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Abstract. In this paper we get an algebraic derivative relative to the convolution

(f ∗ g)(t) =

∫ t

0
f(t− ψ)g(ψ)dψ

associated to the operator Dδ, which is used, together with the corresponding operational calcu-
lus, to solve an integral-differential equation. Moreover we show a certain convolution property
for the solution of that equation.

1. Introduction. W. Kierat and K. Skórnik [2], using the Mikusiński operational
calculus, have solved the differential equation

t
d2x

dt2
+ (c− t)dx

dt
− ax = 0 (c, a ∈ C)

which for c = 1 reduces to the Laguerre differential equation and one of its solutions is

xa(t) =
∞∑
k=0

(
−a
k

)
(−1)k

tk

Γ(k + 1)

satisfying the convolutional property
d

dt
(xa ∗ xb)(t) = xa+b(t)

where ∗ represents the Mikusiński convolution.
We define the algebraic derivative

Df(t) =
−Iδ−1

δ
tf(t), for the convolution (f ∗ g)(t) =

∫ t

0

f(t− ψ)g(ψ)dψ

where Iαf(t) = 1
Γ(α)

∫ t
0

(t− τ)α−1f(τ)dτ represents the Riemann-Liouville fractional in-
tegral operator.
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The convolution ∗ is defined on the set

Cδ =
{
f(t) =

∞∑
k=1

akt
kδ−1 uniformly convergent on compact subsets of [0,∞)

}
introduced by Alamo and Rodŕıguez in [1].

Using a similar technique as in[2] and the appropriate operational calculus for ∗ we
can get a solution of the following integral-diferential equation

−D(Dδ)2x+ (1 +D)Dδx− ax = 0 (a ∈ C) (δ > 1)

which we denote by xa(t), satisfying

Dδ[xa ∗ xb](t) = xa+b(t).

2. An operational calculus for Dδ. The algebraic derivative D. Let δ > 1 be
a fixed real number (when δ = 1, it reduces to Kierat and Skórnik’s case). As Alamo
and Rodŕıguez [1] did, we define the set of positive real variable functions with complex
values

Cδ =
{
f(t) =

∞∑
k=1

akt
kδ−1 uniformly convergent on compact subsets of [0,∞)

}
.

They proved that (Cδ,+, ·C) is a vector space.
Unlike these authors, we will consider in Cδ the Mikusiński convolution given by

(f ∗ g)(t) =
∫ t

0
f(t− ψ)g(ψ)dψ.

From the definition of ∗ we get immediately the following propositions.

Proposition 1. 1. tkδ−1 ∗ tmδ−1 = B(kδ,mδ)t(k+m)δ−1.
2. (f ∗ g)(t) =

∑∞
k=2 {

∑k−1
j=1 ajbk−jB[jδ, (k − j)δ]}tkδ−1.

Here B(u, v) =
∫ 1

0
(1− t)u−1tv−1dt represents the beta function, f(t) =

∑∞
k=1 akt

kδ−1

and g(t) =
∑∞
k=1 bkt

kδ−1.

This proposition shows us that ∗ is a closed operation on Cδ, so we can conclude that
(Cδ,+, ∗) is a subring of (C,+, ∗). Here C represents the set of continuous complex func-
tions of a positive real variable. Mikusiński [3] and Yosida [5] showed that the convolution
∗ has no zero divisors and there is no unit element on the set C, thus we can state the
next proposition.

Proposition 2. (Cδ,+, ∗) is a commutative non-unitary ring without zero divisors.

Remark. It can be proved in a direct way that (Cδ,+, ∗) is a ring.

Therefore, Cδ can be extended to its field of fractions Mδ = Cδ×(Cδ−{0})/ ∼, where
the equivalence relation ∼ is defined, as usual, by (f1, g1) ∼ (f2, g2)⇔ f1 ∗ g2 = g1 ∗ f2;
actually Mδ is a subfield of the Mikusiński field. The elements of Mδ will be called
operators, and from now on we denote by f

g the equivalence class of the pair (f, g).
The operations of sum, multiplication and product by a scalar can be defined on Mδ

through

• f1

g1
+
f2

g2
=
f1 ∗ g2 + g1 ∗ f2

g1 ∗ g2
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• f1

g1
· f2

g2
=
f1 ∗ f2

g1 ∗ g2

• αf
g

=
αf

g

Alamo and Rodŕıguez [1] showed that the operator Dδ is an endomorphism on Cδ
and proved that for all f(t) =

