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Certain maximal curves and Cartier operators
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Arnaldo Garcia and Saeed Tafazolian (Rio de Janeiro)

1. Introduction. More than half a century ago, André Weil proved
a formula for the number N = #C(Fq) of rational points on a smooth
geometrically irreducible projective curve C of genus g defined over a finite
field Fq. This formula provides upper and lower bounds on the number of
rational points possible. It states that

q + 1− 2g
√
q ≤ N ≤ q + 1 + 2g

√
q.

In general, this bound is sharp. In fact, if q is a square, there exist several
curves that attain the above upper bound (see [4], [5], [14] and [23]). We
say a curve is maximal (resp. minimal) if it attains the above upper (resp.
lower) bound.

There are however situations in which the bound can be improved. For
instance, if q is not a square there is a nontrivial improvement due to Serre
(see [17, Section V.3]):

q + 1− g[2
√
q] ≤ N ≤ q + 1 + g[2

√
q],

where [a] denotes the integer part of the real number a.
Ihara showed that if a curve C is maximal over Fq2 then its genus satisfies

(1.1) g ≤ q2 − q
2

.

There is a unique maximal curve over Fq2 which attains the above genus
bound, and it can be given by the affine equation (see [14])

(1.2) yq + y = xq+1.

This is the so-called Hermitian curve over Fq2 .
In this paper, we consider maximal (and also minimal) curves over a

finite field with q2 elements. We give a characterization of certain maxi-
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mal and minimal curves of the following types: Fermat, Artin–Schreier or
hyperelliptic. The main tool is the Cartier operator, which is a nilpotent
operator in the case of maximal (or minimal) curves over finite fields. We
give generalizations of results from [1], [7], [9], [22] and [23].

In Section 2 we review some important properties of the curves in ques-
tion. Of special interest is Proposition 2.9 which is used to prove in Section 3
that C n = 0 for a maximal or a minimal curve over Fq2 with q = pn, where C
denotes the Cartier operator (see Theorem 3.3). In Section 4 we consider the
Fermat curve C(m) over Fq2 , defined by the affine equation ym = 1 − xm.
We show that C(m) is maximal over Fq2 if and only if m divides q + 1.
This generalizes [1, Corollary 3.5] which deals with the particular case when
m belongs to the set of values of the polynomial T 2 − T + 1, and it also
generalizes [9, Corollary 1] which deals with the case of q = p prime (see
Remark 4.3).

In Section 5 we consider maximal curves C over Fq2 given by an affine
equation yq − y = f(x), where f(x) is a polynomial in Fq2 [x] with degree d
prime to the characteristic p. We show that d | q + 1 and that the maximal
curve C is isomorphic to the curve given by yq + y = xd (see Theorem 5.4).
In particular, this result shows that the hypothesis that d | q + 1 in Propo-
sition 5.2 is superfluous and that the maximal curves C in Theorem 5.4 are
covered by the Hermitian curve over Fq2 given by (1.2) (see Remark 5.5).
The main ideas here come from [7] which deals with the case of q = p prime.
In Section 6 we deal with maximal hyperelliptic curves C over Fq2 in char-
acteristic p > 2. The genus of C satisfies g(C) ≤ (q− 1)/2 and we show that
the curve C given by the affine equation

y2 = xq + x

is the unique maximal hyperelliptic curve over Fq2 with genus g = (q− 1)/2
(see Theorem 6.1). The main ideas here come from [22] which deals with
hyperelliptic curves with zero Hasse–Witt matrix (see Remark 6.2).

In this paper the word curve will mean a projective nonsingular and
geometrically irreducible algebraic curve defined over a perfect field of char-
acteristic p > 0.

2. Maximal curves. In this section we review some well-known prop-
erties of maximal curves.

Let C be a curve of genus g > 0 over the finite field k = Fq with q
elements. The zeta function of C is a rational function of the form

Z(C/k) =
L(t)

(1− t)(1− qt)
,

where L(t) ∈ Z[t] is a polynomial of degree 2g with integral coefficients. We
call this polynomial the L-polynomial of C over k.
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Let K/k be the function field of C over k. Then the divisor class group
C0(K) is finite and it is isomorphic to the group of k-rational points of the
Jacobian J of C,

C0(K) = J (k).

It is well-known that the class number h = ord(C0(K)) of K/k is given by
h = L(1). We have

L(t) = 1 + a1t+ · · ·+ a2g−1t
2g−1 + qgt2g =

2g∏
i=1

(1− αit),

where a2g−i = qg−iai for i = 1, . . . , g, and moreover the αi’s are complex
numbers with absolute value |αi| =

√
q for 1 ≤ i ≤ 2g.

We recall the following fact about maximal curves (see [21]):

Proposition 2.1. Suppose q is a square. For a smooth projective curve
C of genus g, defined over k = Fq, the following conditions are equivalent :

• C is maximal (minimal , respectively).
• L(t) = (1 +

√
q t)2g (L(t) = (1−√q t)2g, respectively).

• The Jacobian of C is k-isogenous to the gth power of a supersingular
elliptic curve, all of whose endomorphisms are defined over k.

Let h(t) = t2gL(t−1). Then h(t) is the characteristic polynomial of the
Frobenius action on the Jacobian variety J /k.

