The universality of quadratic *L*-series for prime discriminants

by

HIDEHIKO MISHOU (Nagoya) and HIROFUMI NAGOSHI (Niigata)

1. Introduction and statement of results. For an odd prime $p \, \text{let } \lambda_p$ denote the real Dirichlet character modulo p given by the Legendre symbol $\left(\frac{\cdot}{p}\right)$. Let $L(s,\chi)$ be the Dirichlet *L*-function associated with a character χ . The value distribution of $L(s,\lambda_p)$ for a complex number s with Re s > 1/2 as p varies over the odd primes is investigated e.g. in [E1]. The main purpose of the present paper is to study the functional distribution of $L(s,\lambda_p)$ on D, as p varies over the primes in an arithmetic progression; here and henceforth D denotes the strip $\{s \in \mathbb{C} \mid 1/2 < \text{Re } s < 1\}$. More precisely, we shall establish the so-called *universality theorem* for $L(s,\lambda_p)$ in the p-aspect.

The universality theorem was first discovered by Voronin ([Vo], [KV]) for the Riemann zeta-function $\zeta(s)$ in the *t*-aspect; he showed the following.

THEOREM ([Vo]). Let 0 < r < 1/4 and h(s) be a continuous function on the disk $|s| \leq r$ which is holomorphic and has no zeros in |s| < r. Then for any $\varepsilon > 0$ there exists a real number t such that

$$\max_{|s|\leq r} |\zeta(s+3/4+it)-h(s)|<\varepsilon.$$

The universality theorem for a Dirichlet L-function $L(s,\chi)$ in the taspect was obtained by Bagchi [B1], [B2], Gonek [Go] and Voronin (see [KV, Chapter VII, Section 3]) independently; indeed, the *joint* universality theorem was shown.

Furthermore, Bagchi [B1], Eminyan [Em] and Gonek [Go] independently showed an analogous result for Dirichlet *L*-functions in another aspect. In fact, they established the universality theorem for the family of $L(s, \chi)$'s as χ varies over the set of characters modulo q with q large.

We denote by \mathbb{R} , \mathbb{R}^+ , \mathbb{Z} and \mathbb{N} the set of all real numbers, positive real numbers, integers and positive integers, respectively. For a discriminant d, let χ_d denote the real Dirichlet character modulo |d| defined by the Kronecker

²⁰⁰⁰ Mathematics Subject Classification: Primary 11M06, 41A30; Secondary 11R42.

symbol $\left(\frac{d}{\cdot}\right)_{\mathrm{K}}$. Letting γ stand for the plus sign or the minus sign, we define $\mathcal{D}^{\gamma} := \begin{cases} \{d > 0 \mid d \text{ is a square-free integer}, d \equiv 1 \mod 8, d \neq 1\} & \text{if } \gamma \text{ is } +, \\ \{d < 0 \mid d \text{ is a square-free integer}, d \equiv 1 \mod 8\} & \text{if } \gamma \text{ is } -, \end{cases}$ and

$$\mathcal{D}_X^{\gamma} := \{ d \in \mathcal{D}^{\gamma} \mid |d| \le X \} \quad \text{for } X \in \mathbb{R}^+.$$

The authors [MN1] have recently obtained the following universality theorem, which is an analogue of Bagchi, Eminyan and Gonek's result above for the family $\{L(s, \chi_d) \mid d \in \mathcal{D}^{\gamma}\}$ of *L*-functions associated with real characters χ_d : Let Ω , h(s) and K be as in Theorem 1.1 below. Then for any $\varepsilon > 0$ we have

(1.1)
$$\liminf_{X \to \infty} \frac{1}{\# \mathcal{D}_X^{\gamma}} \# \{ d \in \mathcal{D}_X^{\gamma} \mid \max_{s \in K} |L(s, \chi_d) - h(s)| < \varepsilon \} > 0.$$

In the present paper we investigate the universality theorem for $L(s, \lambda_p)$ in the prime *p*-aspect, as mentioned above. Noting that $L(s, \lambda_p)$ is equal to $L(s, \chi_q)$ with a certain integer q (see (3.3)), we will deal with $L(s, \chi_q)$ instead of $L(s, \lambda_p)$. Throughout let $\gamma \in \{+, -\}$ and let m and $a = a(\gamma)$ be any fixed positive integers such that $gcd(m, a) = 1, 8 | m, a \equiv 1 \mod 4$ if γ is + and $a \equiv 3 \mod 4$ if γ is -. We define

$$\mathcal{P}^{\gamma}(m,a) := \begin{cases} \{p \mid p \text{ is a prime, } p \equiv a \mod m\} & \text{ if } \gamma \text{ is } +, \\ \{-p \mid p \text{ is a prime, } p \equiv a \mod m\} & \text{ if } \gamma \text{ is } -, \end{cases}$$

and

$$\mathcal{P}_X^{\gamma}(m,a) := \{ q \in \mathcal{P}^{\gamma}(m,a) \mid |q| \le X \} \quad \text{for } X > 0.$$

By the prime number theorem for arithmetic progressions,

(1.2)
$$\#\mathcal{P}_X^{\gamma}(m,a) \sim \frac{1}{\varphi(m)} \frac{X}{\log X} \quad \text{as } X \to \infty,$$

where $\varphi(m)$ denotes the Euler totient function. Every integer q in $\mathcal{P}^{\gamma}(m, a)$ is a *prime discriminant* (for its definition, see e.g. [Ay, p. 310], [Da, p. 41]). In the following, the letter p will stand for a prime number and q for a prime discriminant.

THEOREM 1.1. Let $\gamma \in \{+, -\}$. Let $m, a \in \mathbb{N}$ be as above. Let Ω be a simply connected region in D which is symmetric with respect to the real axis. Suppose that h(s) is a holomorphic function on Ω which has no zeros on Ω and is \mathbb{R}^+ -valued on the set $\Omega \cap \mathbb{R}$. Let K be a compact set in Ω , and $\varepsilon > 0$. Then there exist infinitely many $q \in \mathcal{P}^{\gamma}(m, a)$ such that $\max_{s \in K} |L(s, \chi_q) - h(s)| < \varepsilon$. More precisely, we have

(1.3)
$$\liminf_{X \to \infty} \frac{1}{\# \mathcal{P}_X^{\gamma}(m, a)} \# \{ q \in \mathcal{P}_X^{\gamma}(m, a) \mid \max_{s \in K} |L(s, \chi_q) - h(s)| < \varepsilon \} > 0.$$

It should be noted that the results (1.1) and (1.3) do not directly imply each other, because the *density* of the set $\mathcal{P}^{\gamma}(m, a)$ in \mathcal{D}^{γ} is 0 in the sense that $\#\mathcal{P}_X^{\gamma}(m, a)/\#\mathcal{D}_X^{\gamma} \to 0$ as $X \to \infty$ (see [MN1, Lemma 4.1] and (1.2)).

In the same way as in the present paper, we can generalize (1.1) to the result in which d varies over the fundamental discriminants in the arithmetic progression $\{km + a \mid k \in \mathbb{Z}\}$, where $m, a \in \mathbb{N}$ are as in Theorem 1.1.

Theorem 1.1 yields the following corollaries, for example. First we get a denseness result on values of $L(s, \chi_q)$'s for fixed $s \in D$ and variable $q \in \mathcal{P}^{\gamma}(m, a)$. This is analogous to Bohr–Courant's result [BC] on values of the Riemann zeta-function $\zeta(s)$.

Corollary 1.2.

