Certain maximal curves and Cartier operators

by
Arnaldo Garcia and Saeed Tafazolian (Rio de Janeiro)

1. Introduction. More than half a century ago, André Weil proved a formula for the number $N=\# \mathcal{C}\left(\mathbb{F}_{q}\right)$ of rational points on a smooth geometrically irreducible projective curve \mathcal{C} of genus g defined over a finite field \mathbb{F}_{q}. This formula provides upper and lower bounds on the number of rational points possible. It states that

$$
q+1-2 g \sqrt{q} \leq N \leq q+1+2 g \sqrt{q}
$$

In general, this bound is sharp. In fact, if q is a square, there exist several curves that attain the above upper bound (see [4], [5], [14] and [23]). We say a curve is maximal (resp. minimal) if it attains the above upper (resp. lower) bound.

There are however situations in which the bound can be improved. For instance, if q is not a square there is a nontrivial improvement due to Serre (see [17, Section V.3]):

$$
q+1-g[2 \sqrt{q}] \leq N \leq q+1+g[2 \sqrt{q}]
$$

where $[a]$ denotes the integer part of the real number a.
Ihara showed that if a curve \mathcal{C} is maximal over $\mathbb{F}_{q^{2}}$ then its genus satisfies

$$
\begin{equation*}
g \leq \frac{q^{2}-q}{2} \tag{1.1}
\end{equation*}
$$

There is a unique maximal curve over $\mathbb{F}_{q^{2}}$ which attains the above genus bound, and it can be given by the affine equation (see [14])

$$
\begin{equation*}
y^{q}+y=x^{q+1} \tag{1.2}
\end{equation*}
$$

This is the so-called Hermitian curve over $\mathbb{F}_{q^{2}}$.
In this paper, we consider maximal (and also minimal) curves over a finite field with q^{2} elements. We give a characterization of certain maxi-

[^0]mal and minimal curves of the following types: Fermat, Artin-Schreier or hyperelliptic. The main tool is the Cartier operator, which is a nilpotent operator in the case of maximal (or minimal) curves over finite fields. We give generalizations of results from [1], [7], [9], [22] and [23].

In Section 2 we review some important properties of the curves in question. Of special interest is Proposition 2.9 which is used to prove in Section 3 that $\mathscr{C}^{n}=0$ for a maximal or a minimal curve over $\mathbb{F}_{q^{2}}$ with $q=p^{n}$, where \mathscr{C} denotes the Cartier operator (see Theorem 3.3). In Section 4 we consider the Fermat curve $\mathcal{C}(m)$ over $\mathbb{F}_{q^{2}}$, defined by the affine equation $y^{m}=1-x^{m}$. We show that $\mathcal{C}(m)$ is maximal over $\mathbb{F}_{q^{2}}$ if and only if m divides $q+1$. This generalizes [1, Corollary 3.5] which deals with the particular case when m belongs to the set of values of the polynomial $T^{2}-T+1$, and it also generalizes [9, Corollary 1] which deals with the case of $q=p$ prime (see Remark 4.3).

In Section 5 we consider maximal curves \mathcal{C} over $\mathbb{F}_{q^{2}}$ given by an affine equation $y^{q}-y=f(x)$, where $f(x)$ is a polynomial in $\mathbb{F}_{q^{2}}[x]$ with degree d prime to the characteristic p. We show that $d \mid q+1$ and that the maximal curve \mathcal{C} is isomorphic to the curve given by $y^{q}+y=x^{d}$ (see Theorem 5.4). In particular, this result shows that the hypothesis that $d \mid q+1$ in Proposition 5.2 is superfluous and that the maximal curves \mathcal{C} in Theorem 5.4 are covered by the Hermitian curve over $\mathbb{F}_{q^{2}}$ given by (1.2) (see Remark 5.5). The main ideas here come from [7] which deals with the case of $q=p$ prime. In Section 6 we deal with maximal hyperelliptic curves \mathcal{C} over $\mathbb{F}_{q^{2}}$ in characteristic $p>2$. The genus of \mathcal{C} satisfies $g(\mathcal{C}) \leq(q-1) / 2$ and we show that the curve \mathcal{C} given by the affine equation

$$
y^{2}=x^{q}+x
$$

is the unique maximal hyperelliptic curve over $\mathbb{F}_{q^{2}}$ with genus $g=(q-1) / 2$ (see Theorem 6.1). The main ideas here come from [22] which deals with hyperelliptic curves with zero Hasse-Witt matrix (see Remark 6.2).