Remark 2.2. As shown by J.-P. Serre, if there is a morphism defined
over the field k between two curves f : C → D, then the L-polynomial of
D divides the one of C. Hence a subcover D of a maximal curve C is also
maximal (see [10]). So one way to construct explicit maximal curves is to
find equations for subcovers of the Hermitian curve (see [1] and [4]).

Definition. The p-rank of an abelian variety A/k is denoted by σ(A);
it is the number of copies of Z/pZ in the group of points of order p in A(k).
The p-rank σ(C) of a curve C/k is the p-rank of its Jacobian. We also call it
the Hasse–Witt invariant of the curve.

If we have the L-polynomial of a curve C, we can use the following result
to determine its Hasse–Witt invariant (see [16]):

Proposition 2.3. Let C be a curve defined over k = Fq. If the L-
polynomial is L = 1 + a1t + · · · + a2g−1t

2g−1 + qgt2g, then the Hasse–Witt
invariant satisfies

σ(C) = max{i | ai 6≡ 0 (mod p)}.

Remark 2.4. Since a2g−i = qg−iai, i = 0, 1, . . . , g, we have 0≤ σ(C)≤ g.
If σ(C) = g the curve is called ordinary .
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Corollary 2.5. If a curve C is maximal (or minimal) over a finite
field , then the Hasse–Witt invariant satisfies σ(C) = 0.

Proof. This follows from the above proposition and Proposition 2.1.

Remark 2.6. In fact, the p-rank of an abelian variety is equal to the
number of zero slopes in its p-adic Newton polygon and this number is not
greater than the dimension. So in general we have 0 ≤ σ(C) ≤ g(C). From
Proposition 2.1 a maximal (or minimal) curve C is supersingular, so all
slopes of its Newton polygon are equal to 1/2. On the other hand, if a curve C
defined over a finite field k = Fq is supersingular, then C is minimal over some
finite extension of k (see [18, Proposition 1]). For additional information
about Newton polygons, see [12].

We recall the following basic result concerning Jacobians. Let C be a
curve, F the Frobenius endomorphism (relative to the base field) of the
Jacobian J of C, and h(t) the characteristic polynomial of F . Let h(t) =∏T
i=1 hi(t)

ri be the irreducible factorization of h(t) over Z[t]. Then

(2.1)
T∏
i=1

hi(F ) = 0 on J .

This follows from the semisimplicity of F and the fact that the represen-
tation of endomorphisms of J on the Tate module is faithful (cf. [21, The-
orem 2] and [11, VI, Section 3]). In the case of a maximal curve over Fq2 , we
have h(t) = (t + q)2g. Therefore from (2.1) we obtain the following result,
which is contained in the proof of [14, Lemma 1].

Lemma 2.7. The Frobenius map F (relative to Fq2) of the Jacobian J
of a maximal (resp. minimal) curve over Fq2 acts as multiplication by −q
(resp. by +q).

Remark 2.8. Let A be an abelian variety defined over Fq2 , of dimen-
sion g. Then

(q − 1)2g ≤ #A(Fq2) ≤ (q + 1)2g.

But if C is a maximal (resp. minimal) curve over Fq2 , then by the above
lemma we have J (Fq2) = (Z/(q+1)Z)2g (resp. J (Fq2) = (Z/(q−1)Z)2g). So
the Jacobian of a maximal (resp. minimal) curve is maximal (resp. minimal)
in the sense of the above bounds.

The following proposition is crucial for us (see [2, Proposition 1.2]):

Proposition 2.9. Let A be an abelian variety defined over Fq2 , where
q = pn. If the Frobenius F relative to Fq2 acts on the abelian variety A as
multiplication by ±q, then Fn = 0 on H1(A,OA).
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3. Cartier operator. Let C be a curve defined over a perfect field k of
characteristic p > 0. Let Ω1 be the sheaf of differential 1-forms on C. Then
there exists a unique operation C : Ω1 → Ω1, called the Cartier operator,
such that

(i) C is 1/p-linear, i.e., C is additive and C (fpω) = fC (ω),
(ii) C vanishes on exact differentials, i.e., C (df) = 0,
(iii) C (fp−1df) = df ,
(iv) a differential ω ∈ Ω1 is logarithmic (i.e., there exists a section f 6= 0

such that ω = df/f) if and only if ω is closed and C (ω) = ω,

where f (resp. ω) is a local section of O (resp. Ω1). This operator induces a
1/p-linear map

C : H0(C, Ω1)→ H0(C, Ω1),

acting on the space of regular differential forms.

Remark 3.1. Moreover, for a given natural number n, one can easily
show that

C n(xjdx) =
{

0 if pn - j + 1,
xs−1dx if j + 1 = pns.

We mention here the following theorem of Hasse–Witt ([6]):

Theorem 3.2. Let V be a finite-dimensional vector space over an alge-
braically closed field of characteristic p > 0. Let ψ : V → V be a 1/p-linear
map. Then there are two subspaces V s and V 0 of V satisfying the following
conditions:

• V s is spanned by ψ invariant elements.
• Each y in V 0 is killed by an iterate of ψ.
• V = V s ⊕ V 0.

Definition. For a basis ω1, . . . , ωg of H0(C, Ω1) let (aij) denote the
associated matrix of the Cartier operator C , i.e.,

C (ωj) =
g∑
i=1

aijωi.