(1) Let any $s_0 \in D$ with $\operatorname{Im} s_0 \neq 0$ be fixed. Then the set $\{L(s_0, \chi_q) \mid q \in \mathcal{P}^{\gamma}(m, a)\}$ is dense in \mathbb{C} . More precisely, for any $z_0 \in \mathbb{C}$ and $\varepsilon > 0$ we have

(1.4)
$$\liminf_{X \to \infty} \frac{1}{\# \mathcal{P}_X^{\gamma}(m, a)} \# \{ q \in \mathcal{P}_X^{\gamma}(m, a) \mid |L(s_0, \chi_q) - z_0| < \varepsilon \} > 0.$$

(2) Let $1/2 < \sigma_0 < 1$ be fixed. Then the set $\{L(\sigma_0, \chi_q) \mid q \in \mathcal{P}^{\gamma}(m, a)\}$ is dense in \mathbb{R}^+ . More precisely, for any $x_0 \in \mathbb{R}^+$ and $\varepsilon > 0$ we have $\liminf_{X \to \infty} \frac{1}{\# \mathcal{P}_X^{\gamma}(m, a)} \# \{q \in \mathcal{P}_X^{\gamma}(m, a) \mid |L(\sigma_0, \chi_q) - x_0| < \varepsilon\} > 0.$

Next we have a non-vanishing result for $L(s, \chi_q)$'s on D, and the following stronger result.

COROLLARY 1.3. Let α, β be any positive real numbers with $\alpha < \beta$. Let K be a compact set in D. Then

$$\liminf_{X \to \infty} \frac{1}{\# \mathcal{P}_X^{\gamma}(m, a)} \# \{ q \in \mathcal{P}_X^{\gamma}(m, a) \mid \alpha < |L(s, \chi_q)| < \beta$$

uniformly for $s \in K \} > 0.$

Noting that $L(s, \chi_q)$ is \mathbb{R} -valued on the real segment (1/2, 1), we can obtain a result concerning the horizontal distribution of zeros of the derivatives $L^{(r)}(s, \chi_q)$ on (1/2, 1) in the q-aspect.

COROLLARY 1.4. Let $\alpha, \beta \in \mathbb{R}$ with $1/2 < \alpha < \beta < 1$ and $r', N \in \mathbb{N}$. Then there exist infinitely many $q \in \mathcal{P}^{\gamma}(m, a)$ such that for every integer r with $1 \leq r \leq r'$ the rth derivative $L^{(r)}(s, \chi_q)$ has at least N zeros on the interval $[\alpha, \beta] \subset \mathbb{R}$. More precisely,

$$\liminf_{X \to \infty} \frac{1}{\# \mathcal{P}_X^{\gamma}(m, a)} \# \{ q \in \mathcal{P}_X^{\gamma}(m, a) \mid L^{(r)}(s, \chi_q) \text{ has at least } N \text{ zeros} \\ on \ [\alpha, \beta] \text{ for every } r = 1, \dots, r' \} > 0.$$

We shall also study the denseness result on values of $L(s, \chi_q)$ for a fixed complex number $s \neq 1$ with $\operatorname{Re} s = 1$ and variable $q \in \mathcal{P}^{\gamma}(m, a)$.

THEOREM 1.5. Let $t \in \mathbb{R} - \{0\}$ be fixed. Then the set $\{L(1+it, \chi_q) \mid q \in \mathcal{P}^{\gamma}(m, a)\}$ is dense in \mathbb{C} . More precisely, for any $z_0 \in \mathbb{C}$ and $\varepsilon > 0$ we have

$$\liminf_{X \to \infty} \frac{1}{\# \mathcal{P}_X^{\gamma}(m, a)} \# \{ q \in \mathcal{P}_X^{\gamma}(m, a) \mid |L(1 + it, \chi_q) - z_0| < \varepsilon \} > 0.$$

In [MN2] the authors showed an analogue of Theorem 1.5 for $L(1, \lambda_p)$ and deduced from it a quantitative result for a problem of Ayoub–Chowla– Walum on certain character sums.

2. Denseness lemma. The purpose of this section is to show Proposition 2.3 below. For $s \in \mathbb{C}$ we write $s = \sigma + it$ with $\sigma, t \in \mathbb{R}$. The next lemma is proved in [MN1, Proposition 2.4].

LEMMA 2.1. Let Ω be a simply connected region in D symmetric with respect to the real axis, as in Theorem 1.1. Let U be a bounded, simply connected region in Ω which is symmetric with respect to the real axis and which satisfies $\overline{U} \subset \Omega$, where \overline{U} denotes the closure of U. Suppose that g(s)is a holomorphic function on Ω which is \mathbb{R} -valued on the interval $\Omega \cap \mathbb{R}$. Let y > 0 be fixed. Then for any $\varepsilon > 0$ there exist $\nu \in \mathbb{R}^+$ and $c_p \in \{1, -1\}$, for each prime p with $y \leq p \leq \nu$, such that

$$\int_{U} \left| g(s) - \sum_{y \le p \le \nu} \frac{c_p}{p^s} \right|^2 d\sigma \, dt < \varepsilon.$$

The next lemma is a generalization of [Ti, p. 303, Lemma] and was obtained in [MN1, Lemma 2.5].

LEMMA 2.2. Let U be a bounded region in \mathbb{C} . Let K be a compact subset of \mathbb{C} such that $K \subset U$. Let B > 0. Suppose that f(s) is a holomorphic function on U satisfying $\int_U |f(s)|^2 d\sigma dt \leq B$. Then $\max_{s \in K} |f(s)| \leq b(U, K) B^{1/2}$, where b(U, K) is a certain positive constant depending only on U and K.

PROPOSITION 2.3. Let Ω be a simply connected region in D symmetric with respect to the real axis. Suppose that g(s) is a holomorphic function on Ω which is \mathbb{R} -valued on $\Omega \cap \mathbb{R}$. Let K be a compact set in Ω and $\nu_1 \in \mathbb{R}^+$ with $\nu_1 > m + 1$. Let $a_p \in \{1, -1\}$ for each prime p with $p \mid m$. Then for any $\varepsilon > 0$ there exist $\nu > \nu_1$ and $a_p \in \{1, -1\}$, for each prime p with $p \leq \nu$ and $p \nmid m$, such that

$$\max_{s \in K} \left| g(s) - \log \prod_{p \le \nu} \left(1 - \frac{a_p}{p^s} \right)^{-1} \right| < \varepsilon,$$

where

$$\log \prod_{p \le \nu} \left(1 - \frac{a_p}{p^s}\right)^{-1} = -\sum_{p \le \nu} \log \left(1 - \frac{a_p}{p^s}\right) = \sum_{p \le \nu} \sum_{n=1}^{\infty} \frac{a_p^n}{n p^{ns}}.$$

Proof. Take a bounded, simply connected region U in Ω which is symmetric with respect to the real axis and which satisfies $K \subset U$ and $\overline{U} \subset \Omega$. Set $\sigma_1 := \min\{\operatorname{Re} s \mid s \in \overline{U}\} > 1/2$. Let $\varepsilon > 0$ be arbitrary. Fix a real number y satisfying $y > \nu_1$ and $y^{1-2\sigma_1}/(2\sigma_1 - 1) < \varepsilon$. Then we have

(2.1)
$$\sum_{p \ge y} \sum_{n=2}^{\infty} \frac{1}{n p^{n\sigma_1}} \le \sum_{p \ge y} \sum_{n=2}^{\infty} \frac{1}{p^{n\sigma_1}} = \sum_{p \ge y} \frac{p^{-2\sigma_1}}{1 - p^{-\sigma_1}} \\ \ll \sum_{n \ge y, n \in \mathbb{N}} \frac{1}{n^{2\sigma_1}} \ll \frac{y^{1 - 2\sigma_1}}{2\sigma_1 - 1} < \varepsilon.$$

Set $a_p = 1$ for each prime p with p < y and $p \nmid m$. From Lemma 2.1 it follows that there exist $\nu \geq y$ and $c_p \in \{1, -1\}$, for each prime p with $y \leq p \leq \nu$, such that

$$\int_{U} \left| \left(g(s) - \sum_{p < y} \sum_{n=1}^{\infty} \frac{a_p^n}{n p^{ns}} \right) - \sum_{y \le p \le \nu} \frac{c_p}{p^s} \right|^2 d\sigma \, dt < \varepsilon^2.$$