∑∞
k=1 akt

kδ−1 in Cδ

DδIδf(t) = f(t),

IδDδf(t) = f(t)− a1t
δ−1 = f(t)− [t1−δf(t)]t=0t

δ−1, (2.1)

(Iδ)m(Dδ)mf(t) = f(t)−
m∑
j=1

ajt
jδ−1. (2.2)

These identities will be useful for our development.
The next proposition allows us to identify the operator Iδ and its positive integer

powers with certain functions in Cδ.

Proposition 3. Let f(t) ∈ Cδ and k ∈ N, then we have

1. tδ−1

Γ(δ) ∗ f(t) = Iδf(t).

2. tkδ−1

Γ(kδ) ∗ f(t) = (Iδ)kf(t) = Ikδf(t).

Proof. The first asertion is a consequence of the definition of the convolution ∗, and
using induction method we can get the second one.

Following Mikusiński [3], we denote by lδ = tδ−1

Γ(δ) ≡ Iδ. So when we write lδf(t) we
will understand Iδf(t).

Now we remark that we can consider Cδ ⊂ Mδ since Cδ is isomorphic to a subring
of Mδ through the map f ;

lδf
lδ

. In a similar way the field C of complex numbers can
be embedded into Mδ by associating with every α ∈ C the so called numerical operator
[α] = αtδ−1

tδ−1 . The following basic properties of these numerical operators are immediate.

Proposition 4. 1. [α] + [β] = [α+ β].
2. [α] · [β] = [αβ].

From now on we denote the numerical operators [α] by α when it leads to no confusion.

Proposition 5. Let vδ ∈ Mδ be the algebraic inverse of lδ. For any function f(t) =∑∞
k=1 akt

kδ−1,

vδf(t) = Dδf(t) + Γ(δ)a1 (2.3)

vmδ f(t) = (Dδ)mf(t) +
m∑
j=1

ajΓ(jδ)vm−jδ (2.4)

Proof. To see (2.3), having the identity (2.1) we act on both sides by the operator vδ
and take into account that a1t

δ−1 is identified with lδa1t
δ−1

lδ
∈Mδ, so vδa1t

δ−1 = a1t
δ−1

lδ
=

[Γ(δ)a1] = Γ(δ)a1. For (2.4) it is analogous, acting on both sides of (2.2) by vmδ .

The next step is to define an operator over Cδ which will be an algebraic derivative.
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Definition 1. Let f ∈ Cδ. We define the operator D as follows:

Df(t) = −I
δ−1

δ
tf(t).

We need to know how D acts on any member of Cδ.

Proposition 6. Df(t) ∈ Cδ for all f(t) ∈ Cδ.
Proof. It is not dificult to show that if f(t) =

∑∞
k=1 akt

kδ−1, then

−I
δ−1

δ
tf(t) =

∞∑
k=1

bkt
(k+1)δ−1

where bk = −ak kΓ(kδ)
Γ[(k+1)δ] . An equivalent and more manageable expression is

−I
δ−1

δ
tf(t) = (−tδ−1) ∗

[ ∞∑
k=1

ckt
kδ−1

]
where ck = kak

Γ(δ) .

Now we establish a proposition which shows that D is an algebraic derivative on Cδ.

Proposition 7. For any functions f and g in Cδ, we have:

1. D[f(t) + g(t)] = Df(t) +Dg(t).
2. D(f ∗ g)(t) = ([Df ] ∗ g)(t) + (f ∗ [Dg])(t).

Proof. 1. It immediately follows by taking into account that −I
δ−1

δ t is a linear
operator.

2. Let f(t) =
∑∞
k=1 akt

kδ−1 and g(t) =
∑∞
k=1 bkt

kδ−1, then we have:

D(f ∗ g)(t) = D
∞∑
k=2

{ k−1∑
j=1

ajbk−jB[jδ, (k − j)δ]
}
tkδ−1.

If we denote ck =
∑k−1
j=1 ajbk−jB[jδ, (k − j)δ], by using the result obtained in the proof

of proposition 6 and the second identity of proposition 1, we can get

D(f ∗ g)(t) = (−tδ−1) ∗
∞∑
k=2

k

Γ(δ)
ckt

kδ−1.