The corresponding Hasse–Witt matrix A (C) is obtained by taking pth pow-
ers, i.e.,

A (C) = (apij).

Because of 1/p-linearity, the operator C n is represented with respect to the
basis ω1, . . . , ωg by the product of the matrices below:

(a1/pn−1

ij ) · · · (a1/p
ij ) · (aij).

By raising the coefficients to pnth powers we get the matrix

A (C)[n] = (apij) · (a
p2

ij ) · · · (ap
n

ij ).
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It is remarkable that if n ≥ g then the rank of the matrix A (C)[n] does not
depend on n and it is equal to the Hasse–Witt invariant of C.

Theorem 3.3. Let C be an algebraic curve defined over a finite field
with q2 elements, where q = pn for some n ∈ N. If the curve C is maximal
(or minimal) over Fq2 , then C n = 0.

Proof. From Lemma 2.7 we know that the Frobenius acting on the Tate
module of the Jacobian of C acts as multiplication by ±q. Then one may
apply Proposition 2.9 to conclude that Fn = 0. Finally, since the Cartier
operator acting on H0(C, Ω1) is dual to the Frobenius acting on H1(C,OC)
by the Serre duality, one concludes that also C n = 0.

The next result (see [19, Corollary 2.7]) relates the Hasse–Witt matrix
and the Weierstrass gap sequence at a rational point.

Proposition 3.4. Let C be a curve defined over a perfect field and
n∈N. Let A (C) denote the Hasse–Witt matrix of the curve C. If P is a
rational point on C, then the rank of A (C)[n] is no smaller than the number
of gaps at P divisible by pn.

Corollary 3.5. Let C be a curve defined over Fq2. Let P be a rational
point on the curve C. If C is maximal over Fq2 then q is not a gap number
of P .

Proof. If q = pn for some integer n and C is a maximal curve over
Fq2 then Theorem 3.3 yields A (C)[n] = 0. Thus the result follows from
Proposition 3.4.

Corollary 3.6. Let C be a hyperelliptic curve over Fq2 where q = pn

and p > 2. If C n = 0, then

g(C) ≤ q − 1
2

.

Proof. As the genus is fixed under a constant field extension, we can
suppose that k is algebraically closed. We know that a Weierstrass point on
a hyperelliptic curve has the gap sequence 1, 3, 5, . . . , 2g − 1, so the result
follows from Proposition 3.4.

Remark 3.7. If C is maximal over Fp2 then C = 0. On the other hand,
the Cartier operator on a curve is zero if and only if the Jacobian of the
curve is the product of supersingular elliptic curves (see [13, Theorem 4.1]).
Now by Theorem 1.1 of [2] we also have

• g(C) ≤ (p2 − p)/2,
• g(C) ≤ (p− 1)/2 if C is hyperelliptic and (p, g) 6= (2, 1).
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4. Fermat curves. In this section we give a characterization of maximal
Fermat curves.

Let k be a finite field with q2 elements, where q = pn for some integer n.
Let C(m) be the Fermat curve defined over k by

xm + ym = zm,

where m is an integer such that m ≥ 3 and gcd(m, p) = 1.
As is well-known, the genus g of C(m) is g = (m − 1)(m − 2)/2. The

affine model of C(m) is given by xm1 + ym1 = 1 (x1 = x/z, y1 = y/z). Let
µm denote the set of mth roots of unity. If m divides q2− 1, then the group
µm × µm operates on rational points of C(m) by

(4.1) (ξ, ζ)(x1, y1) = (ξx1, ζy1) with ξ, ζ ∈ µm.
Remark 4.1. If C is maximal over Fq2 , then m divides q2 − 1 (see the

proof of Lemma 4.5 in [5]).

Lemma 4.2. With notation and hypotheses as above, if C(m) is maximal
over Fq2 , then m ≤ q + 1.

Proof. Since the genus is g = (m − 1)(m − 2)/2 and the curve C(m) is
maximal over Fq2 , then

(4.2) #C(m)(Fq2) = 1 + q2 + (m− 1)(m− 2)q.

Looking at the function field extension Fq2(x, y)/Fq2(x), where ym = 1−xm,
we see that the points with xm = 1 are totally ramified. Hence we also have

(4.3) #C(m)(Fq2) ≤ m+ (q2 + 1−m)m.

From (4.2) and (4.3) we conclude that m ≤ q + 1.

If m = q + 1 then C(q + 1) is the Hermitian curve over Fq2 . Suppose m
divides q + 1, i.e., q + 1 = mr for some integer r. Then we can define the
following morphism:

C(q + 1)→ C(m), (x, y) 7→ (xr, yr).

Hence C(m) is covered by C(q + 1). Thus by Remark 2.2 if m divides q + 1,
then C(m) is maximal over Fq2 . Now we want to show the converse. We start
with a remark:

Remark 4.3. Assume q = p is a prime number. If the curve C(m) is
maximal over Fp2 , then Theorem 3.3 implies that the Hasse–Witt matrix of
C(m) is zero. Hence from [9, Corollary 1] we find that m | p + 1. The next
theorem generalizes this result.