This and Lemma 2.2 yield

(2.2)
$$\max_{s \in K} \left| g(s) - \sum_{p < y} \sum_{n=1}^{\infty} \frac{a_p^n}{n p^{ns}} - \sum_{y \le p \le \nu} \frac{c_p}{p^s} \right| \ll_{U,K} \varepsilon.$$

For each prime p with $y \leq p \leq \nu$ we set $a_p = c_p$. Then we obtain, by (2.1) and (2.2),

$$\begin{split} \max_{s \in K} \left| g(s) - \log \prod_{p \le \nu} \left(1 - \frac{a_p}{p^s} \right)^{-1} \right| \\ &= \max_{s \in K} \left| g(s) - \sum_{p < y} \sum_{n=1}^{\infty} \frac{a_p^n}{np^{ns}} - \sum_{y \le p \le \nu} \frac{c_p}{p^s} - \sum_{y \le p \le \nu} \sum_{n=2}^{\infty} \frac{c_p^n}{np^{ns}} \right| \\ &\leq \max_{s \in K} \left| g(s) - \sum_{p < y} \sum_{n=1}^{\infty} \frac{a_p^n}{np^{ns}} - \sum_{y \le p \le \nu} \frac{c_p}{p^s} \right| + \max_{s \in K} \left| \sum_{y \le p \le \nu} \sum_{n=2}^{\infty} \frac{c_p^n}{np^{ns}} \right| \\ &\ll_{U,K} \varepsilon + \sum_{p \ge y} \sum_{n=2}^{\infty} \frac{1}{np^{n\sigma_1}} \ll \varepsilon, \end{split}$$

which completes the proof.

3. Approximation by finite Euler products. As usual, let $\pi(X)$ denote the number of primes not exceeding $X \in \mathbb{R}^+$. For large $X \in \mathbb{R}^+$, let R_X denote the set

 $\{s = \sigma + it \in \mathbb{C} \mid 1/2 + (\log \log \log X)^{-1/2} \le \sigma \le 5/4, |t| < X^{\frac{1}{13}(2\sigma - 1)}\}$ and put

(3.1)
$$h_X := (\log \log X)^2$$
.

The next lemma is obtained in [El, Lemma 8].

LEMMA 3.1. For all large X and uniformly for $s \in R_X$ we have

$$\sum_{\substack{3 \le r \le X \\ r : \text{ prime}}} \left| L(s, \lambda_r) - \prod_{p \le h_X} \left(1 - \frac{\lambda_r(p)}{p^s} \right)^{-1} \right|^2 \ll \pi(X) h_X^{1-2\sigma} (\log h_X)^3 (2\sigma - 1)^{-4}.$$

Recall that for an odd prime r and a positive integer n we have the relation (see e.g. [Ay, p. 290, Lemma 2.2])

(3.2)
$$\begin{pmatrix} \frac{n}{r} \end{pmatrix} = \begin{cases} \left(\frac{r}{n}\right)_{\mathrm{K}} & \text{if } r \equiv 1 \mod 4, \\ \left(\frac{-r}{n}\right)_{\mathrm{K}} & \text{if } r \equiv 3 \mod 4, \end{cases}$$

and hence

(3.3)
$$L(s,\lambda_r) = \begin{cases} L(s,\chi_r) & \text{if } r \equiv 1 \mod 4, \\ L(s,\chi_{-r}) & \text{if } r \equiv 3 \mod 4. \end{cases}$$

PROPOSITION 3.2. Let $\varepsilon > 0$ and K be a compact set in the region $1/2 < \operatorname{Re} s < 5/4$. Define $\mathcal{A}_X^{\gamma}(m, a) = \mathcal{A}_X^{\gamma}(m, a, \varepsilon, K)$ by

$$\mathcal{A}_X^{\gamma}(m,a) := \left\{ q \in \mathcal{P}_X^{\gamma}(m,a) \, \Big| \, \max_{s \in K} \left| L(s,\chi_q) - \prod_{p \le h_X} \left(1 - \frac{\chi_q(p)}{p^s} \right)^{-1} \right| < \varepsilon \right\}.$$

Then

$$\frac{\#\mathcal{A}_X^{\gamma}(m,a)}{\#\mathcal{P}_X^{\gamma}(m,a)} > 1 - \varepsilon$$

if X is sufficiently large.

Proof. Take an open rectangle U of the form $\{s \in \mathbb{C} \mid \sigma_1 < \operatorname{Re} s < \sigma_2, |\operatorname{Im} s| < A\}$ satisfying $1/2 < \sigma_1 < \min\{\operatorname{Re} s \mid s \in K\} \le \max\{\operatorname{Re} s \mid s \in K\} \le \sigma_2 < 5/4$ and $\max\{|\operatorname{Im} s| \mid s \in K\} < A$. Then $K \subset U$. For large $X \in \mathbb{R}^+$ we define $\widetilde{\mathcal{A}}_X^{\gamma}(m, a)$ to be the set

(3.4)
$$\left\{q \in \mathcal{P}_X^{\gamma}(m,a) \left| \int_U \left| L(s,\chi_q) - \prod_{p \le h_X} \left(1 - \frac{\chi_q(p)}{p^s}\right)^{-1} \right|^2 d\sigma \, dt < \frac{\varepsilon^2}{b(U,K)^2} \right\},\right.$$

where b(U, K) is the constant in Lemma 2.2. By Lemma 2.2,

(3.5)
$$\widetilde{\mathcal{A}}_X^{\gamma}(m,a) \subset \mathcal{A}_X^{\gamma}(m,a).$$

From Lemma 3.1, (3.2), (3.3), the prime number theorem, and (1.2), we infer that for all large X,

$$(3.6) \qquad \sum_{q \in \mathcal{P}_X^{\gamma}(m,a)} \int_U \left| L(s,\chi_q) - \prod_{p \le h_X} \left(1 - \frac{\chi_q(p)}{p^s} \right)^{-1} \right|^2 d\sigma \, dt \\ \leq \sum_{\substack{3 \le r \le X \\ r : \text{ prime}}} \int_{r : \text{ prime}} \left| L(s,\lambda_r) - \prod_{p \le h_X} \left(1 - \frac{\lambda_r(p)}{p^s} \right)^{-1} \right|^2 d\sigma \, dt \\ \ll_U \pi(X) h_X^{1-2\sigma_1} (\log h_X)^3 (2\sigma_1 - 1)^{-4} \\ \ll \varphi(m) \# \mathcal{P}_X^{\gamma}(m,a) h_X^{1-2\sigma_1} (\log h_X)^3 (2\sigma_1 - 1)^{-4}.$$

Since $h_X^{1-2\sigma_1}(\log h_X)^3 \to 0$ as $X \to \infty$, it follows from (3.6) that there exists a large number $X_0 = X_0(\varepsilon, U, K, m)$ such that for all $X > X_0$,

(3.7)
$$\sum_{q \in \mathcal{P}_X^{\gamma}(m,a)} \int_U \left| L(s,\chi_q) - \prod_{p \le h_X} \left(1 - \frac{\chi_q(p)}{p^s} \right)^{-1} \right|^2 d\sigma \, dt$$
$$< \frac{\varepsilon^3}{b(U,K)^2} \, \#\mathcal{P}_X^{\gamma}(m,a).$$

