AN ALGEBRAIC DERIVATIVE ASSOCIATED TO THE OPERATOR D^{δ}

V. M. ALMEIDA, N. CASTRO and J. RODRÍGUEZ
Departamento de Análisis Matemático, Universidad de La Laguna 38271 La Laguna (Tenerife), Canary Islands, Spain E-mail: valmeida@ull.es

Abstract. In this paper we get an algebraic derivative relative to the convolution

$$
(f * g)(t)=\int_{0}^{t} f(t-\psi) g(\psi) d \psi
$$

associated to the operator D^{δ}, which is used, together with the corresponding operational calculus, to solve an integral-differential equation. Moreover we show a certain convolution property for the solution of that equation.

1. Introduction. W. Kierat and K. Skórnik [2], using the Mikusiński operational calculus, have solved the differential equation

$$
t \frac{d^{2} x}{d t^{2}}+(c-t) \frac{d x}{d t}-a x=0 \quad(c, a \in \mathbb{C})
$$

which for $c=1$ reduces to the Laguerre differential equation and one of its solutions is

$$
x_{a}(t)=\sum_{k=0}^{\infty}\binom{-a}{k}(-1)^{k} \frac{t^{k}}{\Gamma(k+1)}
$$

satisfying the convolutional property

$$
\frac{d}{d t}\left(x_{a} * x_{b}\right)(t)=x_{a+b}(t)
$$

where $*$ represents the Mikusiński convolution.
We define the algebraic derivative

$$
\mathcal{D} f(t)=\frac{-I^{\delta-1}}{\delta} t f(t), \quad \text { for the convolution } \quad(f * g)(t)=\int_{0}^{t} f(t-\psi) g(\psi) d \psi
$$

where $I^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f(\tau) d \tau$ represents the Riemann-Liouville fractional integral operator.

[^0]The convolution $*$ is defined on the set

$$
C_{\delta}=\left\{f(t)=\sum_{k=1}^{\infty} a_{k} t^{k \delta-1} \text { uniformly convergent on compact subsets of }[0, \infty)\right\}
$$

introduced by Alamo and Rodríguez in [1].
Using a similar technique as in $[2]$ and the appropriate operational calculus for $*$ we can get a solution of the following integral-diferential equation

$$
-\mathcal{D}\left(D^{\delta}\right)^{2} x+(1+\mathcal{D}) D^{\delta} x-a x=0 \quad(a \in \mathbb{C}) \quad(\delta>1)
$$

which we denote by $x_{a}(t)$, satisfying

$$
D^{\delta}\left[x_{a} * x_{b}\right](t)=x_{a+b}(t)
$$

2. An operational calculus for D^{δ}. The algebraic derivative \mathcal{D}. Let $\delta>1$ be a fixed real number (when $\delta=1$, it reduces to Kierat and Skórnik's case). As Alamo and Rodríguez [1] did, we define the set of positive real variable functions with complex values

$$
C_{\delta}=\left\{f(t)=\sum_{k=1}^{\infty} a_{k} t^{k \delta-1} \text { uniformly convergent on compact subsets of }[0, \infty)\right\} .
$$

They proved that $\left(C_{\delta},+, \cdot \mathbb{C}\right)$ is a vector space.
Unlike these authors, we will consider in C_{δ} the Mikusiński convolution given by $(f * g)(t)=\int_{0}^{t} f(t-\psi) g(\psi) d \psi$.

From the definition of $*$ we get immediately the following propositions.
Proposition 1. 1. $t^{k \delta-1} * t^{m \delta-1}=B(k \delta, m \delta) t^{(k+m) \delta-1}$.
2. $(f * g)(t)=\sum_{k=2}^{\infty}\left\{\sum_{j=1}^{k-1} a_{j} b_{k-j} B[j \delta,(k-j) \delta]\right\} t^{k \delta-1}$.

Here $B(u, v)=\int_{0}^{1}(1-t)^{u-1} t^{v-1} d t$ represents the beta function, $f(t)=\sum_{k=1}^{\infty} a_{k} t^{k \delta-1}$ and $g(t)=\sum_{k=1}^{\infty} b_{k} t^{k \delta-1}$.

This proposition shows us that $*$ is a closed operation on C_{δ}, so we can conclude that $\left(C_{\delta},+, *\right)$ is a subring of $(C,+, *)$. Here C represents the set of continuous complex functions of a positive real variable. Mikusiński [3] and Yosida [5] showed that the convolution * has no zero divisors and there is no unit element on the set C, thus we can state the next proposition.