Theorem 4.4. Let C(m) be the Fermat curve of degree m prime to the
characteristic p defined over Fq2. Then C(m) is maximal over Fq2 if and
only if m divides q + 1.
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Proof. If m | q+1, then the above discussion shows that C(m) is maximal
over Fq2 . Conversely, let C(m) be a maximal curve over Fq2 . By Remark 4.1
we know that m divides q2− 1. As in the proof of the lemma above, looking
at the function field extension Fq2(x, y)/Fq2(x) we find that

(4.4) #C(m)(Fq2) = m+ λm for some integer λ.

In fact, C(m) has m rational points which correspond to the totally ramified
points with xm = 1 and some others that are completely splitting. On the
other hand, from the maximality of C(m) we have

(4.5) #C(m)(Fq2) = 1 + q2 + (m− 1)(m− 2)q.

Comparing (4.4) and (4.5) we deduce that m | (q + 1)2. Hence m | 2(q + 1),
since m | q2 − 1. Now we have two cases:

Case 1: p = 2. In this case since gcd(m, p) = 1, we see that m is odd
and hence it divides q + 1, since it divides 2(q + 1).

Case 2: p = odd. In this case gcd(q + 1, q − 1) = 2. Reasoning as for
p = 2, we find that if d is an odd divisor of m, then d | q + 1. The only
situation still to be investigated is the following: q + 1 = 2rs with s an odd
integer and m = 2r+1s1 with s1 | s. But according to Remark 2.2 and the
following lemma, this situation does not occur.

Lemma 4.5. Assume that the characteristic p is odd and write q+1 = 2rs
with s an odd integer. Set m := 2r+1. Then the Fermat curve C(m) is not
maximal over Fq2.

Proof. Writing q = pn we consider three cases:

Case 1: p ≡ 1 (mod 4). In this case we have q + 1 = 2s with s odd. So
we must show that the curve C(4) is not maximal over Fq2 . But it follows
from [9, Theorem 2] that C(4) with p ≡ 1 (mod 4) is ordinary and so it is
not maximal.

Case 2: p ≡ 3 (mod 4) and n even. In this case we have again q+1 = 2s
with s odd and we must show that the curve C(4) is not maximal over Fq2 .
Since 4 | p + 1, the curve C(4) is maximal over Fp2 . Hence C(4) is minimal
over Fq2 because n is even.

Case 3: p ≡ 3 (mod 4) and n odd. As n is odd, we have q + 1 = 2rs
with r ≥ 2 and s odd. Here we can assume that r ≥ 3. In fact, for r = 2
according to [8, p. 204], the curve C(8) is not supersingular and hence cannot
be maximal. Note that r = 2 implies p ≡ 3 (mod 8).

Consider now the curve C(m) with m = 2r+1 and r ≥ 3. As m = 2r+1 is
the largest power of 2 that divides q2 − 1, −1 is not an mth power in F∗q2 .
Hence the points at infinity on ym = 1 − xm are not rational. This implies
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that (see (4.1))

(4.6) #C(m)(Fq2) = m+ λ1m
2 for some integer λ1.

Then from (4.5) and (4.6) we get

q2 + 1 + 2q − 3mq −m ≡ 0 (mod m2).

Hence (q+1)2−m(2q+2)−m(q−1) ≡ 0 (mod m2). Since m | 2q+2, we obtain
4(q + 1)2 − 4m(q − 1) ≡ 0 (mod 4m2). This implies that m | 4(q − 1), and
this is impossible as r ≥ 3 and 4(q − 1) = 8s1 with s1 odd. This completes
the proofs of Lemma 4.5 and of Theorem 4.4.

Remark 4.6. The particular case of Theorem 4.4 when m is of the form
m = t2 − t+ 1 with t ∈ N was proved in Corollary 3.5 of [1].

5. Artin–Schreier curves. In this section we consider curves C over
k = Fq2 given by an affine equation

(5.1) yq − y = f(x),

where f(x) is an admissible rational function in k(x), i.e., a rational func-
tion such that every pole of f(x) in the algebraic closure k occurs with a
multiplicity relatively prime to the characteristic p. If C is a maximal curve
over Fq2 , from [5, Remark 4.2] we can assume that f(x) is a polynomial of
degree ≤ q+1. In the following we apply results introduced in the preceding
sections to characterize maximal curves given by (5.1).

The following remark is due to Stichtenoth:

Remark 5.1. Suppose that q = p in (5.1) considered over a perfect
field k. Then we can change variables to assume that the curve C is given
by (5.1) with an admissible rational function f(x). This follows from the
partial fraction decomposition and from arguments similar to the proof of
[17, Lemma III.7.7]. In fact, let u(x) in k[x] be an irreducible polynomial
and suppose that the rational function f(x) involves a partial fraction of
the form c(x)/u(x)lp, with c(x) a polynomial in k[x] prime to u(x) and with
l a natural number. Since the quotient field k[x]/(u(x)) is perfect, we can
find polynomials a(x) and b(x) in k[x] such that c(x) = a(x)p + b(x)u(x).
Setting z = a(x)/u(x)l we get

c(x)/u(x)lp − (zp − z) = z + b(x)/u(x)lp−1.

Performing the substitution y 7→ y − z and repeating this argument as in
the proof of [17, Lemma III.7.7], we get the desired result.