Now assume that there exists a real number $X > X_0$ such that $\#(\mathcal{P}_X^{\gamma}(m, a) - \widetilde{\mathcal{A}}_X^{\gamma}(m, a)) \ge \varepsilon \# \mathcal{P}_X^{\gamma}(m, a)$. For this X we have, by (3.4),

$$\sum_{q \in \mathcal{P}_X^{\gamma}(m,a)} \int_U \left| L(s,\chi_q) - \prod_{p \le h_X} \left(1 - \frac{\chi_q(p)}{p^s} \right)^{-1} \right|^2 d\sigma \, dt$$

$$\geq \sum_{q \in \mathcal{P}_X^{\gamma}(m,a) - \widetilde{\mathcal{A}}_X^{\gamma}(m,a)} \int_U \left| L(s,\chi_q) - \prod_{p \le h_X} \left(1 - \frac{\chi_q(p)}{p^s} \right)^{-1} \right|^2 d\sigma \, dt$$

$$\geq \varepsilon \# \mathcal{P}_X^{\gamma}(m,a) \, \frac{\varepsilon^2}{b(U,K)^2} = \frac{\varepsilon^3}{b(U,K)^2} \, \# \mathcal{P}_X^{\gamma}(m,a).$$

However, this contradicts (3.7). Hence for any $X > X_0$ we have

$$\#(\mathcal{P}_X^{\gamma}(m,a) - \widetilde{\mathcal{A}}_X^{\gamma}(m,a)) < \varepsilon \# \mathcal{P}_X^{\gamma}(m,a),$$

that is, $\#\widetilde{\mathcal{A}}_X^{\gamma}(m,a)/\#\mathcal{P}_X^{\gamma}(m,a) > 1-\varepsilon$. This and (3.5) complete the proof.

4. Results on characters χ_q for prime discriminants q. The aim of this section is to obtain Proposition 4.3. As before, the letter γ denotes the plus sign or the minus sign. For $X \in \mathbb{R}^+$ we define I_X to be the interval

[0, X] if γ is +, and [-X, 0] if γ is -. We define

(4.1)
$$\delta = \delta(\gamma) = \begin{cases} 1 & \text{if } \gamma \text{ is } +, \\ -1 & \text{if } \gamma \text{ is } -. \end{cases}$$

LEMMA 4.1. Fix a number $\nu \in \mathbb{R}^+$ such that $\pi(\nu) > \pi(m)$. Let $a_p \in \{1, -1\}$ for each prime p satisfying $p \leq \nu$ and $p \nmid m$. Define $\mathcal{P}_{X,\nu}^{\gamma}(m, a) = \mathcal{P}_{X,\nu}^{\gamma}(m, a, \{a_p\})$ to be the set

 $\{q \in \mathcal{P}_X^{\gamma}(m, a) \mid \chi_q(p) = a_p \text{ for every prime } p \text{ with } p \leq \nu \text{ and } p \nmid m\},\$ and put $C_{\nu}(m) := \prod_{p \leq \nu, p \nmid m} \frac{1}{2}.$ Then

$$\lim_{X \to \infty} \frac{\# \mathcal{P}_{X,\nu}^{\gamma}(m,a)}{\# \mathcal{P}_{X}^{\gamma}(m,a)} = C_{\nu}(m).$$

Proof. In general, for $n \in \mathbb{N}$ and $b \in \mathbb{Z}$, we denote by $[b]_n$ the set of all integers x such that $x \equiv b \mod n$, that is, the residue class mod n which b belongs to.

Let p be an odd prime. Let \mathcal{Q}_p be the set of all residue classes $[b]_p \mod p$ such that b is a quadratic residue mod p, other than the residue class $[0]_p$, and let \mathcal{Q}'_p be the set of all residue classes $[c]_p \mod p$ such that c is a quadratic non-residue mod p. It is well known that

(4.2)
$$\#\mathcal{Q}_p = \#\mathcal{Q}'_p = \frac{p-1}{2}.$$

In view of the definitions of Kronecker's symbol and Legendre's symbol, a discriminant q satisfies $\chi_q(p) = a_p$ if and only if q belongs to one of residue classes in \mathcal{Q}_p if $a_p = 1$ and in \mathcal{Q}'_p if $a_p = -1$. From this, (4.2) and the Chinese remainder theorem, it follows, for an integer r such that δr is a prime number, that r satisfies $r \equiv \delta a \mod m$ (i.e. $r \in \mathcal{P}^{\gamma}(m, a)$) and $\chi_r(p) = a_p$ for every prime p with $p \leq \nu$ and $p \nmid m$ if and only if r belongs to one of exactly $\prod_{p \leq \nu, p \nmid m} (p-1)/2$ distinct residue classes mod Q, where

$$Q = Q(m,\nu) := m \prod_{p \leq \nu, \, p \nmid m} p$$

and δ is as in (4.1). Let $\mathcal{R}^{\gamma} = \mathcal{R}^{\gamma}(m, a, \nu)$ denote the set of those residue classes mod Q, so that

(4.3)
$$\#\mathcal{R}^{\gamma} = \prod_{p \le \nu, \, p \nmid m} \frac{p-1}{2}$$

Thus

$$(4.4) \quad \mathcal{P}_{X,\nu}^{\gamma}(m,a) = \{ r \in I_X \mid \delta r \text{ is a prime, } r \equiv \delta a \mod m, \\ \chi_r(p) = a_p \text{ for every prime } p \text{ with } p \leq \nu \text{ and } p \nmid m \} \\ = \bigcup_{[c]_Q \in \mathcal{R}^{\gamma}} \{ r \in I_X \mid \delta r \text{ is a prime, } r \equiv c \mod Q \}.$$

We note that if $[c]_Q \in \mathcal{R}^{\gamma}$ then

since $[0]_p \notin \mathcal{Q}_p$ and $[0]_p \notin \mathcal{Q}'_p$ for all primes p with $p \leq \nu$ and $p \nmid m$, and gcd(a,m) = 1.

From (4.4) we have

$$\# \mathcal{P}_{X,\nu}^{\gamma}(m,a) = \sum_{\substack{[c]_Q \in \mathcal{R}^{\gamma} \\ r \equiv c \mod Q}} \sum_{\substack{1 = \sum_{\substack{[c]_Q \in \mathcal{R}^{\gamma} \\ p \equiv \delta c \mod Q}}} \sum_{\substack{p \leq X \\ p \equiv \delta c \mod Q}} 1$$

By the prime number theorem for arithmetic progressions and (4.5),

(4.6)
$$\sum_{\substack{p \le X \\ p \equiv \delta c \bmod Q}} 1 \sim \frac{1}{\varphi(Q)} \frac{X}{\log X} \quad \text{as } X \to \infty.$$

Note that the right-hand side of (4.6) is independent of $[c]_Q \in \mathcal{R}^{\gamma}$. Therefore for fixed ν we have

(4.7)
$$\# \mathcal{P}_{X,\nu}^{\gamma}(m,a) \sim \frac{\# \mathcal{R}^{\gamma}}{\varphi(Q)} \frac{X}{\log X}$$
$$= \left(\prod_{p \leq \nu, \ p \nmid m} \frac{1}{2}\right) \frac{X}{\varphi(m) \log X} = \frac{C_{\nu}(m)}{\varphi(m)} \frac{X}{\log X}$$

as $X \to \infty$, using (4.3) and the fact

(4.8)
$$\varphi(Q) = \varphi(m) \prod_{p \le \nu, p \nmid m} \varphi(p) = \varphi(m) \prod_{p \le \nu, p \nmid m} (p-1).$$

Thus (4.7) and (1.2) give us

$$\frac{\#\mathcal{P}_{X,\nu}^{\gamma}(m,a)}{\#\mathcal{P}_{X}^{\gamma}(m,a)} = \frac{\#\mathcal{P}_{X,\nu}^{\gamma}(m,a)}{\frac{C_{\nu}(m)}{\varphi(m)}\frac{X}{\log X}} \frac{\frac{C_{\nu}(m)}{\varphi(m)}\frac{X}{\log X}}{\frac{1}{\varphi(m)}\frac{X}{\log X}} \frac{\frac{1}{\varphi(m)}\frac{X}{\log X}}{\#\mathcal{P}_{X}^{\gamma}(m,a)} \to C_{\nu}(m)$$

as $X \to \infty$. This completes the proof.

