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Uniform quasi-multiplicativity of locally constant cocycles
and applications
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Abstract. We show that every locally constant cocycle A is k-quasi-multiplicative
under the irreducibility assumption. More precisely, we show that if At and A∧m are
irreducible for every t | d and 1 ≤ m ≤ d − 1, then A is k-uniformly spannable for some
k ∈ N, which implies that A is k-quasi-multiplicative. We apply our results to show that
the unique subadditive equilibrium Gibbs state is ψ-mixing and calculate the Hausdorff
dimension of cylindrical shrinking target sets and recurrence sets.

1. Introduction and statement of the results. A matrix cocycle A
on a compact metric space X is a continuous map A : X → GLd(R) over a
topological dynamical system (X,T ). For n ∈ N and x ∈ X, we define the
product of A along the length n orbit of X as

An(x) := A(Tn−1(x)) . . .A(x).

The submultiplicativity of the norm ∥ · ∥ implies that ∥A∥ is submulti-
plicative in the sense that for any m,n ∈ N,

0 ≤ ∥An+m(x)∥ ≤ ∥Am(Tn(x))∥ ∥An(x)∥.
Such a submultiplicative sequence gives rise to a norm potential ΦA :=
{log ∥An∥}n∈N.

Let ℓ ∈ N be given. The one-sided shift Σℓ of ℓ symbols is the space
{1, . . . , ℓ}N. Let σ : Σℓ → Σℓ be the left shift map defined by σi = i1i2 . . . for
all i = i0i1 . . . ∈ Σℓ, and for simplicity denote it by (Σℓ, σ). We will focus
on locally constant cocycles A, which are matrix cocycles A : Σℓ → GLd(R)
over a one-sided shift (Σℓ, σ) that depends only on the zeroth symbol x0 of
x = (xi)i∈N. Assume that (A1, . . . , Aℓ) ∈ GLd(R)ℓ generate a locally constant
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cocycle A : Σℓ → GLd(R). We say that A : Σℓ → GLd(R) is irreducible
if there does not exist a proper subspace V ⊂ Rd such that AiV ⊂ V for
i = 1, . . . , ℓ. We also say that A : Σℓ → GLd(R) is strongly irreducible if there
does not exist a finite collection V1, . . . , Vm of non-zero proper subspaces Vj
such that Ai(

⋃m
j=1 Vj) =

⋃m
j=1 Vj for every i = 1, . . . , ℓ.

For any length n word I = i0 . . . in−1 (see Section 2 for the definition),
we denote

AI := Ain−1 . . . Ai0 .

Denoting by L the set of all finite words, we say a locally constant cocycle
A : Σℓ → GLd(R) generated by (A1, . . . , Aℓ) is quasi-multiplicative if there
exist k ∈ N and c > 0 such that for any I, J ∈ L, there exists K = K(I, J) ∈
L with |K| ≤ k such that

∥AIKJ∥ ≥ c∥AI∥ ∥AJ∥.

Notice that quasi-multiplicativity of A resembles Bowen’s specification
property [6] in some respects. Feng [11] showed that the quasi-multiplicativity
property implies the uniqueness of the Gibbs equilibrium measure for the
norm of the cocycle A. Feng [12] also proved that if A is a locally constant
GLd(R)-cocycle over a full shift generated by an irreducible set of matrices,
then A is quasi-multiplicative. Recently, there has been further research in
quasi-multiplicativity (see [19, 27, 3, 26] for instance). Unfortunately, the lack
of control on the length of the connecting word K from quasi-multiplicativity
is a limitation in studying important applications such as the Bernoulli
property on a class of subadditive equilibrium states and shrinking target
sets and recurrence sets; see Section 4. When the connecting word K in
the quasi-multiplicativity property has a fixed length k ∈ N, we say A is
k-quasi-multiplicative; see Definition 2.2.