Proposition 2. $\left(C_{\delta},+, *\right)$ is a commutative non-unitary ring without zero divisors.
Remark. It can be proved in a direct way that $\left(C_{\delta},+, *\right)$ is a ring.
Therefore, C_{δ} can be extended to its field of fractions $M_{\delta}=C_{\delta} \times\left(C_{\delta}-\{0\}\right) / \sim$, where the equivalence relation \sim is defined, as usual, by $\left(f_{1}, g_{1}\right) \sim\left(f_{2}, g_{2}\right) \Leftrightarrow f_{1} * g_{2}=g_{1} * f_{2}$; actually M_{δ} is a subfield of the Mikusiński field. The elements of M_{δ} will be called operators, and from now on we denote by $\frac{f}{g}$ the equivalence class of the pair (f, g).

The operations of sum, multiplication and product by a scalar can be defined on M_{δ} through

- $\frac{f_{1}}{g_{1}}+\frac{f_{2}}{g_{2}}=\frac{f_{1} * g_{2}+g_{1} * f_{2}}{g_{1} * g_{2}}$
- $\frac{f_{1}}{g_{1}} \cdot \frac{f_{2}}{g_{2}}=\frac{f_{1} * f_{2}}{g_{1} * g_{2}}$
- $\alpha \frac{f}{g}=\frac{\alpha f}{g}$

Alamo and Rodríguez [1] showed that the operator D^{δ} is an endomorphism on C_{δ} and proved that for all $f(t)=\sum_{k=1}^{\infty} a_{k} t^{k \delta-1}$ in C_{δ}

$$
\begin{gather*}
D^{\delta} I^{\delta} f(t)=f(t) \\
I^{\delta} D^{\delta} f(t)=f(t)-a_{1} t^{\delta-1}=f(t)-\left[t^{1-\delta} f(t)\right]_{t=0} t^{\delta-1} \tag{2.1}\\
\left(I^{\delta}\right)^{m}\left(D^{\delta}\right)^{m} f(t)=f(t)-\sum_{j=1}^{m} a_{j} t^{j \delta-1} \tag{2.2}
\end{gather*}
$$

These identities will be useful for our development.
The next proposition allows us to identify the operator I^{δ} and its positive integer powers with certain functions in C_{δ}.

Proposition 3. Let $f(t) \in C_{\delta}$ and $k \in \mathbb{N}$, then we have

1. $\frac{t^{\delta-1}}{\Gamma(\delta)} * f(t)=I^{\delta} f(t)$.
2. $\frac{t^{k \delta-1}}{\Gamma(k \delta)} * f(t)=\left(I^{\delta}\right)^{k} f(t)=I^{k \delta} f(t)$.

Proof. The first asertion is a consequence of the definition of the convolution $*$, and using induction method we can get the second one.

Following Mikusiński [3], we denote by $l_{\delta}=\frac{t^{\delta-1}}{\Gamma(\delta)} \equiv I^{\delta}$. So when we write $l_{\delta} f(t)$ we will understand $I^{\delta} f(t)$.

Now we remark that we can consider $C_{\delta} \subset M_{\delta}$ since C_{δ} is isomorphic to a subring of M_{δ} through the map $f \leadsto \frac{l_{\delta} f}{l_{\delta}}$. In a similar way the field \mathbb{C} of complex numbers can be embedded into M_{δ} by associating with every $\alpha \in \mathbb{C}$ the so called numerical operator $[\alpha]=\frac{\alpha t^{\delta-1}}{t^{\delta-1}}$. The following basic properties of these numerical operators are immediate.

Proposition 4. 1. $[\alpha]+[\beta]=[\alpha+\beta]$.
2. $[\alpha] \cdot[\beta]=[\alpha \beta]$.