LEMMA 4.2. Fix $\nu \in \mathbb{R}^+$ such that $\pi(\nu) > \pi(m)$. Let $a_p \in \{1, -1\}$ for each prime p with $p \leq \nu$ and $p \nmid m$. Let $\mathcal{P}_{X,\nu}^{\gamma}(m, a)$ and $C_{\nu}(m)$ be as in Lemma 4.1, $h_X = (\log \log X)^2$ be as in (3.1), and $\sigma_1 > 1/2$. Then for all large X and uniformly for $s \in \mathbb{C}$ with $\operatorname{Re} s \geq \sigma_1$ we have

(4.9)
$$\sum_{q \in \mathcal{P}_{X,\nu}^{\gamma}(m,a)} \left| \sum_{\nu$$

Proof. Let Q and \mathcal{R}^{γ} be as in the proof of Lemma 4.1. From (4.4) it follows that

$$(4.10) \quad \sum_{q \in \mathcal{P}_{X,\nu}^{\gamma}(m,a)} \left| \sum_{\nu
$$= \sum_{[c]_Q \in \mathcal{R}^{\gamma}} \sum_{\substack{u \le X, \, u : \text{prime} \\ u \equiv \delta c \mod Q}} \left| \sum_{\nu$$$$

For $[c]_Q \in \mathcal{R}^{\gamma}$ we have

$$(4.11) \qquad \sum_{\substack{u \leq X, u: \text{ prime} \\ u \equiv \delta c \mod Q}} \left| \sum_{\nu
$$= \sum_{\substack{u \leq X, u: \text{ prime} \\ u \equiv \delta c \mod Q}} \left(\sum_{\nu
$$= \sum_{\substack{\nu
$$+ \sum_{\substack{p_1, p_2: \text{ primes}, p_1 \neq p_2 \\ \nu < p_1, p_2 \leq h_X}} \frac{1}{p_1^s \overline{p_2^s}} \sum_{\substack{u \leq X, u: \text{ prime} \\ u \equiv \delta c \mod Q}} \chi_{\delta u}(p_1) \overline{\chi_{\delta u}(p_2)}$$

$$= S_1 + S_2, \quad \text{say.}$$$$$$$$

Using the prime number theorem for arithmetic progressions, we deduce that for all $s\in\mathbb{C}$ with ${\rm Re}\,s\geq\sigma_1$

$$(4.12) |S_1| \leq \sum_{\nu \nu, n \in \mathbb{N}} \frac{1}{n^{2\sigma_1}}\right) \frac{1}{\varphi(Q)} \frac{X}{\log X} \\ \ll \frac{\nu^{1-2\sigma_1}}{2\sigma_1 - 1} \frac{1}{\varphi(Q)} \frac{X}{\log X}.$$

152

Next we shall consider the sum S_2 . Fix two distinct primes p_1, p_2 satisfying $\nu < p_1 \le h_X$ and $\nu < p_2 \le h_X$. Then by the definition of the Kronecker symbol and the orthogonality relation for Dirichlet characters, we have

$$(4.13) \qquad \sum_{\substack{u \leq X, \ u : \text{prime} \\ u \equiv \delta c \mod Q}} \chi_{\delta u}(p_1) \overline{\chi_{\delta u}(p_2)} = \sum_{\substack{u \leq X, \ u : \text{prime} \\ u \equiv \delta c \mod Q}} \left(\frac{\delta u}{p_1}\right) \left(\frac{\delta u}{p_2}\right) \\ = \sum_{\substack{u \leq X, \ u : \text{prime} \\ u \in X, \ u : \text{prime}}} \left(\frac{\delta u}{p_1}\right) \left(\frac{\delta u}{p_2}\right) \frac{1}{\varphi(Q)} \sum_{\substack{\lambda \mod Q}} \lambda(u) \overline{\lambda(\delta c)} \\ = \frac{1}{\varphi(Q)} \left(\frac{\delta}{p_1}\right) \left(\frac{\delta}{p_2}\right) \sum_{\substack{\lambda \mod Q}} \overline{\lambda(\delta c)} \sum_{\substack{u \leq X, \ u : \text{prime} \\ u \in X, \ u : \text{prime}}} \left(\frac{u}{p_1}\right) \left(\frac{u}{p_2}\right) \lambda(u),$$

where $\sum_{\lambda \mod Q}$ means the sum over all the Dirichlet characters $\lambda \mod Q$. Since p_1 , p_2 and Q are relatively prime in pairs, we find from the Chinese remainder theorem that for any character $\lambda \mod Q$ the product $\left(\frac{\cdot}{p_1}\right)\left(\frac{\cdot}{p_2}\right)\lambda(\cdot)$ is a non-principal Dirichlet character mod p_1p_2Q . From this, the Siegel– Walfisz theorem (see [Da, p. 132, (3)]) and partial summation, it follows, for fixed ν , that for all large X and all pairs of distinct primes (p_1, p_2) satisfying $\nu < p_1 \leq h_X$ and $\nu < p_2 \leq h_X$, we have

(4.14)
$$\sum_{u \le X, u: \text{ prime}} \left(\frac{u}{p_1}\right) \left(\frac{u}{p_2}\right) \lambda(u) \ll X e^{-b\sqrt{\log X}},$$

where b is an absolute positive constant. From this and (4.13) we infer

$$(4.15) |S_2| \leq \sum_{\substack{p_1, p_2 : \text{primes}, p_1 \neq p_2 \\ \nu < p_1, p_2 \leq h_X}} \frac{1}{p_1^{\sigma_1} p_2^{\sigma_1}} \left| \sum_{\substack{u \leq X, u : \text{prime} \\ u \equiv \delta c \mod Q}} \chi_{\delta u}(p_1) \overline{\chi_{\delta u}(p_2)} \right|$$
$$= \sum_{\substack{p_1, p_2 : \text{primes}, p_1 \neq p_2 \\ \nu < p_1, p_2 \leq h_X}} \frac{1}{p_1^{\sigma_1} p_2^{\sigma_1}} O(X e^{-b\sqrt{\log X}})$$
$$\ll \left(\sum_{p \leq h_X} \frac{1}{p^{\sigma_1}} \right)^2 O(X e^{-b\sqrt{\log X}}) \ll h_X^2 X e^{-b\sqrt{\log X}}$$
$$= o\left(\frac{X}{\log X}\right).$$

Consequently, for fixed ν we find, from (4.11), (4.12) and (4.15), that for all large X and uniformly for $s \in \mathbb{C}$ with $\operatorname{Re} s \geq \sigma_1$,

(4.16)
$$\sum_{\substack{u \le X, u: \text{ prime} \\ u \equiv \delta c \mod Q}} \left| \sum_{\nu$$

Note that the right-hand side of (4.16) is independent of $[c]_Q \in \mathcal{R}^{\gamma}$. Combining (4.16), (4.10), (4.3), (4.8) and (1.2), we conclude that

$$\sum_{q \in \mathcal{P}_{X,\nu}^{\gamma}(m,a)} \left| \sum_{\nu
$$\ll \# \mathcal{R}^{\gamma} \frac{\nu^{1-2\sigma_1}}{2\sigma_1 - 1} \frac{\varphi(m)}{\varphi(Q)} \# \mathcal{P}_X^{\gamma}(m,a) \ll \frac{\nu^{1-2\sigma_1}}{2\sigma_1 - 1} C_{\nu}(m) \# \mathcal{P}_X^{\gamma}(m,a).$$$$

This completes the proof. \blacksquare

To obtain (4.14) we have used the Siegel–Walfisz theorem. We remark that actually, instead of the Siegel–Walfisz theorem, a weaker result (e.g. [Da, p. 123]) is sufficient since $p_1 p_2 Q \ll_{\nu} h_X^2 = (\log \log X)^4$.