Denote by tr the trace of Fq2 over Fq. We have (see [23]):

Proposition 5.2. Let C be a curve defined over Fq2 by the equation

yq − y = axd + b
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where a, b ∈ Fq2 , a 6= 0 and d is any positive integer relatively prime to the
characteristic p. Suppose d divides q + 1 and define v and u by vd = q2 − 1
and ud = q + 1. Then

(i) If C is maximal over Fq2 , then tr(b) = 0 and av = (−1)u.
(ii) If C is minimal over Fq2 and q 6= 2, then d = 2, tr(b) = 0 and

av 6= (−1)u.

Remark 5.3. Let q = 2 and b ∈ F4 \ F2; apart from the curves listed
in item (ii) of the above proposition, we have another minimal one of the
form (5.1): the minimal elliptic curve over F4 given by the affine equation
y2 + y = x3 + b.

Suppose q = p is a prime. Then a curve given by (5.1) is a p-cyclic
extension of P1. In [7] we have a characterization of such curves, defined
over an algebraically closed field, with zero Hasse–Witt matrix. Here we
generalize their argument, and we characterize such curves in the general
case q = pn with nilpotent Cartier operator, C n = 0.

We now state the main result of this section:

Theorem 5.4. Let C be a curve defined by the equation yq − y = f(x),
where f(x) ∈ Fq2 [x] has degree d prime to p. If the curve C is maximal over
Fq2 , then C is isomorphic to the projective curve defined over Fq2 by the
affine equation

yq + y = xd with d | q + 1.

Proof. Write q = pn. As C is maximal over Fq2 , from Theorem 3.3 we
know that C n = 0.

A basis for H0(C, Ω1) is

(5.2) B = {yrxadx | 0 ≤ a, r and apn + rd ≤ (pn − 1)(d− 1)− 2}.

Since y = yq − f(x) we have

C n(yrxadx) = C n((yq − f)rxadx).

From Remark 3.1 we get

(5.3) C n(yrxadx) =
r∑

h=0

(
r

h

)
(−1)hyr−hC n(fhxadx).

Hence

(5.4) C n(fhxadx) = 0

for all h, r and a such that 0 ≤ h ≤ r,
(
r
h

)
is prime to p and

(5.5) apn + rd ≤ (pn − 1)(d− 1)− 2.
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First we show again that the degree of f(x) is at most q + 1. In fact, if
d = deg(f(x)) ≥ q + 2, then xq−1dx ∈ B, because

q(q − 1) ≤ (q − 1)(q + 1)− 2.

From Remark 3.1 we get C n(xp
n−1dx) = dx and this contradicts C n = 0.

Now if d = q+ 1, then the genus of the curve C is g = q(q− 1)/2. Hence
according to [14], C is the Hermitian curve given by

yq + y = xq+1.

Hence we can assume d ≤ q, and so d ≤ q − 1. Then there exists l ≥ 1 such
that

ld+ 1 ≤ q < (l + 1)d+ 1.

Again since gcd(p, d) = 1, we have

(5.6) ld+ 1 ≤ q ≤ (l + 1)d− 1.

For r ∈ N satisfying
(q − 1− r)d ≥ q + 1

we define

a(r) :=
[
d− 1− (r + 1)d+ 1

q

]
,

which is the largest possible a ∈ N satisfying (5.5).
From (5.6) and d ≤ q − 1, we find that a(l) = d− 3 and therefore

(5.7) deg(f lxa(l)) = ld+ a(l) = (l + 1)d− 3.

Suppose that q − 1 = ld + a with 0 ≤ a ≤ a(l). Then the polynomial
f lxa has degree q − 1 and it follows from Remark 3.1 that

C n(f lxadx) = a
l/q
d dx

where ad denotes the leading coefficient of f(x). But this contradicts (5.4)
with r = h = l.

Therefore (5.7) implies that

(5.8) q − 1 ≥ ld+ a(l) + 1 = (l + 1)d− 2.

By (5.6) and (5.8), we have

(5.9) q + 1 = sd with s := l + 1 ≥ 2.

Since gcd(p, d) = 1, we can change variable x 7→ x + α, for a suitable
α ∈ Fq2 , so that

f(x) = adx
d + aix

i + · · ·+ a0 with i ≤ d− 2.

Therefore
f(x)s = asdx

sd + sas−1
d aix

i+(s−1)d + · · ·+ as0.
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Suppose d ≥ 3. In this case if 1 ≤ i ≤ d− 2, then

0 ≤ d− i− 2 ≤ d− 3 = a(s).

We stress here that a(l) = a(l + 1) = d− 3. Therefore

i+ (s− 1)d+ d− i− 2 = sd− 2 = q − 1,

and we get
C n(fsxd−i−2dx) = s(as−1

d ai)1/qdx = 0.

This implies ai = 0 since s is prime to p by (5.9). Hence f(x) must be of
the form (the case d = 2 is trivial)

f(x) = axd + b with d | q + 1.

Now if the curve is maximal, from Proposition 5.2 we know that tr(b) = 0
and av = (−1)u where u = (q + 1)/d and v = (q2 − 1)/d. By Hilbert’s 90
Theorem, there exists γ ∈ Fq2 such that γq−γ = b and by changing variable
y 7→ y + γ we can assume b = 0.