There are a few results along this line in the literature. In the same set-
ting of locally constant cocycles, Bárány and Troscheit [3, Proposition 2.5]
and Morris [26, Theorem 7] proved that A is k-quasi-multiplicative when
A is (strongly) irreducible and proximal. Note that if A is strongly irre-
ducible, then At is irreducible for every 1 ≤ t ≤ d. In this paper, we gen-
eralize their results. A distinction in our result from similar results is that
we only require versions of irreducibility as our assumptions, while many re-
cent similar results additionally need some form of proximality to obtain the
k-quasi-multiplicativity property. In fact, our result is inspired by a recent
result of Bochi and Garibaldi [4, Proposition 3.9] in a more general setting;
see Remark 2.6 for further comments on their work.

We say that a locally constant cocycle A : Σℓ → GLd(R) is k-uniformly
spannable (see Subsection 2.2 for more information) if there exists k ∈ N
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such that for any non-zero vector u ∈ Rd,
Vu,k = Rd,

where Vu,k := Span {AIu : I ∈ L with |I| = k} ⊆ Rd.
We will also make use of the exterior product cocycle A∧m for 1 ≤ m

≤ d− 1, where A∧m(x) is considered as a linear transformation on (Rd)∧m.
Our main result is as follows:

Theorem 1.1. Let A : Σℓ → GLd(R) be a locally constant cocycle. Sup-
pose At and A∧m are irreducible for every t | d and 1 ≤ m ≤ d− 1. Then A
is k-uniformly spannable for some k ∈ N.

As spannable cocycles are quasi-multiplicative, the following is an imme-
diate corollary of the above theorem.

Corollary 1.2. Let A : Σℓ → GLd(R) be a locally constant cocycle.
Suppose At and A∧m are irreducible for every t | d and 1 ≤ m ≤ d− 1. Then
A is k-quasi-multiplicative for some k ∈ N.

Corollary 1.2 has nice applications in subadditive thermodynamic for-
malism and number theory, which we discuss in more detail in Section 4.

Earlier, in Section 2, we introduce the relevant notation and prove Corol-
lary 1.2, and in Section 3, we prove Theorem 1.1.

2. Preliminaries

2.1. Set-up. For each n ∈ N, we define L(n) to be the set of all length n
words of Σℓ, and we define L :=

⋃
n∈N L(n) to be the set of all words. If

i = i0i1 . . . ∈ L, then we define i|n = i0 . . . in−1 for all n ∈ N. The empty
word i|0 is denoted by ∅. The length of i ∈ L is denoted by |i|. The longest
common prefix of i, j ∈ L ∪ Σℓ is denoted by i ∧ j. The concatenation of
two words i ∈ L ∪ Σℓ and j ∈ L is denoted by ji. If i ∈ L(n) for some n,
then we set [i] = {j ∈ Σℓ : j|n = i}. The set [i] is called a cylinder set.
A cylinder containing x = (xi)i∈Z ∈ Σℓ of length n ∈ N is defined by
[x]n := {(yi)i∈N ∈ Σℓ : xi = yi for all 0 ≤ i ≤ n − 1}. The shift space Σℓ
is compact in the topology generated by the cylinder sets. Moreover, the
cylinder sets are open and closed in this topology and they generate the
Borel σ-algebra. We denote by M(Σℓ, σ) the space of all σ-invariant Borel
probability measures on Σℓ.

2.2. Quasi-multiplicativity and spannability

Definition 2.1. We say a locally constant cocycle A : Σℓ → GLd(R) is
quasi-multiplicative if there exist k ∈ N and c > 0 such that for any I, J ∈ L,
there exists K = K(I, J) ∈ L with |K| ≤ k such that

(2.1) ∥AIKJ∥ ≥ c∥AI∥ ∥AJ∥.
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Definition 2.2. We say a locally constant cocycle A : Σℓ → GLd(R) is
k-quasi-multiplicative for some k ∈ N if there exists c > 0 such that for any
I, J ∈ L, there exists K = K(I, J) ∈ L(k) such that (2.1) holds.