In this paper the word curve will mean a projective nonsingular and geometrically irreducible algebraic curve defined over a perfect field of characteristic $p>0$.
2. Maximal curves. In this section we review some well-known properties of maximal curves.

Let \mathcal{C} be a curve of genus $g>0$ over the finite field $k=\mathbb{F}_{q}$ with q elements. The zeta function of \mathcal{C} is a rational function of the form

$$
Z(\mathcal{C} / k)=\frac{L(t)}{(1-t)(1-q t)}
$$

where $L(t) \in \mathbb{Z}[t]$ is a polynomial of degree $2 g$ with integral coefficients. We call this polynomial the L-polynomial of \mathcal{C} over k.

Let K / k be the function field of \mathcal{C} over k. Then the divisor class group $C^{0}(K)$ is finite and it is isomorphic to the group of k-rational points of the Jacobian \mathcal{J} of \mathcal{C},

$$
C^{0}(K)=\mathcal{J}(k) .
$$

It is well-known that the class number $h=\operatorname{ord}\left(C^{0}(K)\right)$ of K / k is given by $h=L(1)$. We have

$$
L(t)=1+a_{1} t+\cdots+a_{2 g-1} t^{2 g-1}+q^{g} t^{2 g}=\prod_{i=1}^{2 g}\left(1-\alpha_{i} t\right)
$$

where $a_{2 g-i}=q^{g-i} a_{i}$ for $i=1, \ldots, g$, and moreover the α_{i} 's are complex numbers with absolute value $\left|\alpha_{i}\right|=\sqrt{q}$ for $1 \leq i \leq 2 g$.

We recall the following fact about maximal curves (see [21]):
Proposition 2.1. Suppose q is a square. For a smooth projective curve \mathcal{C} of genus g, defined over $k=\mathbb{F}_{q}$, the following conditions are equivalent:

- \mathcal{C} is maximal (minimal, respectively).
- $L(t)=(1+\sqrt{q} t)^{2 g}\left(L(t)=(1-\sqrt{q} t)^{2 g}\right.$, respectively).
- The Jacobian of \mathcal{C} is k-isogenous to the gth power of a supersingular elliptic curve, all of whose endomorphisms are defined over k.
Let $h(t)=t^{2 g} L\left(t^{-1}\right)$. Then $h(t)$ is the characteristic polynomial of the Frobenius action on the Jacobian variety \mathcal{J} / k.

Remark 2.2. As shown by J.-P. Serre, if there is a morphism defined over the field k between two curves $f: \mathcal{C} \rightarrow \mathcal{D}$, then the L-polynomial of \mathcal{D} divides the one of \mathcal{C}. Hence a subcover \mathcal{D} of a maximal curve \mathcal{C} is also maximal (see [10]). So one way to construct explicit maximal curves is to find equations for subcovers of the Hermitian curve (see [1] and [4]).

Definition. The p-rank of an abelian variety \mathcal{A} / k is denoted by $\sigma(\mathcal{A})$; it is the number of copies of $\mathbb{Z} / p \mathbb{Z}$ in the group of points of order p in $\mathcal{A}(\bar{k})$. The p-rank $\sigma(\mathcal{C})$ of a curve \mathcal{C} / k is the p-rank of its Jacobian. We also call it the Hasse-Witt invariant of the curve.

If we have the L-polynomial of a curve \mathcal{C}, we can use the following result to determine its Hasse-Witt invariant (see [16]):

Proposition 2.3. Let \mathcal{C} be a curve defined over $k=\mathbb{F}_{q}$. If the L polynomial is $L=1+a_{1} t+\cdots+a_{2 g-1} t^{2 g-1}+q^{g} t^{2 g}$, then the Hasse-Witt invariant satisfies

$$
\sigma(\mathcal{C})=\max \left\{i \mid a_{i} \not \equiv 0(\bmod p)\right\}
$$

Remark 2.4. Since $a_{2 g-i}=q^{g-i} a_{i}, i=0,1, \ldots, g$, we have $0 \leq \sigma(\mathcal{C}) \leq g$. If $\sigma(\mathcal{C})=g$ the curve is called ordinary.

Corollary 2.5. If a curve \mathcal{C} is maximal (or minimal) over a finite field, then the Hasse-Witt invariant satisfies $\sigma(\mathcal{C})=0$.