From now on we denote the numerical operators $[\alpha]$ by α when it leads to no confusion.
Proposition 5. Let $v_{\delta} \in M_{\delta}$ be the algebraic inverse of l_{δ}. For any function $f(t)=$ $\sum_{k=1}^{\infty} a_{k} t^{k \delta-1}$,

$$
\begin{gather*}
v_{\delta} f(t)=D^{\delta} f(t)+\Gamma(\delta) a_{1} \tag{2.3}\\
v_{\delta}^{m} f(t)=\left(D^{\delta}\right)^{m} f(t)+\sum_{j=1}^{m} a_{j} \Gamma(j \delta) v_{\delta}^{m-j} \tag{2.4}
\end{gather*}
$$

Proof. To see (2.3), having the identity (2.1) we act on both sides by the operator v_{δ} and take into account that $a_{1} t^{\delta-1}$ is identified with $\frac{l_{\delta} a_{1} t^{\delta-1}}{l_{\delta}} \in M_{\delta}$, so $v_{\delta} a_{1} t^{\delta-1}=\frac{a_{1} t^{\delta-1}}{l_{\delta}}=$ $\left[\Gamma(\delta) a_{1}\right]=\Gamma(\delta) a_{1}$. For (2.4) it is analogous, acting on both sides of (2.2) by v_{δ}^{m}.

The next step is to define an operator over C_{δ} which will be an algebraic derivative.

Definition 1. Let $f \in C_{\delta}$. We define the operator \mathcal{D} as follows:

$$
\mathcal{D} f(t)=-\frac{I^{\delta-1}}{\delta} t f(t)
$$

We need to know how \mathcal{D} acts on any member of C_{δ}.
Proposition 6. $\mathcal{D} f(t) \in C_{\delta}$ for all $f(t) \in C_{\delta}$.
Proof. It is not dificult to show that if $f(t)=\sum_{k=1}^{\infty} a_{k} t^{k \delta-1}$, then

$$
-\frac{I^{\delta-1}}{\delta} t f(t)=\sum_{k=1}^{\infty} b_{k} t^{(k+1) \delta-1}
$$

where $b_{k}=-a_{k} \frac{k \Gamma(k \delta)}{\Gamma[(k+1) \delta]}$. An equivalent and more manageable expression is

$$
-\frac{I^{\delta-1}}{\delta} t f(t)=\left(-t^{\delta-1}\right) *\left[\sum_{k=1}^{\infty} c_{k} t^{k \delta-1}\right]
$$

where $c_{k}=\frac{k a_{k}}{\Gamma(\delta)}$.
Now we establish a proposition which shows that \mathcal{D} is an algebraic derivative on C_{δ}.
Proposition 7. For any functions f and g in C_{δ}, we have:

1. $\mathcal{D}[f(t)+g(t)]=\mathcal{D} f(t)+\mathcal{D} g(t)$.
2. $\mathcal{D}(f * g)(t)=([\mathcal{D} f] * g)(t)+(f *[\mathcal{D} g])(t)$.

Proof. 1. It immediately follows by taking into account that $\frac{-I^{\delta-1}}{\delta} t$ is a linear operator.
2. Let $f(t)=\sum_{k=1}^{\infty} a_{k} t^{k \delta-1}$ and $g(t)=\sum_{k=1}^{\infty} b_{k} t^{k \delta-1}$, then we have:

$$
\mathcal{D}(f * g)(t)=\mathcal{D} \sum_{k=2}^{\infty}\left\{\sum_{j=1}^{k-1} a_{j} b_{k-j} B[j \delta,(k-j) \delta]\right\} t^{k \delta-1} .
$$

If we denote $c_{k}=\sum_{j=1}^{k-1} a_{j} b_{k-j} B[j \delta,(k-j) \delta]$, by using the result obtained in the proof of proposition 6 and the second identity of proposition 1, we can get

$$
\mathcal{D}(f * g)(t)=\left(-t^{\delta-1}\right) * \sum_{k=2}^{\infty} \frac{k}{\Gamma(\delta)} c_{k} t^{k \delta-1}
$$

In a similar way, it can be proved that

$$
([\mathcal{D} f] * g)(t)=\left(-t^{\delta-1}\right) *\left[\sum_{k=2}^{\infty}\left\{\sum_{j=1}^{k-2} \frac{j}{\Gamma(\delta)} a_{j} b_{k-j} B[j \delta,(k-j) \delta]\right\} t^{k \delta-1}\right]
$$

and

$$
(f *[\mathcal{D} g])(t)=\left(-t^{\delta-1}\right) *\left[\sum_{k=2}^{\infty}\left\{\sum_{j=1}^{k-2} \frac{(k-j)}{\Gamma(\delta)} a_{j} b_{k-j} B[j \delta,(k-j) \delta]\right\} t^{k \delta-1}\right]
$$

and using the last three identities the proof is concluded.
Now we can extend the definition of \mathcal{D} to the field M_{δ}, as usual, by:

$$
\begin{aligned}
\mathcal{D} \frac{f}{g} & =\frac{[\mathcal{D} f] * g-f *[\mathcal{D} g]}{g * g} \quad\left(f \in C_{\delta}, g \in\left(C_{\delta}-\{0\}\right)\right), \\
\mathcal{D} \frac{p}{q} & =\frac{[\mathcal{D} p] \cdot q-p \cdot[\mathcal{D} q]}{q^{2}} \quad\left(p \in M_{\delta}, q \in\left(M_{\delta}-\{0\}\right)\right) .
\end{aligned}
$$