We will elaborate more on the applications of k-quasi-multiplicativity in
Section 4. In the remaining part of this subsection, we describe a notion
of spannability, closely related to quasi-multiplicativity. In what follows, we
will repeatedly make use of the following notation: given a locally constant
cocycle A, a vector u ∈ Rd and an integer k ∈ N, we define

(2.2) Vu,k := Span {AIu : I ∈ L(k)} ⊆ Rd.
Definition 2.3. We say a locally constant cocycle A : Σℓ → GLd(R) is

spannable if for any non-zero vector u ∈ Rd, there exists k = k(u) ∈ N such
that Vu,k = Rd. If k = k(u) can be chosen uniformly in u, then we say A is
k-uniformly spannable.

Remark 2.4. We note that if Vu,k is equal to the entire space Rd for
some u ∈ Rd and k ∈ N, then by continuity so is Vv,k for all v ∈ Rd in a
small neighborhood of u. Moreover, if Vu,k is equal to Rd, then so is Vu,k+1. In
particular, if A is k-uniformly spannable for some k, then it is k′-uniformly
spannable for any k′ ≥ k.

Throughout the paper, when we measure the angle between non-zero vec-
tors, we mean the angle between the lines spanned by the vectors. Similarly,
when we measure the angle between a non-zero vector v and a hyperplane W,
we mean the minimum angle ∡(v, w) over all w ∈ W \ {0}. The following
statement can be found in [8, Proposition 8]; it states that spannability im-
plies quasi-multiplicativity.

Proposition 2.5. Suppose a locally constant cocycle A : Σℓ → GLd(R)
is k-uniformly spannable. Then A is k-quasi-multiplicative.

Proof. The proof is similar to [8, Proposition 8] for fiber-bunched co-
cycles. We give a sketch of the proof here for the convenience of the readers.

For any A ∈ GLd(R), let vA,1 ∈ Rd be a unit vector such that ∥AvA,1∥ =
∥A∥, and let vA,2 be the unit vector in the direction of AvA,1.

By k-uniform spannability, we begin by finding ε > 0 such that for given
arbitrary I, J ∈L, we can find K ∈L(k) such that ∡(AKvAI ,2, (vAJ ,1)

⊥)≥ ε.
By [27, Lemma 4.5], this translates into the existence of c > 0 satisfying the
k-quasi-multiplicativity condition (2.1).

Proof of Corollary 1.2. The assertion follows from the combination of
Theorem 1.1 and Proposition 2.5.

We end this subsection by commenting on a class of cocycles that gener-
alize the class of locally constant cocycles and by comparing how the notions
defined above relate to such cocycles.
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Remark 2.6. Beyond locally constant cocycles, there exists a subset of
Hölder continuous cocycles that are nearly conformal. We call them fiber-
bunched cocycles. The most useful property of these cocycles is the existence
of holonomies and we often tend to treat them as generalizations of locally
constant cocycles; see [5, 27, 22].

The properties introduced above, such as quasi-multiplicativity and span-
nability, can be successfully extended, and sufficient conditions have been
found which imply such properties. For instance, the above-mentioned re-
sult of Feng [11] on the uniqueness of the equilibrium state using quasi-
multiplicativity remains valid for fiber-bunched cocycles. Moreover, Park [27]
showed that typicality, an assumption introduced by Bonatti and Viana [5]
to replicate the effect of strong irreducibility and non-compactness from
the classical work of Furstenberg [14], implies quasi-multiplicativity. The k-
uniform spannability introduced above was motivated by the work of Bochi
and Garibaldi [4] who showed that irreducibility, along with an extra as-
sumption on how close the cocycle is from being conformal, implies uniform
spannability. They use the term uniform spannability, when translated to
our setting of locally constant cocycles, to roughly mean

⋃n
k=1 Vu,k = Rd for

some n ∈ N. In order to distinguish from their version of uniform spannabil-
ity, we have decided to use k-spannability to denote the stronger statement
that Vu,k = Rd.