PROPOSITION 4.3. Let $\sigma_1 > 1/2$ and K be a compact subset of \mathbb{C} such that $K \subset \{s \in \mathbb{C} \mid \text{Re} s > \sigma_1\}$. Let $\varepsilon > 0$. Then there exists a large real number $\nu_0 = \nu_0(\sigma_1, K, \varepsilon, m)$ depending only on σ_1, K, ε and m, and satisfying $\pi(\nu_0) > \pi(m)$ and the following. Fix any real number $\nu > \nu_0$. Let $a_p \in \{1, -1\}$ for each prime p satisfying $p \leq \nu$ and $p \nmid m$. Let $\mathcal{P}_{X,\nu}^{\gamma}(m, a), C_{\nu}(m)$ and h_X be as in Lemma 4.2 for large X. Define $\mathcal{B}_{X,\nu}^{\gamma}(m, a) = \mathcal{B}_{X,\nu}^{\gamma}(m, a, \varepsilon, \sigma_1, K, \{a_p\})$ by

$$\mathcal{B}_{X,\nu}^{\gamma}(m,a) := \bigg\{ q \in \mathcal{P}_{X,\nu}^{\gamma}(m,a) \, \bigg| \, \max_{s \in K} \bigg| \sum_{\nu$$

Then for all sufficiently large X we have

$$\frac{\#\mathcal{B}_{X,\nu}^{\gamma}(m,a)}{\#\mathcal{P}_{X}^{\gamma}(m,a)} > \frac{1}{2} C_{\nu}(m).$$

Proof. Set $\sigma_2 = 1 + \sup\{\operatorname{Re} s \mid s \in K\}$ and $A = 1 + \sup\{|\operatorname{Im} s| \mid s \in K\}$. Let U be the open rectangle $\{s \in \mathbb{C} \mid \sigma_1 < \operatorname{Re} s < \sigma_2, |\operatorname{Im} s| < A\}$ in \mathbb{C} , and then $U \supset K$. Take a large real number $\nu_0 = \nu_0(\sigma_1, K, \varepsilon, m)$ satisfying $\pi(\nu_0) > \pi(m)$ and

(4.17)
$$\left(\int_{U} 1 \, d\sigma \, dt\right) c \, \frac{\nu_0^{1-2\sigma_1}}{2\sigma_1 - 1} < \frac{\varepsilon^2}{4b(U,K)^2},$$

where c is the absolute constant implied by the symbol \ll in (4.9), and b(U, K) is the constant in Lemma 2.2. Note that ν_0 depends only on σ_1, K, ε and m.

In the following we fix any $\nu > \nu_0$. For large X we define

$$(4.18) \quad \widetilde{\mathcal{B}}_{X,\nu}^{\gamma}(m,a) \\ := \bigg\{ q \in \mathcal{P}_{X,\nu}^{\gamma}(m,a) \, \bigg| \, \iint_{U} \bigg|_{\nu$$

By Lemma 2.2,

(4.19)
$$\widetilde{\mathcal{B}}_{X,\nu}^{\gamma}(m,a) \subset \mathcal{B}_{X,\nu}^{\gamma}(m,a).$$

By Lemma 4.2 and (4.17), we have, for all large X,

(4.20)
$$\sum_{q \in \mathcal{P}_{X,\nu}^{\gamma}(m,a)} \int_{U} \left| \sum_{\nu
$$\leq \left(\int_{U} 1 \, d\sigma \, dt \right) c \, \frac{\nu^{1-2\sigma_{1}}}{2\sigma_{1}-1} \, C_{\nu}(m) \, \# \mathcal{P}_{X}^{\gamma}(m,a)$$
$$< \frac{\varepsilon^{2}}{4b(U,K)^{2}} \, C_{\nu}(m) \, \# \mathcal{P}_{X}^{\gamma}(m,a).$$$$

Now we assume that there exists a large number X such that

$$\#(\mathcal{P}_{X,\nu}^{\gamma}(m,a) - \widetilde{\mathcal{B}}_{X,\nu}^{\gamma}(m,a)) \ge \frac{1}{4} C_{\nu}(m) \, \#\mathcal{P}_{X}^{\gamma}(m,a).$$

Then for this X we have, using (4.18),

$$\sum_{q \in \mathcal{P}_{X,\nu}^{\gamma}(m,a)} \int_{U} \left| \sum_{\nu
$$\geq \sum_{q \in \mathcal{P}_{X,\nu}^{\gamma}(m,a) - \widetilde{\mathcal{B}}_{X,\nu}^{\gamma}(m,a)} \int_{U} \left| \sum_{\nu
$$\geq \frac{1}{4} C_{\nu}(m) \, \# \mathcal{P}_{X}^{\gamma}(m,a) \, \frac{\varepsilon^{2}}{b(U,K)^{2}}.$$$$$$

However, this contradicts (4.20). Hence for all large X we have

$$\#(\mathcal{P}_{X,\nu}^{\gamma}(m,a) - \widetilde{\mathcal{B}}_{X,\nu}^{\gamma}(m,a)) < \frac{1}{4} C_{\nu}(m) \, \#\mathcal{P}_{X}^{\gamma}(m,a),$$

 \mathbf{SO}

(4.21)
$$\frac{\# \widetilde{\mathcal{B}}_{X,\nu}^{\gamma}(m,a)}{\# \mathcal{P}_{X}^{\gamma}(m,a)} > \frac{\# \mathcal{P}_{X,\nu}^{\gamma}(m,a)}{\# \mathcal{P}_{X}^{\gamma}(m,a)} - \frac{1}{4} C_{\nu}(m).$$

Further, Lemma 4.1 implies that

(4.22)
$$\frac{\#\mathcal{P}_{X,\nu}^{\gamma}(m,a)}{\#\mathcal{P}_{X}^{\gamma}(m,a)} > \frac{3}{4} C_{\nu}(m) \quad \text{if } X \text{ is large enough.}$$

Combining (4.19), (4.21) and (4.22), we conclude that if X is large enough then

$$\frac{\#\mathcal{B}_{X,\nu}^{\gamma}(m,a)}{\#\mathcal{P}_{X}^{\gamma}(m,a)} \ge \frac{\#\mathcal{B}_{X,\nu}^{\gamma}(m,a)}{\#\mathcal{P}_{X}^{\gamma}(m,a)} > \frac{3}{4} C_{\nu}(m) - \frac{1}{4} C_{\nu}(m) = \frac{1}{2} C_{\nu}(m). \bullet$$

5. Proofs of Theorem 1.1 and its corollaries

Proof of Theorem 1.1. Let $\varepsilon > 0$ be an arbitrary small number. Take a real number $\sigma_1 > 1/2$ such that $K \subset \{s \in \mathbb{C} \mid \text{Re} s > \sigma_1\}$. Fix a large positive number ν_1 satisfying $\nu_1 > \nu_0(\sigma_1, K, \varepsilon, m)$ and $\nu_1^{1-2\sigma_1}/(2\sigma_1-1) < \varepsilon$, where $\nu_0(\sigma_1, K, \varepsilon, m)$ is the constant in Proposition 4.3. We set a_2 to be 1 if $a \equiv 1$ or 7 mod 8, and -1 if $a \equiv 3$ or 5 mod 8. Further, we set $a_p = \left(\frac{\delta a}{p}\right)$ for each odd prime p with $p \mid m$, where δ is as in (4.1).