The next proposition shows the behavior of the algebraic derivative over some particular members of M_{δ} and will be used to solve an integral-differential equation.

Proposition 8. Let $1=\frac{t^{\delta-1}}{t^{\delta-1}}$ the unit of $M_{\delta}, 0=\frac{0}{t^{\delta-1}}, v_{\delta}=\frac{1}{l_{\delta}}$ the algebraic inverse of l_{δ} in M_{δ} and $n \in \mathbb{N}$. Then:

1. $\mathcal{D} 1=0$.
2. $\mathcal{D} \alpha=0$ (α being a numerical operator).
3. $\mathcal{D}(\alpha p)=\alpha \mathcal{D} p$ (for any $p \in M_{\delta}$).
4. $\mathcal{D} l_{\delta}^{n}=-n l_{\delta}^{n+1}$.
5. $\mathcal{D} v_{\delta}^{n}=n v_{\delta}^{n-1}$.
6. $\mathcal{D}\left(1-\alpha l_{\delta}\right)^{n}=n \alpha l_{\delta}^{2}\left(1-\alpha l_{\delta}\right)^{n-1}$.
7. $\mathcal{D}\left(v_{\delta}-\alpha\right)^{n}=n\left(v_{\delta}-\alpha\right)^{n-1}$.

Proof. (1) and (2) follow by a simple calculation. (3) is a direct consequence of (2). In (4) we will use induction. Since in our case

$$
\mathcal{D} l_{\delta}=\mathcal{D} \frac{t^{\delta-1}}{\Gamma(\delta)}=-\frac{t^{2 \delta-1}}{\Gamma(2 \delta)}=-l_{\delta}^{2}
$$

if we suppose that (4) is true for $n=k$, then

$$
\mathcal{D} l_{\delta}^{k+1}=\mathcal{D}\left(l_{\delta} \cdot l_{\delta}^{k}\right)=\left[\mathcal{D} l_{\delta}\right] \cdot l_{\delta}^{k}+l_{\delta} \cdot\left[\mathcal{D} l_{\delta}^{k}\right]=-(k+1) l_{\delta}^{k+2} .
$$

For (5) we consider the fact that $v_{\delta}=\frac{1}{l_{\delta}}$, so it is not difficult to see that $\mathcal{D} v_{\delta}=1$ using (1) and (4), afterwards we can use induction again. Finally, to get (6) and (7),

$$
\begin{aligned}
\mathcal{D}\left(1-\alpha l_{\delta}\right)^{n} & =\mathcal{D}\left[\sum_{k=1}^{n}\binom{n}{k}\left(-\alpha l_{\delta}\right)^{n-k}\right]=-\sum_{k=1}^{n}\binom{n}{k}(-\alpha)^{n-k}(n-k) l_{\delta}^{n-k+1} \\
& =-\sum_{k=1}^{n} n\binom{n-1}{k}(-\alpha) l_{\delta}^{2}\left(-\alpha l_{\delta}\right)^{n-k-1}=n \alpha l_{\delta}^{2}\left(1-\alpha l_{\delta}\right)^{n-1}
\end{aligned}
$$

however $\left(v_{\delta}-\alpha\right)^{n}=\frac{\left(1-\alpha l_{\delta}\right)^{n}}{l_{\delta}^{l}}$, using (6), (4) and the definition of \mathcal{D} on M_{δ} the proof can be concluded.

Remark. The last proposition holds for $n \in \mathbb{Z}$ since $p^{-n}=\frac{1}{p^{n}}$ for any $p \in M_{\delta}$.
The second identity of the last proposition tell us that the algebraic derivative of the numerical operators is zero, but furthermore we can establish the inverse result.