Proof. This follows from the above proposition and Proposition 2.1.
REMARK 2.6. In fact, the p-rank of an abelian variety is equal to the number of zero slopes in its p-adic Newton polygon and this number is not greater than the dimension. So in general we have $0 \leq \sigma(\mathcal{C}) \leq g(\mathcal{C})$. From Proposition 2.1 a maximal (or minimal) curve \mathcal{C} is supersingular, so all slopes of its Newton polygon are equal to $1 / 2$. On the other hand, if a curve \mathcal{C} defined over a finite field $k=\mathbb{F}_{q}$ is supersingular, then \mathcal{C} is minimal over some finite extension of k (see [18, Proposition 1]). For additional information about Newton polygons, see [12].

We recall the following basic result concerning Jacobians. Let \mathcal{C} be a curve, \mathscr{F} the Frobenius endomorphism (relative to the base field) of the Jacobian \mathcal{J} of \mathcal{C}, and $h(t)$ the characteristic polynomial of \mathscr{F}. Let $h(t)=$ $\prod_{i=1}^{T} h_{i}(t)^{r_{i}}$ be the irreducible factorization of $h(t)$ over $\mathbb{Z}[t]$. Then

$$
\begin{equation*}
\prod_{i=1}^{T} h_{i}(\mathscr{F})=0 \quad \text { on } \mathcal{J} \tag{2.1}
\end{equation*}
$$

This follows from the semisimplicity of \mathscr{F} and the fact that the representation of endomorphisms of \mathcal{J} on the Tate module is faithful (cf. [21, Theorem 2] and [11, VI, Section 3]). In the case of a maximal curve over $\mathbb{F}_{q^{2}}$, we have $h(t)=(t+q)^{2 g}$. Therefore from (2.1) we obtain the following result, which is contained in the proof of [14, Lemma 1].

Lemma 2.7. The Frobenius map \mathscr{F} (relative to $\mathbb{F}_{q^{2}}$) of the Jacobian \mathcal{J} of a maximal (resp. minimal) curve over $\mathbb{F}_{q^{2}}$ acts as multiplication by $-q$ $(r e s p . b y+q)$.

Remark 2.8. Let \mathcal{A} be an abelian variety defined over $\mathbb{F}_{q^{2}}$, of dimension g. Then

$$
(q-1)^{2 g} \leq \# \mathcal{A}\left(\mathbb{F}_{q^{2}}\right) \leq(q+1)^{2 g}
$$

But if \mathcal{C} is a maximal (resp. minimal) curve over $\mathbb{F}_{q^{2}}$, then by the above lemma we have $\mathcal{J}\left(\mathbb{F}_{q^{2}}\right)=(\mathbb{Z} /(q+1) \mathbb{Z})^{2 g}$ (resp. $\left.\mathcal{J}\left(\mathbb{F}_{q^{2}}\right)=(\mathbb{Z} /(q-1) \mathbb{Z})^{2 g}\right)$. So the Jacobian of a maximal (resp. minimal) curve is maximal (resp. minimal) in the sense of the above bounds.

The following proposition is crucial for us (see [2, Proposition 1.2]):
Proposition 2.9. Let \mathcal{A} be an abelian variety defined over $\mathbb{F}_{q^{2}}$, where $q=p^{n}$. If the Frobenius \mathscr{F} relative to $\mathbb{F}_{q^{2}}$ acts on the abelian variety \mathcal{A} as multiplication by $\pm q$, then $\mathscr{F}^{n}=0$ on $H^{1}\left(\mathcal{A}, \mathscr{O}_{\mathcal{A}}\right)$.
3. Cartier operator. Let \mathcal{C} be a curve defined over a perfect field k of characteristic $p>0$. Let Ω^{1} be the sheaf of differential 1-forms on \mathcal{C}. Then there exists a unique operation $\mathscr{C}: \Omega^{1} \rightarrow \Omega^{1}$, called the Cartier operator, such that
(i) \mathscr{C} is $1 / p$-linear, i.e., \mathscr{C} is additive and $\mathscr{C}\left(f^{p} \omega\right)=f \mathscr{C}(\omega)$,
(ii) \mathscr{C} vanishes on exact differentials, i.e., $\mathscr{C}(d f)=0$,
(iii) $\mathscr{C}\left(f^{p-1} d f\right)=d f$,
(iv) a differential $\omega \in \Omega^{1}$ is logarithmic (i.e., there exists a section $f \neq 0$ such that $\omega=d f / f)$ if and only if ω is closed and $\mathscr{C}(\omega)=\omega$,
where f (resp. ω) is a local section of \mathscr{O} (resp. Ω^{1}). This operator induces a $1 / p$-linear map