3. Proof of Theorem 1.1. In the proof, whenever we write V =W for
two m-dimensional subspaces of Rd, we mean they are equal considered as
elements of the Grassmannian Gr(m,Rd). Moreover, for I ∈ L we define

AIV := Span {AIv : v ∈ V }.

Suppose for a contradiction that there does not exist k ∈ N such that
A is k-uniformly spannable, meaning that for every k ∈ N there exists u =
uk ∈ Rd such that Vu,k is a proper subspace of Rd. Define an open set

Sk := {u ∈ Rd : Vu,k = Rd}.

Then its complement Tk := Rd\Sk is a closed non-empty set for every k ∈ N.
Moreover, it is clear from the definition that Sk ⊆ Sk+1, meaning that Tk
satisfies the reverse inclusion Tk+1 ⊆ Tk. Therefore, the nested intersection⋂
k∈N PTk is necessarily non-empty. In particular, we can choose a vector

u ∈ Rd which belongs to Tk, meaning that Vk := Vu,k is a proper subspace
of Rd, for every k ∈ N.

As n 7→ dimVn is a bounded non-decreasing function, the dimension of Vk
has to stabilize to some m ∈ N strictly smaller than d. By dropping the first
few subspaces from the sequence {Vk}k∈N we may assume that dimVk = γ
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for all k ∈ N. Moreover, from the definition (2.2) of Vk, we have

(3.1) Vk+n = AIVk = AJVk

for all k, n ∈ N and I, J ∈ L(n). This is the defining characteristic of the
sequence {Vk}k∈N. Now, by choosing a possibly different sequence of sub-
spaces we may assume that the common dimension γ of {Vk}k∈N is the
smallest such number; that is, if {Wk}k∈N is another sequence of subspaces
of common dimension satisfying (3.1), then the dimension is at least γ.

Lemma 3.1. For any i ̸= j, the subspaces Vi and Vj either coincide or
intersect trivially.

Proof. Suppose there exists i ̸= j such that W := Vi ∩ Vj is a non-trivial
proper subspace of both Vi and Vj . Then for any n ∈ N and I ∈ L(n) we
have

AIW = AI(Vi ∩ Vj) = Vi+n ∩ Vj+n,
where the resulting subspace Vi+n∩Vj+n does not depend on I. In particular,
this allows us to define a sequence {Wk}k∈N of subspaces satisfying (3.1) by
Wk := AIW for any I ∈ L(k), contrary to the minimality assumption on
{Vk}k∈N.

Following the lemma, we will now consider two separate cases, conclude
that both lead to a contradiction, and hence deduce that A must be k-
uniformly spannable for some k ∈ N.

Case 1: Vi = Vj for some distinct i, j ∈ N. Since all Vk have the same
dimension, the sequence {Vk}k∈N must be periodic with some period t ∈ N;
that is, t ∈ N is a smallest integer such that V1 = Vt+1. Moreover, Vi and
Vj have a trivial intersection for distinct 1 ≤ i, j ≤ t. Recalling that each
Vk has dimension γ, the subspace W := Span {v ∈ Vi : i = 1, . . . , t} is a
γt-dimensional subspace of Rd preserved under A. Since A is irreducible by
assumption, this implies that W must be the entire subspace Rd, and that
t divides d. However, this implies that At, which preserves the non-trivial
subspace V1 (or any one of Vk), is reducible, a contradiction.

Case 2: Any two distinct subspaces from {Vk}k∈N have a trivial inter-
section. This is the choice m = γ. We will show that we also arrive at a
contradiction in this case.

We begin by choosing a decomposable vector wk = v1,k ∧ · · · ∧ vm,k ∈
(Rd)∧m, where Span {v1,k, . . . , vm,k} coincides with Vk. Since AiVk = AjVk =
Vk+1 from (3.1) for any Ai, Aj in the image of A, decomposable vectors
A∧m
i wk and wk+1 differ by a multiplicative constant. Moreover, each wk is

an eigenvector of Bi,j := (A∧m
i )−1A∧m

j . We now fix any i ̸= j such that
B := Bi,j is not a scalar multiple of the identity transformation. Such a
choice is possible because otherwise the A∧m

i would be scalar multiples of
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one another, which contradicts the assumption that A∧m is irreducible for
all 1 ≤ m ≤ d− 1. Now let λk be the corresponding eigenvalue of wk.