Proposition 9. Given $p \in M_{\delta}$, if $\mathcal{D} p=0$ then p is a numerical operator.
Proof. Let $p=\frac{f}{g}$ and $\mathcal{D} p=0$. Since

$$
\mathcal{D} p=\frac{([\mathcal{D} f] * g)(t)-(f *[\mathcal{D} g])(t)}{(g * g)(t)}
$$

it follows that:

$$
\begin{equation*}
([\mathcal{D} f] * g)(t)-(f *[\mathcal{D} g])(t)=0 \tag{2.5}
\end{equation*}
$$

If we denote $f(t)=\sum_{k=1}^{\infty} a_{k} t^{k \delta-1}$ and $g(t)=\sum_{k=1}^{\infty} b_{k} t^{k \delta-1}$, then we have

$$
([\mathcal{D} f] * g)(t)=\left(-t^{\delta-1}\right) *\left[\sum_{k=2}^{\infty}\left\{\sum_{j=1}^{k-1} \frac{j}{\Gamma(\delta)} a_{j} b_{k-j} B(j \delta,(k-j) \delta)\right\} t^{k \delta-1}\right]
$$

and

$$
(f *[\mathcal{D} g])(t)=\left(-t^{\delta-1}\right) *\left[\sum_{k=2}^{\infty}\left\{\sum_{j=1}^{k-1} \frac{(k-j)}{\Gamma(\delta)} a_{j} b_{k-j} B(j \delta,(k-j) \delta)\right\} t^{k \delta-1}\right]
$$

so, (2.5) implies that

$$
\begin{equation*}
\sum_{j=1}^{k-1}(2 j-k) a_{j} b_{k-j} B[j \delta,(k-j) \delta]=0 \quad(\forall k \geq 2) \tag{2.6}
\end{equation*}
$$

Now let us suppose $b_{1} \neq 0$. If we take in (2.6) $k=3$ and $k=4$ we can get respectively

$$
a_{1} b_{2}=a_{2} b_{1} \quad \text { and } \quad a_{1} b_{3}=a_{3} b_{1}
$$

next it is easy to prove that $a_{m} b_{n}=a_{n} b_{m}$ when $a_{1} b_{n}=a_{n} b_{1}$ and $a_{1} b_{m}=a_{m} b_{1}$.
Finally, in order to get that $a_{1} b_{k}=a_{k} b_{1}$ for any $k \geq 2$ we take into account the following identities

$$
\begin{gathered}
\sum_{j=1}^{k-1}(2 j-k) a_{j} b_{k-j} B[j \delta,(k-j) \delta] \\
=\sum_{j=1}^{r-1}(2 j-2 r)\left(a_{j} b_{2 r-j}-a_{2 r-j} b_{j}\right) B[j \delta,(2 r-j) \delta] \quad(k=2 r), \\
\sum_{j=1}^{k-1}(2 j-k) a_{j} b_{k-j} B[j \delta,(k-j) \delta] \\
=\sum_{j=1}^{r}[2 j-(2 r+1)]\left(a_{j} b_{2 r+1-j}-a_{2 r+1-j} b_{j}\right) B[j \delta,(2 r+1-j) \delta] \quad(k=2 r+1) .
\end{gathered}
$$

Therefore if $b_{1} \neq 0$ we can establish that $a_{k}=\frac{a_{1}}{b_{1}} b_{k}$ for any $k \geq 1$, in other words

$$
\frac{f}{g}=\frac{\alpha g}{g}=\frac{\alpha t^{\delta-1}}{t^{\delta-1}}=[\alpha] \quad\left(\alpha=\frac{a_{1}}{b_{1}}\right) .
$$

To conclude the proof we remark that, however $b_{1}=0$ and $a_{1} \neq 0$ allow us to prove that $b_{k}=0$ for any k in opposition to the fact that $g(t) \in C_{\delta}-\{0\}, b_{1}=0$ implies $a_{1}=0$ so we can start with $b_{2} \neq 0$ and so on.
3. The use of \mathcal{D} to solve an integral-differential equation. As an application of the results obtained in the preceding section, we will solve the integral-differential equation

$$
\begin{align*}
& -\mathcal{D}\left(D^{\delta}\right)^{2} x(t)+(1+\mathcal{D}) D^{\delta} x(t)-a x(t)=0 \quad\left(x(t) \in C_{\delta}\right) \quad(a \in \mathbb{C}) \\
& {\left[t^{1-\delta} x(t)\right]_{t=0}=0} \tag{3.1}
\end{align*}
$$

Making use of (2.1), (2.2), (2.3), (2.4) and proposition 8, the equation (3.1) becomes

$$
\begin{equation*}
\frac{\mathcal{D} x(t)}{x(t)}=\frac{a-1}{v_{\delta}}-\frac{a}{v_{\delta}-1}=\frac{l_{\delta}\left[l_{\delta}(1-a)-1\right]}{1-l_{\delta}} . \tag{3.2}
\end{equation*}
$$

Several facts are immediately deduced from this expression.