$$
\mathscr{C}: H^{0}\left(\mathcal{C}, \Omega^{1}\right) \rightarrow H^{0}\left(\mathcal{C}, \Omega^{1}\right)
$$

acting on the space of regular differential forms.
REmARK 3.1. Moreover, for a given natural number n, one can easily show that

$$
\mathscr{C}^{n}\left(x^{j} d x\right)= \begin{cases}0 & \text { if } p^{n} \nmid j+1 \\ x^{s-1} d x & \text { if } j+1=p^{n} s\end{cases}
$$

We mention here the following theorem of Hasse-Witt ([6]):
Theorem 3.2. Let V be a finite-dimensional vector space over an algebraically closed field of characteristic $p>0$. Let $\psi: V \rightarrow V$ be a $1 / p$-linear map. Then there are two subspaces V^{s} and V^{0} of V satisfying the following conditions:

- V^{s} is spanned by ψ invariant elements.
- Each y in V^{0} is killed by an iterate of ψ.
- $V=V^{s} \oplus V^{0}$.

Definition. For a basis $\omega_{1}, \ldots, \omega_{g}$ of $H^{0}\left(\mathcal{C}, \Omega^{1}\right)$ let $\left(a_{i j}\right)$ denote the associated matrix of the Cartier operator \mathscr{C}, i.e.,

$$
\mathscr{C}\left(\omega_{j}\right)=\sum_{i=1}^{g} a_{i j} \omega_{i}
$$

The corresponding Hasse-Witt matrix $\mathscr{A}(\mathcal{C})$ is obtained by taking p th powers, i.e.,

$$
\mathscr{A}(\mathcal{C})=\left(a_{i j}^{p}\right)
$$

Because of $1 / p$-linearity, the operator \mathscr{C}^{n} is represented with respect to the basis $\omega_{1}, \ldots, \omega_{g}$ by the product of the matrices below:

$$
\left(a_{i j}^{1 / p^{n-1}}\right) \cdots\left(a_{i j}^{1 / p}\right) \cdot\left(a_{i j}\right)
$$

By raising the coefficients to p^{n} th powers we get the matrix

$$
\mathscr{A}(\mathcal{C})^{[n]}=\left(a_{i j}^{p}\right) \cdot\left(a_{i j}^{p^{2}}\right) \cdots\left(a_{i j}^{p^{n}}\right)
$$

It is remarkable that if $n \geq g$ then the rank of the matrix $\mathscr{A}(\mathcal{C})^{[n]}$ does not depend on n and it is equal to the Hasse-Witt invariant of \mathcal{C}.

Theorem 3.3. Let \mathcal{C} be an algebraic curve defined over a finite field with q^{2} elements, where $q=p^{n}$ for some $n \in \mathbb{N}$. If the curve \mathcal{C} is maximal (or minimal) over $\mathbb{F}_{q^{2}}$, then $\mathscr{C}^{n}=0$.

Proof. From Lemma 2.7 we know that the Frobenius acting on the Tate module of the Jacobian of \mathcal{C} acts as multiplication by $\pm q$. Then one may apply Proposition 2.9 to conclude that $\mathscr{F}^{n}=0$. Finally, since the Cartier operator acting on $H^{0}\left(\mathcal{C}, \Omega^{1}\right)$ is dual to the Frobenius acting on $H^{1}\left(\mathcal{C}, \mathscr{O}_{\mathcal{C}}\right)$ by the Serre duality, one concludes that also $\mathscr{C}^{n}=0$.

The next result (see [19, Corollary 2.7]) relates the Hasse-Witt matrix and the Weierstrass gap sequence at a rational point.

Proposition 3.4. Let \mathcal{C} be a curve defined over a perfect field and $n \in \mathbb{N}$. Let $\mathscr{A}(\mathcal{C})$ denote the Hasse-Witt matrix of the curve \mathcal{C}. If P is a rational point on \mathcal{C}, then the rank of $\mathscr{A}(\mathcal{C})^{[n]}$ is no smaller than the number of gaps at P divisible by p^{n}.

Corollary 3.5. Let \mathcal{C} be a curve defined over $\mathbb{F}_{q^{2}}$. Let P be a rational point on the curve \mathcal{C}. If \mathcal{C} is maximal over $\mathbb{F}_{q^{2}}$ then q is not a gap number of P.