Considered as a subspace of (Rd)∧m, let Wk := Span {w1, . . . , wk} for
each k ∈ N. We claim that the subspace WN with N :=

(
d
m

)
is equal to

the entire (Rd)∧m because otherwise there would exist some k < N such
that Wk = Wk+1, meaning that wk+1 belongs to Wk. However, this would
imply that A∧m preserves a proper subspace Wk of (Rd)∧m because we can
inductively show that wl (which is a scalar multiple of A∧m

i wl−1 for any Ai)
belongs to Wk for every l > k, and this contradicts the assumption that A∧m

is irreducible for all 1 ≤ m ≤ d− 1.
Therefore, WN coincides with (Rd)∧m, and {w1, . . . , wN} forms a basis

of (Rd)∧m. Now choose any l > N such that wl can be written as

wl = c1w1 + · · ·+ cNwN .

Applying B on both sides and using the fact that each wk is an eigenvector
of B with eigenvalue λk, we get λlwl =

∑N
i=1 ciλiwi. Substituting the above

equation for wl into λlwl and equating coefficients gives λl = λ1 = · · · = λN ,
so B is a scalar multiple of the identity transformation, a contradiction.

Since both cases lead to a contradiction, the proof of Theorem 1.1 is
complete.

4. Applications

4.1. Gibbs matrix equilibrium states have the Bernoulli prop-
erty. For any matrix cocycle A : X → GLd(R) over a topological dynamical
system (X,T ), and s ≥ 0, the potential ΦsA := {s log ∥An∥}n∈N is sub-
additive. Therefore, the subadditive thermodynamic formalism applies. For
instance, the subadditive variational principle (see [9]) states that

P (ΦsA) = sup
µ∈M(X,T )

{
hµ(T ) + s lim

n→∞

1

n

�
log ∥An(x)∥ dµ

}
.

Invariant measures achieving the supremum are called equilibrium states
of ΦsA. If the entropy map is upper semicontinuous, the supremum is always
attained. The thermodynamic interpretation of the parameter s is as the in-
verse temperature of a system (see [30]), while the equilibrium measure µs of
ΦsA describes the equilibrium of the system at temperature 1/s. The s→ ∞
limit is therefore a zero temperature limit, and an accumulation point of
the µs can be interpreted as a ground state (see, e.g., [10, 17, 18, 7, 23, 21]).

Feng and Käenmäki [13] showed that if A is a locally constant GLd(R)-
cocycle over a full shift generated by an irreducible set of matrices, then
ΦsA has a unique equilibrium state µs for all s ≥ 0. Moreover, µs has the
subadditive Gibbs property : there exists C0 > 1 such that for any x ∈ Σℓ
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and n ∈ N, we have

C−1
0 ≤ µs([x]n)

e−nP (Φs
A)∥An(x)∥s

≤ C.

Note that if µ satisfies a Gibbs inequality with respect to ΦsA, then µ is fully
supported on Σℓ.

Let σ : Σℓ → Σℓ be a left shift map. We say that an invariant measure µ ∈
M(Σℓ, σ) is totally ergodic if for every n ∈ N, µ is ergodic with respect to σn.
We also define Σ̂ℓ := {1, . . . , ℓ}Z equipped with a norm d, σ̂({xk}k∈Z) :=
(xk+1)Z, and M(Σ̂ℓ, σ̂) to be the space of all σ̂-invariant Borel probability
measures on Σ̂ℓ.