As is shown in [MN1], there exists a holomorphic function g(s) on Ω such that $g(x) \in \mathbb{R}$ for any $x \in \Omega \cap \mathbb{R}$ and

$$(5.1) h(s) = e^{g(s)}.$$

Now Proposition 2.3 implies that there exist $\nu > \nu_1$ and $a_p \in \{1, -1\}$, for each prime p with $p \leq \nu$ and $p \nmid m$, such that

(5.2)
$$\max_{s \in K} \left| g(s) - \log \prod_{p \le \nu} \left(1 - \frac{a_p}{p^s} \right)^{-1} \right| < \varepsilon.$$

For those a_p 's, where $p \leq \nu$ and $p \nmid m$, we apply Proposition 4.3. Then for the above number ν and all large X, we have

(5.3)
$$\frac{\#\mathcal{B}_{X,\nu}^{\gamma}(m,a)}{\#\mathcal{P}_{X}^{\gamma}(m,a)} > \frac{1}{2} C_{\nu}(m).$$

Since $8 \mid m$, we have $q \equiv \delta a \mod 8$ and $q \equiv \delta a \mod p$ for $q \in \mathcal{P}^{\gamma}(m, a)$ and a prime p with $p \mid m$. This and the definition of Kronecker's symbol yield $\chi_q(2) = a_2$ and $\chi_q(p) = \left(\frac{q}{p}\right) = \left(\frac{\delta a}{p}\right) = a_p$ for $q \in \mathcal{P}^{\gamma}(m, a)$ and an odd prime p with $p \mid m$. Hence, from the definition of $\mathcal{B}^{\gamma}_{X,\nu}(m, a)$ we find that for every $q \in \mathcal{B}^{\gamma}_{X,\nu}(m, a)$ and all large X,

$$(5.4) \quad \max_{s \in K} \left| \log \prod_{p \le \nu} \left(1 - \frac{a_p}{p^s} \right)^{-1} - \log \prod_{p \le h_X} \left(1 - \frac{\chi_q(p)}{p^s} \right)^{-1} \right| \\ = \max_{s \in K} \left| \sum_{\nu$$

since

$$\left|\sum_{\nu$$

From (5.4) and (5.2) we deduce, for every $q \in \mathcal{B}^{\gamma}_{X,\nu}(m,a)$,

$$\max_{s \in K} \left| g(s) - \log \prod_{p \le h_X} \left(1 - \frac{\chi_q(p)}{p^s} \right)^{-1} \right| \ll \varepsilon$$

and therefore

(5.5)
$$\max_{s \in K} \left| \prod_{p \le h_X} \left(1 - \frac{\chi_q(p)}{p^s} \right)^{-1} - h(s) \right| \\ = \max_{s \in K} \left| h(s) \left(\frac{\prod_{p \le h_X} (1 - \chi_q(p)/p^s)^{-1}}{h(s)} - 1 \right) \right| \\ \le \max_{s \in K} |h(s)| \max_{s \in K} |e^{\log \prod_{p \le h_X} (1 - \chi_q(p)/p^s)^{-1} - g(s)} - 1| \\ \ll_{K, h(s)} \varepsilon,$$

using (5.1) and the fact that $e^z - 1 \ll |z|$ if |z| is small.

Let ε_1 be a small positive number such that

$$\varepsilon_1 < \min\left\{\varepsilon, \frac{C_{\nu}(m)}{2}\right\}.$$

According to Proposition 3.2, if we put

(5.6)
$$\mathcal{A}_X^{\gamma}(m,a) = \left\{ q \in \mathcal{P}_X^{\gamma}(m,a) \middle| \max_{s \in K} \middle| L(s,\chi_q) - \prod_{p \le h_X} \left(1 - \frac{\chi_q(p)}{p^s} \right)^{-1} \middle| < \varepsilon_1 \right\},$$

then for all large X,

(5.7)
$$\frac{\#\mathcal{A}_X^{\gamma}(m,a)}{\#\mathcal{P}_X^{\gamma}(m,a)} > 1 - \varepsilon_1.$$

By (5.6) and (5.5), every $q \in \mathcal{A}_X^{\gamma}(m, a) \cap \mathcal{B}_{X, \nu}^{\gamma}(m, a)$ satisfies

(5.8)
$$\max_{s \in K} |L(s, \chi_q) - h(s)| \ll_{K, h(s)} \varepsilon$$

Furthermore, from (5.3) and (5.7) it follows that for the above number ν and all large X,

(5.9)
$$\#(\mathcal{A}_{X}^{\gamma}(m,a) \cap \mathcal{B}_{X,\nu}^{\gamma}(m,a))$$
$$\geq \#\mathcal{A}_{X}^{\gamma}(m,a) + \#\mathcal{B}_{X,\nu}^{\gamma}(m,a) - \#\mathcal{P}_{X}^{\gamma}(m,a)$$
$$\geq \left(\frac{C_{\nu}(m)}{2} - \varepsilon_{1}\right) \#\mathcal{P}_{X}^{\gamma}(m,a).$$

Since $C_{\nu}(m)/2 - \varepsilon_1 > 0$, (5.8) and (5.9) yield (1.3). This completes the proof.

From Theorem 1.1 we can prove Corollaries 1.2–1.4 by the same arguments as in the proofs of Corollaries 1.2–1.4 in [MN1], respectively.

6. On the line Re s = 1. In this section we prove Theorem 1.5. The next lemma is proved in [MN1].

LEMMA 6.1. Let $t \in \mathbb{R}^+$ and $y \in \mathbb{R}^+$ be fixed. Then for any $z_0 \in \mathbb{C}$ and $\varepsilon > 0$, there exist $\nu \ge y$ and $c_p \in \{1, -1\}$, for each prime p with $y \le p \le \nu$, such that

$$\left|z_0 - \sum_{y \le p \le \nu} \frac{c_p}{p^{1+it}}\right| < \varepsilon.$$

PROPOSITION 6.2. Let $t \in \mathbb{R}^+$ be fixed. Let $z \in \mathbb{C}$ and $\nu_1 \in \mathbb{R}^+$ with $\nu_1 > m + 1$. Let $a_p \in \{1, -1\}$ for each prime p with $p \mid m$. Then for any $\varepsilon > 0$ there exist $\nu > \nu_1$ and $a_p \in \{1, -1\}$, for each prime p with $p \leq \nu$ and $p \nmid m$, such that

$$\left|z - \log \prod_{p \le \nu} \left(1 - \frac{a_p}{p^{1+it}}\right)^{-1}\right| < \varepsilon,$$

where

$$\log \prod_{p \le \nu} \left(1 - \frac{a_p}{p^{1+it}} \right)^{-1} = -\sum_{p \le \nu} \log \left(1 - \frac{a_p}{p^{1+it}} \right)$$
$$= \sum_{p \le \nu} \sum_{n=1}^{\infty} \frac{a_p^n}{n p^{n(1+it)}}.$$

Proof. The proof is similar to that of Proposition 2.3. Let $\varepsilon > 0$ be arbitrary. Take a large number $y > \nu_1$ such that $1/y < \varepsilon$. Then

(6.1)
$$\sum_{p \ge y} \sum_{n=2}^{\infty} \frac{1}{np^n} \ll \sum_{p \ge y} \frac{1}{p^2} \ll \frac{1}{y} < \varepsilon.$$

Set $a_p = 1$ for each prime p with p < y and $p \nmid m$.

From Lemma 6.1 it follows that there exist $\nu \ge y$ and $c_p \in \{1, -1\}$, for each prime p with $y \le p \le \nu$, such that

(6.2)
$$\left| \left(z - \sum_{p < y} \sum_{n=1}^{\infty} \frac{a_p^n}{n p^{n(1+it)}} \right) - \sum_{y \le p \le \nu} \frac{c_p}{p^{1+it}} \right| < \varepsilon.$$

For each prime p with $y \le p \le \nu$ we set $a_p = c_p$. Then we obtain, by (6.1) and (6.2),

$$\begin{aligned} \left| z - \log \prod_{p \le \nu} \left(1 - \frac{a_p}{p^{1+it}} \right)^{-1} \right| \\ &= \left| z - \sum_{p < y} \sum_{n=1}^{\infty} \frac{a_p^n}{np^{n(1+it)}} - \sum_{y \le p \le \nu} \frac{c_p}{p^{1+it}} - \sum_{y \le p \le \nu} \sum_{n=2}^{\infty} \frac{c_p^n}{np^{n(1+it)}} \right| \\ &\le \left| z - \sum_{p < y} \sum_{n=1}^{\infty} \frac{a_p^n}{np^{n(1+it)}} - \sum_{y \le p \le \nu} \frac{c_p}{p^{1+it}} \right| + \left| \sum_{y \le p \le \nu} \sum_{n=2}^{\infty} \frac{c_p^n}{np^{n(1+it)}} \right| \\ &< \varepsilon + \sum_{p \ge y} \sum_{n=2}^{\infty} \frac{1}{np^n} \ll \varepsilon, \end{aligned}$$

which completes the proof. \blacksquare

Proof of Theorem 1.5. The proof is similar to that of Theorem 1.1 in Section 5. Since $L(1+it, \chi_q) = \overline{L(1-it, \chi_q)}$, it suffices to verify the assertion in the case t > 0. Moreover, it suffices to consider the case $z_0 \in \mathbb{C} - \{0\}$, since the set $\mathbb{C} - \{0\}$ is dense in \mathbb{C} .