Proof. If $q=p^{n}$ for some integer n and \mathcal{C} is a maximal curve over $\mathbb{F}_{q^{2}}$ then Theorem 3.3 yields $\mathscr{A}(\mathcal{C})^{[n]}=0$. Thus the result follows from Proposition 3.4.

Corollary 3.6. Let \mathcal{C} be a hyperelliptic curve over $\mathbb{F}_{q^{2}}$ where $q=p^{n}$ and $p>2$. If $\mathscr{C}^{n}=0$, then

$$
g(\mathcal{C}) \leq \frac{q-1}{2}
$$

Proof. As the genus is fixed under a constant field extension, we can suppose that k is algebraically closed. We know that a Weierstrass point on a hyperelliptic curve has the gap sequence $1,3,5, \ldots, 2 g-1$, so the result follows from Proposition 3.4.

Remark 3.7. If \mathcal{C} is maximal over $\mathbb{F}_{p^{2}}$ then $\mathscr{C}=0$. On the other hand, the Cartier operator on a curve is zero if and only if the Jacobian of the curve is the product of supersingular elliptic curves (see [13, Theorem 4.1]). Now by Theorem 1.1 of [2] we also have

- $g(\mathcal{C}) \leq\left(p^{2}-p\right) / 2$,
- $g(\mathcal{C}) \leq(p-1) / 2$ if \mathcal{C} is hyperelliptic and $(p, g) \neq(2,1)$.

4. Fermat curves. In this section we give a characterization of maximal Fermat curves.

Let k be a finite field with q^{2} elements, where $q=p^{n}$ for some integer n. Let $\mathcal{C}(m)$ be the Fermat curve defined over k by

$$
x^{m}+y^{m}=z^{m},
$$

where m is an integer such that $m \geq 3$ and $\operatorname{gcd}(m, p)=1$.
As is well-known, the genus g of $\mathcal{C}(m)$ is $g=(m-1)(m-2) / 2$. The affine model of $\mathcal{C}(m)$ is given by $x_{1}^{m}+y_{1}^{m}=1\left(x_{1}=x / z, y_{1}=y / z\right)$. Let μ_{m} denote the set of m th roots of unity. If m divides $q^{2}-1$, then the group $\mu_{m} \times \mu_{m}$ operates on rational points of $\mathcal{C}(m)$ by

$$
\begin{equation*}
(\xi, \zeta)\left(x_{1}, y_{1}\right)=\left(\xi x_{1}, \zeta y_{1}\right) \quad \text { with } \xi, \zeta \in \mu_{m} \tag{4.1}
\end{equation*}
$$

REMARK 4.1. If \mathcal{C} is maximal over $\mathbb{F}_{q^{2}}$, then m divides $q^{2}-1$ (see the proof of Lemma 4.5 in [5]).

Lemma 4.2. With notation and hypotheses as above, if $\mathcal{C}(m)$ is maximal over $\mathbb{F}_{q^{2}}$, then $m \leq q+1$.

Proof. Since the genus is $g=(m-1)(m-2) / 2$ and the curve $\mathcal{C}(m)$ is maximal over $\mathbb{F}_{q^{2}}$, then

$$
\begin{equation*}
\# \mathcal{C}(m)\left(\mathbb{F}_{q^{2}}\right)=1+q^{2}+(m-1)(m-2) q \tag{4.2}
\end{equation*}
$$

Looking at the function field extension $\mathbb{F}_{q^{2}}(x, y) / \mathbb{F}_{q^{2}}(x)$, where $y^{m}=1-x^{m}$, we see that the points with $x^{m}=1$ are totally ramified. Hence we also have

$$
\begin{equation*}
\# \mathcal{C}(m)\left(\mathbb{F}_{q^{2}}\right) \leq m+\left(q^{2}+1-m\right) m \tag{4.3}
\end{equation*}
$$

From (4.2) and (4.3) we conclude that $m \leq q+1$.
If $m=q+1$ then $\mathcal{C}(q+1)$ is the Hermitian curve over $\mathbb{F}_{q^{2}}$. Suppose m divides $q+1$, i.e., $q+1=m r$ for some integer r. Then we can define the following morphism:

$$
\mathcal{C}(q+1) \rightarrow \mathcal{C}(m), \quad(x, y) \mapsto\left(x^{r}, y^{r}\right)
$$

Hence $\mathcal{C}(m)$ is covered by $\mathcal{C}(q+1)$. Thus by Remark 2.2 if m divides $q+1$, then $\mathcal{C}(m)$ is maximal over $\mathbb{F}_{q^{2}}$. Now we want to show the converse. We start with a remark:

Remark 4.3. Assume $q=p$ is a prime number. If the curve $\mathcal{C}(m)$ is maximal over $\mathbb{F}_{p^{2}}$, then Theorem 3.3 implies that the Hasse-Witt matrix of $\mathcal{C}(m)$ is zero. Hence from [9, Corollary 1] we find that $m \mid p+1$. The next theorem generalizes this result.