We define the natural projection π : Σ̂ℓ → Σℓ by π({xk}k∈Z) := {xk}∞k=0;
it is continuous and surjective. Clearly µ̂ 7→ π∗µ̂ defines a continuous function
M(Σ̂ℓ, σ̂) → M(Σℓ, σ), and since shift-invariant measures on Σℓ and on Σ̂ℓ
are both characterized by their values on cylinder sets, this map is bijective.
Let µ ∈ M(Σℓ, σ); we will write µ̂ for the unique element of M(Σ̂ℓ, σ̂) such
that µ = π∗µ̂, and we call µ̂ the natural extension of the measure µ. Since
properties such as mixing, ergodicity and total ergodicity can be character-
ized in terms of correlations between cylinder sets, it is not difficult to see
that each of those properties holds for an invariant measure µ ∈ M(Σℓ, σ) if
and only if the corresponding property holds for µ̂ ∈ M(Σ̂ℓ, σ̂). We say that
a measure µ̂ on Σ̂ℓ is a Bernoulli measure if it has the form µ̂ = (

∑ℓ
i=1 piδi)

Z

for some probability vector (p1, . . . , pℓ); and µ̂ has the Bernoulli property if
there exist a Bernoulli measure v̂ on Σ̂ℓ and a measure-space isomorphism
ϕ : Σ̂ℓ → Σ̂ℓ such that ϕ◦ σ̂ = σ̂◦ϕ and ϕ∗µ̂ = v̂ (See [26, Section 7] for more
details). It is clear that every Bernoulli measure has the Bernoulli property,
but the converse is in general false.

Morris [24, 25] showed that the total ergodicity of equilibrium states im-
plies mixing and that the failure of mixing can be characterized by certain
structures of the cocycle. Recently, he improved his own result by showing
that total ergodicity implies the Bernoulli property [26]. Piraino [29, Theo-
rem 3.3] showed that for any s ≥ 0, the unique Gibbs state µs for A has the
Bernoulli property when A is proximal and strongly irreducible. By using
Corollary 1.2, we generalize their results.

Theorem 4.1. Let A : Σℓ → GLd(R) be a locally constant cocycle. Sup-
pose that At and A∧m are irreducible for every t | d and 1 ≤ m ≤ d − 1.
Then for any s > 0, the unique Gibbs state µs for the norm potential ΦsA is
ψ-mixing:

lim
n→∞

sup
I,J∈L

∣∣∣∣µs([I] ∩ σ−n−|I|[J ])

µs([I])µs([J ])
− 1

∣∣∣∣ = 0,

and its natural extension µ̂ has the Bernoulli property.
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Proof. Denote µ := µs. Since µ is the unique Gibbs equilibrium state
for ΦsA, there exists C0 > 0 such that

(4.1) C−1
0 ∥AI∥s ≤ e|I|P (Φs

A)µ([I]) ≤ C0∥AI∥s

for every I ∈ L. By Corollary 1.2, there exist m ∈ N and a constant C1 > 0
such that for all I, J ∈ L there exists K ∈ L(m) such that

(4.2) ∥AIKJ∥ ≥ C1∥AI∥ ∥AJ∥.
Therefore, by (4.1) and (4.2), for every I, J ∈ L we have

C1µ([I])µ([J ]) ≤ C2
0C1e

−(|I|+|J |)P (Φs
A)∥AI∥s∥AJ∥s

≤ C2
0e

−(|I|+|J |)P (Φs
A)∥AIKJ∥s ≤ C3

0e
|K|P (Φs

A)µ([IKJ ])

≤ C3
0e
mP (Φs

A)
∑

|K|=m

µ([IKJ ])

= C3
0e
mP (Φs

A)µ([I] ∩ σ−m−|I|[J ])

so that

(4.3) µ([I] ∩ σ−m−|I|[J ]) ≥ κµ([I])µ([J ]),

where κ := C−3
0 C1e

−mP (Φs
A).