In a similar way, it can be proved that

([Df ] ∗ g)(t) = (−tδ−1) ∗
[ ∞∑
k=2

{ k−2∑
j=1

j

Γ(δ)
ajbk−jB[jδ, (k − j)δ]

}
tkδ−1

]
and

(f ∗ [Dg])(t) = (−tδ−1) ∗
[ ∞∑
k=2

{ k−2∑
j=1

(k − j)
Γ(δ)

ajbk−jB[jδ, (k − j)δ]
}
tkδ−1

]
and using the last three identities the proof is concluded.

Now we can extend the definition of D to the field Mδ, as usual, by:

D f
g

=
[Df ] ∗ g − f ∗ [Dg]

g ∗ g
(f ∈ Cδ, g ∈ (Cδ − {0})),

Dp
q

=
[Dp] · q − p · [Dq]

q2
(p ∈Mδ, q ∈ (Mδ − {0})).
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The next proposition shows the behavior of the algebraic derivative over some partic-
ular members of Mδ and will be used to solve an integral-differential equation.

Proposition 8. Let 1 = tδ−1

tδ−1 the unit of Mδ, 0 = 0
tδ−1 , vδ = 1

lδ
the algebraic inverse

of lδ in Mδ and n ∈ N. Then:

1. D1 = 0.
2. Dα = 0 (α being a numerical operator).
3. D(αp) = αDp (for any p ∈Mδ).
4. Dlnδ = −nln+1

δ .
5. Dvnδ = nvn−1

δ .
6. D(1− αlδ)n = nαl2δ(1− αlδ)n−1.
7. D(vδ − α)n = n(vδ − α)n−1.

Proof. (1) and (2) follow by a simple calculation. (3) is a direct consequence of (2).
In (4) we will use induction. Since in our case

Dlδ = D t
δ−1

Γ(δ)
= − t

2δ−1

Γ(2δ)
= −l2δ ,

if we suppose that (4) is true for n = k, then

Dlk+1
δ = D(lδ · lkδ ) = [Dlδ] · lkδ + lδ · [Dlkδ ] = −(k + 1)lk+2

δ .

For (5) we consider the fact that vδ = 1
lδ

, so it is not difficult to see that Dvδ = 1 using
(1) and (4), afterwards we can use induction again. Finally, to get (6) and (7),

D(1− αlδ)n = D
[ n∑
k=1

(
n

k

)
(−αlδ)n−k

]
= −

n∑
k=1

(
n

k

)
(−α)n−k(n− k)ln−k+1

δ

= −
n∑
k=1

n

(
n− 1
k

)
(−α)l2δ(−αlδ)n−k−1 = nαl2δ(1− αlδ)n−1

however (vδ −α)n = (1−αlδ)n
ln
δ

, using (6), (4) and the definition of D on Mδ the proof can
be concluded.

Remark. The last proposition holds for n ∈ Z since p−n = 1
pn for any p ∈Mδ.

The second identity of the last proposition tell us that the algebraic derivative of the
numerical operators is zero, but furthermore we can establish the inverse result.

Proposition 9. Given p ∈Mδ, if Dp = 0 then p is a numerical operator.

Proof. Let p = f
g and Dp = 0. Since

Dp =
([Df ] ∗ g)(t)− (f ∗ [Dg])(t)

(g ∗ g)(t)
it follows that:

([Df ] ∗ g)(t)− (f ∗ [Dg])(t) = 0. (2.5)

If we denote f(t) =
∑∞
k=1 akt

kδ−1 and g(t) =
∑∞
k=1 bkt

kδ−1, then we have

([Df ] ∗ g)(t) = (−tδ−1) ∗
[ ∞∑
k=2

{ k−1∑
j=1

j

Γ(δ)
ajbk−jB(jδ, (k − j)δ)

}
tkδ−1

]
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and

(f ∗ [Dg])(t) = (−tδ−1) ∗
[ ∞∑
k=2

{ k−1∑
j=1

(k − j)
Γ(δ)

ajbk−jB(jδ, (k − j)δ)
}
tkδ−1

]
so, (2.5) implies that

k−1∑
j=1

(2j − k)ajbk−jB[jδ, (k − j)δ] = 0 (∀k ≥ 2). (2.6)