Fix $z_0 \in \mathbb{C} - \{0\}$ and t > 0. Take a complex number z such that $z_0 = e^z$. Let $\varepsilon > 0$ be an arbitrary small number. Take $\sigma_1 \in \mathbb{R}$ with $1/2 < \sigma_1 < 1$, and set $K = \{1 + it\}$. Take $\nu_1 \in \mathbb{R}^+$ so large that $1/\nu_1 < \varepsilon$ and $\nu_1 > \nu_0(\sigma_1, K, \varepsilon, m)$, where $\nu_0(\sigma_1, K, \varepsilon, m)$ is the constant in Proposition 4.3. We set a_2 to be 1 if $a \equiv 1$ or 7 mod 8, and -1 if $a \equiv 3$ or 5 mod 8. Further, we set $a_p = \left(\frac{\delta a}{p}\right)$ for each odd prime p with $p \mid m$. According to Proposition 6.2, there exist $\nu > \nu_1$ and $a_p \in \{1, -1\}$, for each prime p with $p \leq \nu$ and $p \nmid m$, such that

(6.3)
$$\left|z - \log \prod_{p \le \nu} \left(1 - \frac{a_p}{p^{1+it}}\right)^{-1}\right| < \varepsilon.$$

For those a_p 's, where $p \leq \nu$ and $p \nmid m$, we apply Proposition 4.3. Then for the above number ν and all large X, we have

(6.4)
$$\frac{\#\mathcal{B}_{X,\nu}^{\prime}(m,a)}{\#\mathcal{P}_{X}^{\gamma}(m,a)} > \frac{1}{2} C_{\nu}(m).$$

Noting $\chi_q(2) = a_2$ and $\chi_q(p) = a_p$ for $q \in \mathcal{P}^{\gamma}(m, a)$ and an odd prime p with $p \mid m$, we have, for every $q \in \mathcal{B}_{X,\nu}^{\gamma}(m, a)$ and all large X,

(6.5)
$$\left| \log \prod_{p \le \nu} \left(1 - \frac{a_p}{p^{1+it}} \right)^{-1} - \log \prod_{p \le h_X} \left(1 - \frac{\chi_q(p)}{p^{1+it}} \right)^{-1} \right|$$
$$= \left| \sum_{\nu$$

since

$$\sum_{\nu$$

By (6.3) and (6.5), every $q \in \mathcal{B}^{\gamma}_{X,\nu}(m,a)$ satisfies

$$\left|z - \log \prod_{p \le h_X} \left(1 - \frac{\chi_q(p)}{p^{1+it}}\right)^{-1}\right| \ll \varepsilon$$

and hence

(6.6)
$$\left| \prod_{p \le h_X} \left(1 - \frac{\chi_q(p)}{p^{1+it}} \right)^{-1} - z_0 \right| = \left| z_0 \left(\frac{\prod_{p \le h_X} (1 - \chi_q(p)/p^{1+it})^{-1}}{z_0} - 1 \right) \right| \\ = \left| z_0 \right| \left| e^{\log \prod_{p \le h_X} (1 - \chi_q(p)/p^{1+it})^{-1} - z} - 1 \right| \\ \ll_{z_0} \varepsilon.$$

Let ε_1 be a small positive number such that $\varepsilon_1 < \min\{\varepsilon, C_{\nu}(m)/2\}$. Proposition 3.2 implies that if we put

(6.7)
$$\mathcal{A}_X^{\gamma}(m,a) := \left\{ q \in \mathcal{P}_X^{\gamma}(m,a) \left| \left| L(1+it,\chi_q) - \prod_{p \le h_X} \left(1 - \frac{\chi_q(p)}{p^{1+it}} \right)^{-1} \right| < \varepsilon_1 \right\}$$

then

(6.8)
$$\frac{\#\mathcal{A}_X^{\gamma}(m,a)}{\#\mathcal{P}_X^{\gamma}(m,a)} > 1 - \varepsilon_1$$

for all large X. Hence by (6.6) and (6.7) we conclude that every $q \in \mathcal{A}_X^{\gamma}(m,a) \cap \mathcal{B}_{X,\nu}^{\gamma}(m,a)$ satisfies

(6.9)
$$|L(1+it,\chi_q)-z_0|\ll_{z_0}\varepsilon.$$

Furthermore, from (6.4) and (6.8) we see that for the above number ν and all X sufficiently large,

(6.10)
$$\#(\mathcal{A}_X^{\gamma}(m,a) \cap \mathcal{B}_{X,\nu}^{\gamma}(m,a)) \ge \left(\frac{C_{\nu}(m)}{2} - \varepsilon_1\right) \# \mathcal{P}_X^{\gamma}(m,a).$$

Since $C_{\nu}(m)/2 - \varepsilon_1 > 0$, (6.9) and (6.10) complete the proof.

Acknowledgments. The authors would like to thank the referee for kind comments.

References

[Ay] R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1974.

160

- [B1] B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph.D. thesis, Indian Statistical Institute, Calcutta, 1981.
- [B2] —, A joint universality theorem for Dirichlet L-functions, Math. Z. 181 (1982), 319–334.
- [BC] H. Bohr und R. Courant, Neue Anwendungen der Theorie der Diophantischen Approximationen auf die Riemannsche Zetafunktion, J. Reine Angew. Math. 144 (1914), 249–274.
- [Da] H. Davenport, *Multiplicative Number Theory*, 3rd ed., Springer, 2000.
- [EI] P. D. T. A. Elliott, On the distribution of the values of quadratic L-series in the half-plane $\sigma > \frac{1}{2}$, Invent. Math. 21 (1973), 319–338.
- [Em] K. M. Eminyan, χ-universality of the Dirichlet L-function, Mat. Zametki 47 (1990), 132–137 (in Russian); English transl.: Math. Notes 47 (1990), 618–622.
- [Go] S. M. Gonek, Analytic properties of zeta and L-functions, Ph.D. thesis, University of Michigan, 1979.
- [KV] A. A. Karatsuba and S. M. Voronin, *The Riemann Zeta-Function*, de Gruyter, 1992.
- [MN1] H. Mishou and H. Nagoshi, Functional distribution of $L(s, \chi_d)$ with real characters and denseness of quadratic class numbers, Trans. Amer. Math. Soc., to appear.
- [MN2] —, —, Character sums and class numbers of quadratic fields with prime discriminants, submitted.
- [Ti] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Oxford Univ. Press, 1986.
- [Vo] S. M. Voronin, Theorem on the "universality" of the Riemann zeta-function, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 475–486 (in Russian); English transl.: Math. USSR Izv. 9 (1975), 443–453.

Graduate School of MathematicsDepartment of MathematicsNagoya UniversityFaculty of ScienceChikusa-ku, Nagoya 464-8602, JapanNiigata UniversityE-mail: m98018a@math.nagoya-u.ac.jpNiigata 950-2181, JapanE-mail: nagoshih@ybb.ne.jpE-mail: nagoshih@ybb.ne.jp

Received on 7.3.2005 and in revised form on 20.3.2006

(4951)