Theorem 4.4. Let $\mathcal{C}(m)$ be the Fermat curve of degree m prime to the characteristic p defined over $\mathbb{F}_{q^{2}}$. Then $\mathcal{C}(m)$ is maximal over $\mathbb{F}_{q^{2}}$ if and only if m divides $q+1$.

Proof. If $m \mid q+1$, then the above discussion shows that $\mathcal{C}(m)$ is maximal over $\mathbb{F}_{q^{2}}$. Conversely, let $\mathcal{C}(m)$ be a maximal curve over $\mathbb{F}_{q^{2}}$. By Remark 4.1 we know that m divides $q^{2}-1$. As in the proof of the lemma above, looking at the function field extension $\mathbb{F}_{q^{2}}(x, y) / \mathbb{F}_{q^{2}}(x)$ we find that

$$
\begin{equation*}
\# \mathcal{C}(m)\left(\mathbb{F}_{q^{2}}\right)=m+\lambda m \quad \text { for some integer } \lambda \tag{4.4}
\end{equation*}
$$

In fact, $\mathcal{C}(m)$ has m rational points which correspond to the totally ramified points with $x^{m}=1$ and some others that are completely splitting. On the other hand, from the maximality of $\mathcal{C}(m)$ we have

$$
\begin{equation*}
\# \mathcal{C}(m)\left(\mathbb{F}_{q^{2}}\right)=1+q^{2}+(m-1)(m-2) q \tag{4.5}
\end{equation*}
$$

Comparing (4.4) and (4.5) we deduce that $m \mid(q+1)^{2}$. Hence $m \mid 2(q+1)$, since $m \mid q^{2}-1$. Now we have two cases:

CASE 1: $p=2$. In this case since $\operatorname{gcd}(m, p)=1$, we see that m is odd and hence it divides $q+1$, since it divides $2(q+1)$.

Case 2: $p=o d d$. In this case $\operatorname{gcd}(q+1, q-1)=2$. Reasoning as for $p=2$, we find that if d is an odd divisor of m, then $d \mid q+1$. The only situation still to be investigated is the following: $q+1=2^{r} s$ with s an odd integer and $m=2^{r+1} s_{1}$ with $s_{1} \mid s$. But according to Remark 2.2 and the following lemma, this situation does not occur.

Lemma 4.5. Assume that the characteristic p is odd and write $q+1=2^{r}$ s with s an odd integer. Set $m:=2^{r+1}$. Then the Fermat curve $\mathcal{C}(m)$ is not maximal over $\mathbb{F}_{q^{2}}$.

Proof. Writing $q=p^{n}$ we consider three cases:
CASE 1: $p \equiv 1(\bmod 4)$. In this case we have $q+1=2 s$ with s odd. So we must show that the curve $\mathcal{C}(4)$ is not maximal over $\mathbb{F}_{q^{2}}$. But it follows from $[9$, Theorem 2$]$ that $\mathcal{C}(4)$ with $p \equiv 1(\bmod 4)$ is ordinary and so it is not maximal.

CASE 2: $p \equiv 3(\bmod 4)$ and n even. In this case we have again $q+1=2 s$ with s odd and we must show that the curve $\mathcal{C}(4)$ is not maximal over $\mathbb{F}_{q^{2}}$. Since $4 \mid p+1$, the curve $\mathcal{C}(4)$ is maximal over $\mathbb{F}_{p^{2}}$. Hence $\mathcal{C}(4)$ is minimal over $\mathbb{F}_{q^{2}}$ because n is even.

Case 3: $p \equiv 3(\bmod 4)$ and n odd. As n is odd, we have $q+1=2^{r} s$ with $r \geq 2$ and s odd. Here we can assume that $r \geq 3$. In fact, for $r=2$ according to [8, p. 204], the curve $\mathcal{C}(8)$ is not supersingular and hence cannot be maximal. Note that $r=2$ implies $p \equiv 3(\bmod 8)$.