Now let us suppose b1 6= 0. If we take in (2.6) k = 3 and k = 4 we can get respectively

a1b2 = a2b1 and a1b3 = a3b1;

next it is easy to prove that ambn = anbm when a1bn = anb1 and a1bm = amb1.
Finally, in order to get that a1bk = akb1 for any k ≥ 2 we take into account the

following identities
k−1∑
j=1

(2j − k)ajbk−jB[jδ, (k − j)δ]

=
r−1∑
j=1

(2j − 2r)(ajb2r−j − a2r−jbj)B[jδ, (2r − j)δ] (k = 2r),

k−1∑
j=1

(2j − k)ajbk−jB[jδ, (k − j)δ]

=
r∑
j=1

[2j − (2r + 1)](ajb2r+1−j − a2r+1−jbj)B[jδ, (2r + 1− j)δ] (k = 2r + 1).

Therefore if b1 6= 0 we can establish that ak = a1
b1
bk for any k ≥ 1, in other words

f

g
=
αg

g
=
αtδ−1

tδ−1
= [α]

(
α =

a1

b1

)
.

To conclude the proof we remark that, however b1 = 0 and a1 6= 0 allow us to prove
that bk = 0 for any k in opposition to the fact that g(t) ∈ Cδ−{0}, b1 = 0 implies a1 = 0
so we can start with b2 6= 0 and so on.

3. The use of D to solve an integral-differential equation. As an application
of the results obtained in the preceding section, we will solve the integral-differential
equation

−D(Dδ)2x(t) + (1 +D)Dδx(t)− ax(t) = 0 (x(t) ∈ Cδ) (a ∈ C)

[t1−δx(t)]t=0 = 0.
(3.1)

Making use of (2.1), (2.2), (2.3), (2.4) and proposition 8, the equation (3.1) becomes

Dx(t)
x(t)

=
a− 1
vδ
− a

vδ − 1
=
lδ[lδ(1− a)− 1]

1− lδ
. (3.2)

Several facts are immediately deduced from this expression.
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Proposition 10. 1. xa = lδ(1− lδ)−a ∈Mδ is a solution of (3.2).

2. xa(t) =
tδ−1

Γ(a) 1Ψ1

 (a, 1);
tδ

(δ, δ);

 is a solution of (3.1).

3. Dδ

∫ t

0

(t− τ)δ−1

Γ(a) 1Ψ1

 (a, 1);
(t− τ)δ

(δ, δ);

 τ δ−1

Γ(b) 1Ψ1

 (b, 1);
τ δ

(δ, δ);

 dτ
=

tδ−1

Γ(a+ b) 1Ψ1

 (a+ b, 1);
tδ

(δ, δ);


where 1Ψ1 represents the Wright generalized hypergeometric functions (cf. [4]).

Proof. 1. We have

D(1− lδ)−a = D
[
1 +

∞∑
k=1

(
−a
k

)
(−1)k

tkδ−1

Γ(kδ)

]

=
∞∑
k=1

(−a)
(
−a− 1
k − 1

)
(−1)k−1 t(k+1)δ−1

Γ[(k + 1)δ]
= (−a)l2δ(1− lδ)−a−1

thus
D[lδ(1− lδ)−a]
lδ(1− lδ)−a

=
lδ[lδ(1− a)− 1]

1− lδ
.

2. The solution xa = lδ(1− lδ)−a admits a representation of the form (cf. [3, p. 171])

xa = lδ(1− lδ)−a =
∞∑
k=0

(
−a
k

)
(−1)klk+1

δ = tδ−1
∞∑
k=0

(a)k
Γ(k + 1)

tkδ

Γ[(k + 1)δ]

=
tδ−1

Γ(a)

∞∑
k=0

Γ(k + a)
Γ(kδ + δ)

tkδ

Γ(k + 1)

thus (cf. [4, p. 50]),

xa(t) =
tδ−1

Γ(a) 1Ψ1

 (a, 1);
tδ

(δ, δ);

 .
3. It is consequence of the preceding items.

Remark. If −a ∈ N the series which appears in the proof of the last proposition
becomes a polynomial of fractional degree.
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