition h ≡ 1 when applied must lead to the minimal martingale measure
being equivalent to the physical probability measure. Perfect hedging is now
realized.
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