Consider now the curve $\mathcal{C}(m)$ with $m=2^{r+1}$ and $r \geq 3$. As $m=2^{r+1}$ is the largest power of 2 that divides $q^{2}-1,-1$ is not an m th power in $\mathbb{F}_{q^{2}}^{*}$. Hence the points at infinity on $y^{m}=1-x^{m}$ are not rational. This implies
that (see (4.1))

$$
\begin{equation*}
\# \mathcal{C}(m)\left(\mathbb{F}_{q^{2}}\right)=m+\lambda_{1} m^{2} \quad \text { for some integer } \lambda_{1} \tag{4.6}
\end{equation*}
$$

Then from (4.5) and (4.6) we get

$$
q^{2}+1+2 q-3 m q-m \equiv 0\left(\bmod m^{2}\right)
$$

Hence $(q+1)^{2}-m(2 q+2)-m(q-1) \equiv 0\left(\bmod m^{2}\right)$. Since $m \mid 2 q+2$, we obtain $4(q+1)^{2}-4 m(q-1) \equiv 0\left(\bmod 4 m^{2}\right)$. This implies that $m \mid 4(q-1)$, and this is impossible as $r \geq 3$ and $4(q-1)=8 s_{1}$ with s_{1} odd. This completes the proofs of Lemma 4.5 and of Theorem 4.4.

REMARK 4.6. The particular case of Theorem 4.4 when m is of the form $m=t^{2}-t+1$ with $t \in \mathbb{N}$ was proved in Corollary 3.5 of [1].
5. Artin-Schreier curves. In this section we consider curves \mathcal{C} over $k=\mathbb{F}_{q^{2}}$ given by an affine equation

$$
\begin{equation*}
y^{q}-y=f(x) \tag{5.1}
\end{equation*}
$$

where $f(x)$ is an admissible rational function in $k(x)$, i.e., a rational function such that every pole of $f(x)$ in the algebraic closure \bar{k} occurs with a multiplicity relatively prime to the characteristic p. If \mathcal{C} is a maximal curve over $\mathbb{F}_{q^{2}}$, from [5, Remark 4.2] we can assume that $f(x)$ is a polynomial of degree $\leq q+1$. In the following we apply results introduced in the preceding sections to characterize maximal curves given by (5.1).

The following remark is due to Stichtenoth:
REmARK 5.1. Suppose that $q=p$ in (5.1) considered over a perfect field k. Then we can change variables to assume that the curve \mathcal{C} is given by (5.1) with an admissible rational function $f(x)$. This follows from the partial fraction decomposition and from arguments similar to the proof of [17, Lemma III.7.7]. In fact, let $u(x)$ in $k[x]$ be an irreducible polynomial and suppose that the rational function $f(x)$ involves a partial fraction of the form $c(x) / u(x)^{l p}$, with $c(x)$ a polynomial in $k[x]$ prime to $u(x)$ and with l a natural number. Since the quotient field $k[x] /(u(x))$ is perfect, we can find polynomials $a(x)$ and $b(x)$ in $k[x]$ such that $c(x)=a(x)^{p}+b(x) u(x)$. Setting $z=a(x) / u(x)^{l}$ we get

$$
c(x) / u(x)^{l p}-\left(z^{p}-z\right)=z+b(x) / u(x)^{l p-1} .
$$

Performing the substitution $y \mapsto y-z$ and repeating this argument as in the proof of [17, Lemma III.7.7], we get the desired result.

Denote by tr the trace of $\mathbb{F}_{q^{2}}$ over \mathbb{F}_{q}. We have (see [23]):
Proposition 5.2. Let \mathcal{C} be a curve defined over $\mathbb{F}_{q^{2}}$ by the equation

$$
y^{q}-y=a x^{d}+b
$$

where $a, b \in \mathbb{F}_{q^{2}}, a \neq 0$ and d is any positive integer relatively prime to the characteristic p. Suppose d divides $q+1$ and define v and u by $v d=q^{2}-1$ and $u d=q+1$. Then
(i) If \mathcal{C} is maximal over $\mathbb{F}_{q^{2}}$, then $\operatorname{tr}(b)=0$ and $a^{v}=(-1)^{u}$.
(ii) If \mathcal{C} is minimal over $\mathbb{F}_{q^{2}}$ and $q \neq 2$, then $d=2, \operatorname{tr}(b)=0$ and $a^{v} \neq(-1)^{u}$.