Now we have two cases:

Case 1: u is even. In this case av = 1 and hence a = cd for some c ∈ F∗q2 .
Changing variable x 7→ c−1x we have

yq − y = xd with d | q + 1.

Pick α ∈ Fq2 with αq−1 = −1. Substituting y 7→ α−1y we have yq+y = αxd.

Again here αv = α(q−1)u = (−1)u = 1 and hence α = θd for some θ ∈ F∗q2 ,
and we conclude that the curve is isomorphic to yq + y = xd.

Case 2: u is odd. In this case av = −1 and hence (−aq−1)u = 1. So
−aq−1 = βd(q−1) for some β ∈ F∗q2 . Set µ := aβ−d; then µq−1 = −1. Now by
changing variables x 7→ β−1x and y 7→ −µy we conclude that the curve C is
equivalent to

yq + y = xd with d | q + 1.

Remark 5.5. Most of the argument above just uses the property C n = 0,
and we see that the hypothesis that d | q+1 in Proposition 5.2 is superfluous.
We also infer that all maximal curves over Fq2 given by yq − y = f(x) as in
Theorem 5.4 are covered by the Hermitian curve.

We can also classify minimal Artin–Schreier curves over Fq2 :

Theorem 5.6. Let C be a curve defined by the equation yq − y = f(x),
where f(x) ∈ Fq2 [x] has degree prime to p and p 6= 2. If C is minimal over
Fq2 and g(C) 6= 0, then C is equivalent to the projective curve defined by the
equation

yq − y = ax2 where a ∈ Fq2 , a 6= 0, and a(q2−1)/2 6= (−1)(q+1)/2.
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Proof. We know that if a curve is minimal over Fq2 , with q = pn, then
again the operator C n is zero. So by the above proof, the curve can be defined
by yq − y = axd + b where d | q + 1. Now we can use again Proposition 5.2;
it yields d = 2, tr(b) = 0 and a(q2−1)/2 6= (−1)(q+1)/2.

Remark 5.7. In the above theorem, if q ≡ 1 (mod 4), then on changing
variable x 7→ α−1x, where a = α2, the minimal curve C is equivalent to

yq − y = x2.

Clearly, this last curve is maximal over Fq2 if q ≡ 3 (mod 4).

Let π : C → D be a p-cyclic covering of projective nonsingular curves
over the algebraic closure k. Then we have the so-called Deuring–Shafarevich
formula:

(5.10) σ(C)− 1 + r = p(σ(D)− 1 + r),

where r is the number of ramification points of the covering π.

Corollary 5.8. Let C be a curve defined over k = Fp2 such that there
exists a cyclic covering C → P1 of degree p which is also defined over k. If
the curve C is maximal over Fp2 , then C is isomorphic to the curve given by
the affine equation yp + y = xd, where d divides p+ 1.

Proof. From Remark 5.1 we can assume that C is given by

yp − y = f(x),

where every pole of f(x) in k occurs with a multiplicity relatively prime
to p. Now if C is maximal, then σ(C) = 0 by Corollary 2.5. Note that from
(5.10) we must have r = 1 and we can put this unique ramification point at
infinity; hence we can assume that f(x) ∈ k[x]. Note here that the unique
ramification point is k-rational. The result now follows from Theorem 5.4.

6. Hyperelliptic curves. Let k = Fq2 be a finite field of characteristic
p > 2. Let C be a projective nonsingular hyperelliptic curve over k of genus g.
Then C can be defined by an affine equation of the form

y2 = f(x),

where f(x) is a polynomial over k of degree 2g + 1, without multiple roots.
If C is maximal over Fq2 then by Corollary 3.6 we have an upper bound on
the genus, namely

g(C) ≤ q − 1
2

.

In the next theorem we establish a characterization of maximal hyperel-
liptic curves in characteristic p > 2 that attain this upper bound.



212 A. Garcia and S. Tafazolian

Theorem 6.1. Suppose that p > 2. There is a unique maximal hyperel-
liptic curve over Fq2 with genus g = (q − 1)/2. It can be given by the affine
equation

y2 = xq + x.

Before proving this theorem, we need to explain how the matrix associ-
ated to C n, where q = pn, is determined from f(x).

The differential 1-forms of the first kind on C form a k-vector space
H0(C, Ω1) of dimension g with basis

B = {ωi = xi−1dx/y | i = 1, . . . , g}.
The images under the operator C n are determined in the following way.
Rewrite

ωi =
xi−1dx

y
= xi−1y−qyq−1dx = y−qxi−1

N∑
j=0

cjx
jdx,

where the coefficients cj ∈ k are obtained from the expansion

yq−1 = f(x)(q−1)/2 =
N∑
j=0

cjx
j with N =

q − 1
2

(2g + 1).

Then for i = 1, . . . , g we get

ωi = y−q
( ∑

j
i+j 6≡0 (mod q)

cjx
i+j−1dx

)
+
∑
l

c(l+1)q−i
x(l+1)q

yq
dx

x
.

Note here that 0 ≤ l ≤ (N + i)/q − 1 < g − 1/2. On the other hand, we
know from Remark 3.1 that if C n(xr−1dx) 6= 0 then r ≡ 0 (mod q). Thus
we have

C n(ωi) =
g−1∑
l=0

(c(l+1)q−i)
1/q · x

l

y
dx.