By (4.3), for any n ≥ m we have

µ([I] ∩ σ−n−|I|[J ]) =
∑

|K′|=n−m

µ
(
[IK ′] ∩ σ−m−|K′|−|I|[J ]

)
≥ κ

∑
|K′|=n−m

µ([IK ′])µ([J ])

= κµ([J ])
∑

|K′|=n−m

µ([IK ′]) = κµ([I])µ([J ]).

Thus by an approximation argument we deduce that

lim inf
n→∞

µ(X ∩ σ−nY ) ≥ κµ(X)µ(Y )

for all X,Y Borel measurable. The above inequality implies that µ is totally
ergodic. Then, the assertion follows from [26, Theorem 1].

4.2. Shrinking target sets and recurrence sets. Let T : X → X be
a topological dynamical system on a compact metric space (X, d). Assume
that µ is a T -invariant ergodic measure. By the Birkhoff ergodic theorem,
for any ball B in X of positive µ-measure, the set

S := {x ∈ X : Tnx ∈ B for infinitely many n ∈ N}
has full µ-measure.

Now, in from the above definition of S we allow both the center and the
radius of B to vary with n; given a function h : N → R+ tending to 0 as
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n→ ∞ and a sequence {zn}n≥1 of points in X, the set S can be generalized
to

S(h) = {x ∈ X : Tnx ∈ B(zn, h(n)) for infinitely many n ∈ N}.

This set S(h) is called the shrinking target. Then one can ask how large the
size of S(h) is in the sense of measure and in the sense of dimension. This was
called the shrinking target problem by Hill and Velani [15]; it concerns what
happens if the target B shrinks in time and more generally if the target also
moves around in time. The points in S(h) can be thought of as trajectories
which hit a shrinking, moving target infinitely often.

The shrinking target problem has intricate links to number theory when
one uses naturally arising sets in Diophantine approximation as shrinking
targets; see e.g. [1, 2, 28].

The above works mostly concern conformal dynamics or dynamical sys-
tems in R1, and transition to higher-dimensional non-conformal dynamics
presents severe challenges. To overcome the extreme challenges that affinities
pose, a common approach is to “randomize” the affine maps by considering
typical translation parameters. Koivusalo and Ramirez [20] give an expres-
sion for the Hausdorff dimension of a self-affine shrinking target problem.
They show that for a fixed symbolic target with exponentially shrinking di-
ameter and well-behaved affine maps, the Hausdorff dimension is typically
given by the zero of an appropriate pressure function. Strong assumptions
are made on the affine system, as well as on the fixed target.

Let A = (A1, . . . , Aℓ) be a collection of non-singular 2 × 2 contracting
matrices. Let t = {t1, . . . , tℓ} be a collection of ℓ vectors in R2. Let Dt =
{fi(x) = Aix+ ti}ℓi=1 be an iterated function system formed by affine maps
on R2.

For a finite word i = (i1, . . . , in) ∈ L, set fi = fi1 ◦ · · · ◦ fin . There exists
a unique non-empty compact set Λ ⊂ R2 such that

Λ =

ℓ⋃
i=1

fi(Λ);

see [16]. Suppose that ℓ ≥ 2. Let us denote by πt the natural projection from
Σℓ to the attractor of Λ, that is,

πt(i) = lim
n→∞

fi1 ◦ · · · ◦ fin(0) =
∞∑
k=1

Ai1 . . . Aik−1
tik .

Clearly, πt(i) = fi1(πt(σ(i))).
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We define the singular value function as follows:

φs(A) =


∥A∥s if 0 ≤ s < 1,

∥A∥ ∥A−1∥−(s−1) if 1 ≤ s < 2,

|det(A)|s/2 if 2 ≤ s <∞.

The pressure of the self-affine system is defined as

P (logφs(A)) = lim
n→∞

1

n
log

∑
I∈L(n)

φs(AI),

where the existence of the limit is guaranteed by the submultiplicativity of
φs(A). For simplicity, we denote P (s) := P (logφs(A)).