Proposition 10. 1. $x_{a}=l_{\delta}\left(1-l_{\delta}\right)^{-a} \in M_{\delta}$ is a solution of (3.2).
2. $x_{a}(t)=\frac{t^{\delta-1}}{\Gamma(a)}{ }^{1} \Psi_{1}\left[\begin{array}{cc}(a, 1) ; & \\ (\delta, \delta) ; & t^{\delta}\end{array}\right]$ is a solution of (3.1).

$=\frac{t^{\delta-1}}{\Gamma(a+b)}{ }_{1} \Psi_{1}\left[\begin{array}{cc}(a+b, 1) ; & \\ (\delta, \delta) ; & t^{\delta}\end{array}\right]$
where ${ }_{1} \Psi_{1}$ represents the Wright generalized hypergeometric functions (cf. [4]).
Proof. 1. We have

$$
\begin{gathered}
\mathcal{D}\left(1-l_{\delta}\right)^{-a}=\mathcal{D}\left[1+\sum_{k=1}^{\infty}\binom{-a}{k}(-1)^{k} \frac{t^{k \delta-1}}{\Gamma(k \delta)}\right] \\
=\sum_{k=1}^{\infty}(-a)\binom{-a-1}{k-1}(-1)^{k-1} \frac{t^{(k+1) \delta-1}}{\Gamma[(k+1) \delta]}=(-a) l_{\delta}^{2}\left(1-l_{\delta}\right)^{-a-1}
\end{gathered}
$$

thus

$$
\frac{\mathcal{D}\left[l_{\delta}\left(1-l_{\delta}\right)^{-a}\right]}{l_{\delta}\left(1-l_{\delta}\right)^{-a}}=\frac{l_{\delta}\left[l_{\delta}(1-a)-1\right]}{1-l_{\delta}}
$$

2. The solution $x_{a}=l_{\delta}\left(1-l_{\delta}\right)^{-a}$ admits a representation of the form (cf. [3, p. 171])

$$
\begin{aligned}
x_{a} & =l_{\delta}\left(1-l_{\delta}\right)^{-a}=\sum_{k=0}^{\infty}\binom{-a}{k}(-1)^{k} l_{\delta}^{k+1}=t^{\delta-1} \sum_{k=0}^{\infty} \frac{(a)_{k}}{\Gamma(k+1)} \frac{t^{k \delta}}{\Gamma[(k+1) \delta]} \\
& =\frac{t^{\delta-1}}{\Gamma(a)} \sum_{k=0}^{\infty} \frac{\Gamma(k+a)}{\Gamma(k \delta+\delta)} \frac{t^{k \delta}}{\Gamma(k+1)}
\end{aligned}
$$

thus (cf. [4, p. 50]),

$$
x_{a}(t)=\frac{t^{\delta-1}}{\Gamma(a)}{ }^{\prime} \Psi_{1}\left[\begin{array}{cc}
(a, 1) ; & \\
& t^{\delta} \\
(\delta, \delta) ; &
\end{array}\right]
$$

3. It is consequence of the preceding items.

Remark. If $-a \in \mathbb{N}$ the series which appears in the proof of the last proposition becomes a polynomial of fractional degree.

References

[1] J. A. Alamo and J. Rodríguez, Cálculo operacional de Mikusiński para el operador de Riemann-Liouville y su generalizado, Rev. Acad. Canar. Cienc. 1 (1993), 31-40.
[2] W. Kierat and K. Skórnik, A remark on solutions of the Laguerre differential equation, Integral Transforms and Special Functions 1 (1993), 315-316.
[3] J. Mikusiński, Operational Calculus, Pergamon, Oxford, 1959.
[4] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood, 1984.
[5] K. Yosida, Operational Calculus. A Theory of Hyperfunctions, Springer-Verlag, New York, 1984.

[^0]: 2000 Mathematics Subject Classification: 44A40, 26A33, 33A20.
 The paper is in final form and no version of it will be published elsewhere.