If we write ω = (ω1, . . . , ωg) as a row vector we have

C n(ω) = ωM1/q,

where M is the (g × g) matrix with elements in k given as

M =


cq−1 cq−2 . . . cq−g

c2q−1 c2q−2 . . . c2q−g
... . . . . . .

...
cgq−1 cgq−2 . . . cgq−g

 .

Remark 6.2. In [22] the author found a characterization for hyperellip-
tic curves defined over an algebraically closed field whose Hasse–Witt matrix
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is zero. In the proof below we use his ideas to classify hyperelliptic curves
with a nilpotent Cartier operator.

Proof of Theorem 6.1. Let C be a hyperelliptic curve of genus g =
(q−1)/2. Then C can be defined by the equation y2 = f(x) with a square-free
polynomial

f(x) = aqx
q + aq−1x

q−1 + · · ·+ a1x+ a0 ∈ Fq2 [x] and aq 6= 0.

As C is maximal over Fq2 , it has 1 + q2 + q(q − 1) rational points. On the
other hand, if we consider C as a double cover of P1, the ramification points
are the roots of f(x) and the point at infinity. As the latter is a rational
point and 1+q2+q(q−1) is an even number, f(x) must have an odd number
of rational roots. Hence f(x) has at least one rational root in Fq2 , say θ. By
substituting x + θ for x, we can assume that C is defined by the equation
y2 = f(x) with f(0) = 0. We then write

f(x) = aqx
q + aq−1x

q−1 + · · ·+ a1x ∈ Fq2 [x] and a1aq 6= 0.

Now as the curve C is maximal over Fq2 , with q = pn for some integer n,
it follows that C n = 0. So the above matrix M is the zero matrix. Hence
looking at the last row of M , we see that

cgq−1 = cgq−2 = · · · = cgq−g = 0.

We will show by induction that this means

aq−1 = aq−2 = · · · = aq−g = 0.

First we observe that
cgq−1 = gag−1

q aq−1.

So cgq−1 = 0 implies aq−1 = 0. Now assume aq−i = 0 for all 1 ≤ i < m ≤ g.
We want to show that aq−m = 0. Under the assumption above, f(x) reduces
to

f(x) = aqx
q + aq−mx

q−m + · · ·+ a1x.

Thus cgq−m = gag−1
q aq−m. So cgq−m = 0 implies that aq−m = 0. By induc-

tion, f(x) reduces to

f(x) = aqx
q + agx

g + · · ·+ a2x
2 + a1x.

Now we want to show that at = 0 for all 2 ≤ t ≤ g. Looking at the first row
of the matrix M , we see that

cq−1 = cq−2 = · · · = cg+1 = 0.

By induction we can show that this means

a2 = a3 = · · · = ag = 0.

In fact, we first observe that cg+1 = gag−1
1 a2. Because a1 6= 0, cg+1 = 0

implies a2 = 0. Now assume that ai = 0 for all i with 2 ≤ i < m ≤ g. We
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want to show that am = 0. Under the above assumption,

f(x) = aqx
q + agx

g + · · ·+ amx
m + a1x.

Therefore cg−1+m = gag−1
1 am. Again because a1 6= 0, we see that cg−1+m = 0

implies am = 0. Thus by induction we have shown that

f(x) = aqx
q + a1x with a1aq 6= 0.

Now we can write the equation of the curve C as

xq + µx = λy2 for some µ, λ ∈ F∗q2 .
Since C is maximal over Fq2 , one can show easily that the additive polynomial
A(x) := xq + µx has a nonzero root β ∈ F∗q2 . In fact, more is true: it follows
from [5, Theorem 4.3] that all roots of A(x) belong to Fq2 .

Set α := βq and x1 := αx. Then

A(x) = α−q(αx)q + (µα−1)(αx).

Hence
A(x) = α−q(xq1 + µαq−1x1)

has the root x1 = αβ = βq+1 ∈ F∗q . So µαq−1 = −1, and this means that C
is equivalent to the curve given by the equation

xq1 − x1 = ay2, where a := αqλ.

Now as we have seen at the end of the proof of Theorem 5.4, this curve is
isomorphic to the curve given by the equation

y2 = xq + x.

In the next theorem we also classify minimal hyperelliptic curves over
Fq2 in characteristic p > 2 with genus satisfying g = (q − 1)/2:

Theorem 6.3. Suppose that p > 2. There is a unique curve C which is
a minimal hyperelliptic curve over Fq2 with genus g = (q − 1)/2; it can be
given by the affine equation

ay2 = xq − x with a ∈ F∗q2 such that a(q2−1)/2 6= (−1)(q+1)/2.

Proof. The curve C can be given by y2 = f(x) with f(x) a square-free
polynomial in Fq2 [x] of degree deg(f(x)) = q = pn. We have

#C(Fq2) = q2 + 1− (q − 1)q = q + 1

and in particular #C(Fq2) is an even number. As in the proof of Theorem 6.1
we can assume that f(0) = 0, and from C n = 0 we then conclude that

f(x) = aqx
q + a1x with a1aq 6= 0.