Let {Jk}k∈N ∈ LN be a sequence of target cylinders. We are interested in
the shrinking target set

St({Jk}k∈N) = πt{i ∈ Σℓ : σ
ki ∈ [Jk] for infinitely many k ∈ N}.

For our sequence of target cylinders, we define the following inverse lower
pressure:

α(s) := lim inf
k→∞

−1

|Jk|
logφs(AJk)

Let
s0 := inf {s > 0 : P (s) ≤ α(s)}.

Unfortunately, the uncertainty of the length of the connecting word K
in the quasi-multiplicativity property does not let us study shrinking target
sets and recurrence sets effectively. In order to study them, Bárány and
Troscheit [3] prove that A∧s is uniformly k-quasi-multiplicative for every
s ∈ (0, d) when A is fully strongly irreducible and fully proximal. In the two-
dimensional case, we can improve their results [3, Corollaries 2.7 and 2.8] by
using Corollary 1.2.

Lemma 4.2. Assume that A = (A1, . . . , Aℓ) is a collection of non-singular
2 × 2 matrices. Suppose that A is k-quasi-multiplicative. Then, for every
s ∈ [0, 2], there exist k ∈ N and C > 0 such that for any I, J ∈ L, there
exists K = K(I, J) ∈ L(k) such that

φs(AIKJ) ≥ Cφs(AI)φ
s(AJ).

Proof. Since A is k-quasi-multiplicative, there exist k ∈ N and c > 0
such that for any I, J ∈ L, there exists K ∈ L(k) such that

∥AIKJ∥ ≥ c∥AI∥ ∥AJ∥.

When s ∈ [0, 1], the proof follows from k-quasi-multiplicativity of A by
raising to the power s.
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Now, let 1 < s ≤ 2. Notice that ∥A∥ ∥A−1∥−(s−1) = |det(A)|s−1∥A∥2−s
for any A ∈ GL2(R). Then the proof follows by multiplying, raising the
k-quasi-multiplicativity relation for A to the power 2 − s, and raising the
determinant to the power s− 1.

Corollary 4.3. Assume that A = (A1, . . . , Aℓ) is a collection of 2 × 2
contracting matrices and {Jk}k∈N is a sequence of target cylinders. Suppose
that A and A2 are irreducible and ∥Ai∥ < 1/2 for all i ∈ {1, . . . , ℓ}. Then

dimH St({Jk}k) = min {2, s0} for Lebesgue-almost every t.

Moreover, L2(St({Jk}k)) > 0 for Lebesgue-almost every t if s0 > 2.

Proof. By Corollary 1.2, A is k-quasi-multiplicative. Then the statement
follows from the combination of [3, Theorem 2.2] and Lemma 4.2.

Let ψ : N → N and β := lim infn→∞
ψ(n)
n . We consider the recurrence set

Rt(ψ) := πt{i ∈ Σℓ : σ
ki ∈ [i|ψ(k)] for infinitely many k ∈ N}.

We define the square-pressure function

P2(s) := lim
n→∞

−1

n
log

∑
i∈L(n)

(φs(Ai))
2,

where the limit exists because of the subadditivity of φs(A). This function
is continuous in s, strictly increasing, and satisfies P2(0) = − logN and
P2(s) → ∞ as s→ ∞.

Corollary 4.4. Let A = (A1, . . . , Aℓ) be a collection of 2×2 contracting
matrices. Suppose that A and A2 are irreducible and ∥Ai∥ < 1/2 for all
i ∈ {1, . . . , ℓ}. Let ψ : N → N with β = lim infn→∞ ψ(n)/n < 1. Then

dimH Rt(ψ) = min {2, r0} for Lebesgue-almost every t,

where r0 is the unique solution of the equation

(1− β)P (r0) = βP2(r0).

Moreover, L2(Rt((ψ)k)) > 0 for Lebesgue-almost every t if r0 > 2.

Proof. By Corollary 1.2, A is k-quasi-multiplicative. Thus, the proof fol-
lows from the combination of [3, Theorem 2.4] and Lemma 4.2.
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