Hence the minimal curve C can be defined by

xq + µx = λy2 for some µ, λ ∈ F∗q2 .
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The polynomial A(x) = xq +µx must have a nonzero root in Fq2 ; otherwise
the map sending x to A(x) would be an additive automorphism of Fq2 and
hence the cardinality of rational points would satisfy

#C(Fq2) = 1 + q2.

Having such a nonzero root β ∈ F∗q2 , we conclude as in the proof of The-
orem 6.1 that the curve C can be given by the equation

xq1 − x1 = ay2 with a ∈ F∗q2 .

It now follows from Proposition 5.2 that

av 6= (−1)u with u =
q + 1

2
and v =

q2 − 1
2

.

The element a ∈ F∗q2 satisfies av = ±1. Consider two curves over Fq2 given
by a1y

2 = xq − x and a2y
2 = xq − x respectively, with av1 6= (−1)u and

av2 6= (−1)u. Hence av1 = av2 and a2 = a1c
2 for some c ∈ F∗q2 . The sub-

stitution y 7→ cy shows that the two curves above are isomorphic to each
other.

The theorem below is the analogue of Theorem 6.1 in characteristic p= 2:

Theorem 6.4. Suppose that p = 2. There exists a unique maximal hy-
perelliptic curve over Fq2 with genus g = q/2. It can be given by the affine
equation

y2 + y = xq+1.

Proof. With arguments as in the proof of Corollary 5.8, we find that the
curve can be given by y2 + y = f(x) with f(x) ∈ Fq2 [x] of degree q+ 1. The
result now follows from item 3) of Theorem 2.3 of [3].

7. Serre maximal curves. In this section we consider curves C that
attain the Serre upper bound (we call them SW -maximal curves), i.e., curves
C defined over Fq such that

#C(Fq) = q + 1 + [2
√
q]g(C).

Proposition 7.1. Let k be a field with q elements and set m = [2
√
q].

For a smooth projective curve C of genus g defined over k = Fq, the following
conditions are equivalent :

• The curve C is SW -maximal.
• The L-polynomial of C satisfies L(t) = (1 +mt+ qt2)g.

Proof. See [10] and [17, p. 180].

Corollary 7.2. Let C be a smooth projective curve of genus g defined
over k = Fq which attains the Serre upper bound. Then its Hasse–Witt
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invariant satisfies

σ(C) =
{
g if gcd(p,m) = 1,
0 if p |m.

Proof. Since C is SW-maximal, from Proposition 7.1 we have

L(t) = (1 +mt+ qt2)g = 1 +
g∑
i=1

(
g

i

)
ti(m+ qt)i

= 1 +
g∑
i=1

(
g

i

)
ti
( i∑
j=0

(
i

j

)
mi−jqjtj

)
.

If p |m, then it is clear from Proposition 2.3 that σ(C) = 0. Now suppose that
gcd(p,m) = 1. We have to show that the coefficient of tg in the L-polynomial
L(t) is not divisible by p. Denote it by ag. From the last equality above, we
then obtain

ag ≡ mg (mod p).

We recall that an admissible rational function f(x) ∈ k(x) is such that
every pole of f(x) in the algebraic closure k occurs with a multiplicity prime
to the characteristic p. We then have:

Theorem 7.3. Let C be an SW-maximal curve over Fq given by an affine
equation of the form

(7.1) A(y) = f(x),

where A(y) ∈ Fq[y] is an additive and separable polynomial and where
f(x) is an admissible rational function. Set m = [2

√
q] and suppose that

gcd(p,m) = 1. Then all poles of f(x) are simple.

Proof. We know that a curve C given by (7.1) is ordinary if and only if
the rational function f(x) has only simple poles (see [20, Corollary 1]). Thus
Theorem 7.3 follows directly from Corollary 7.2.

Corollary 7.4. Let C be an SW-maximal curve as in the above theorem
with gcd(p,m) = 1. Then its genus satisfies g(C) = (degA−1)(s−1), where
s denotes the number of poles of f(x).

We finish with two examples of SW-maximal Artin–Schreier curves. In
the first example p |m and the rational function f(x) has a nonsimple pole;
in the second, gcd(p,m) = 1 and f(x) has only simple poles, as follows from
Theorem 7.3.

Example 7.5. Let k = F2. So m = [2
√

2] = 2 and p |m. Let C be the
elliptic curve over F2, given by the affine equation

y2 + y = x3 + x.
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One can easily see that C has five k-rational points, which means that C
is SW-maximal over k. Note that f(x) = x3 + x has a pole of order 3 at
infinity.

Example 7.6. Let k = F8. So m = [2
√

8] = 5 and gcd(p,m) = 1. Let C
be the elliptic curve over F8, given by the affine equation

y2 + y =
x2 + x+ 1

x
.

Then the curve C is SW-maximal since it has 14 k-rational points. In fact,
the two simple poles of (x2 + x + 1)/x are totally ramified in the exten-
sion k(x, y)/k(x) and they correspond to two k-rational points on C. By
Hilbert’s 90 Theorem, we have

#C(F8) = 2 + 2B,

where B := #
{
α ∈ F8 | trF8|F2

(
α2+α+1

α

)
= 0

}
. But one can show that

B = 6; in fact, the points x = α ∈ F8 \ F2 are completely splitting in
k(x, y)/k(x).
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