REmARK 5.3. Let $q=2$ and $b \in \mathbb{F}_{4} \backslash \mathbb{F}_{2}$; apart from the curves listed in item (ii) of the above proposition, we have another minimal one of the form (5.1): the minimal elliptic curve over \mathbb{F}_{4} given by the affine equation $y^{2}+y=x^{3}+b$.

Suppose $q=p$ is a prime. Then a curve given by (5.1) is a p-cyclic extension of \mathbb{P}^{1}. In [7] we have a characterization of such curves, defined over an algebraically closed field, with zero Hasse-Witt matrix. Here we generalize their argument, and we characterize such curves in the general case $q=p^{n}$ with nilpotent Cartier operator, $\mathscr{C}^{n}=0$.

We now state the main result of this section:
Theorem 5.4. Let \mathcal{C} be a curve defined by the equation $y^{q}-y=f(x)$, where $f(x) \in \mathbb{F}_{q^{2}}[x]$ has degree d prime to p. If the curve \mathcal{C} is maximal over $\mathbb{F}_{q^{2}}$, then \mathcal{C} is isomorphic to the projective curve defined over $\mathbb{F}_{q^{2}}$ by the affine equation

$$
y^{q}+y=x^{d} \quad \text { with } d \mid q+1
$$

Proof. Write $q=p^{n}$. As \mathcal{C} is maximal over $\mathbb{F}_{q^{2}}$, from Theorem 3.3 we know that $\mathscr{C}^{n}=0$.

A basis for $H^{0}\left(\mathcal{C}, \Omega^{1}\right)$ is

$$
\begin{equation*}
\mathcal{B}=\left\{y^{r} x^{a} d x \mid 0 \leq a, r \text { and } a p^{n}+r d \leq\left(p^{n}-1\right)(d-1)-2\right\} \tag{5.2}
\end{equation*}
$$

Since $y=y^{q}-f(x)$ we have

$$
\mathscr{C}^{n}\left(y^{r} x^{a} d x\right)=\mathscr{C}^{n}\left(\left(y^{q}-f\right)^{r} x^{a} d x\right)
$$

From Remark 3.1 we get

$$
\begin{equation*}
\mathscr{C}^{n}\left(y^{r} x^{a} d x\right)=\sum_{h=0}^{r}\binom{r}{h}(-1)^{h} y^{r-h} \mathscr{C}^{n}\left(f^{h} x^{a} d x\right) \tag{5.3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\mathscr{C}^{n}\left(f^{h} x^{a} d x\right)=0 \tag{5.4}
\end{equation*}
$$

for all h, r and a such that $0 \leq h \leq r,\binom{r}{h}$ is prime to p and

$$
\begin{equation*}
a p^{n}+r d \leq\left(p^{n}-1\right)(d-1)-2 \tag{5.5}
\end{equation*}
$$

First we show again that the degree of $f(x)$ is at most $q+1$. In fact, if $d=\operatorname{deg}(f(x)) \geq q+2$, then $x^{q-1} d x \in \mathcal{B}$, because

$$
q(q-1) \leq(q-1)(q+1)-2 .
$$

From Remark 3.1 we get $\mathscr{C}^{n}\left(x^{p^{n}-1} d x\right)=d x$ and this contradicts $\mathscr{C}^{n}=0$.
Now if $d=q+1$, then the genus of the curve \mathcal{C} is $g=q(q-1) / 2$. Hence according to $[14], \mathcal{C}$ is the Hermitian curve given by

$$
y^{q}+y=x^{q+1} .
$$

Hence we can assume $d \leq q$, and so $d \leq q-1$. Then there exists $l \geq 1$ such that

$$
l d+1 \leq q<(l+1) d+1
$$

Again since $\operatorname{gcd}(p, d)=1$, we have

$$
\begin{equation*}
l d+1 \leq q \leq(l+1) d-1 . \tag{5.6}
\end{equation*}
$$

For $r \in \mathbb{N}$ satisfying

$$
(q-1-r) d \geq q+1
$$

we define

$$
a(r):=\left[d-1-\frac{(r+1) d+1}{q}\right],
$$

which is the largest possible $a \in \mathbb{N}$ satisfying (5.5).
From (5.6) and $d \leq q-1$, we find that $a(l)=d-3$ and therefore

$$
\begin{equation*}
\operatorname{deg}\left(f^{l} x^{a(l)}\right)=l d+a(l)=(l+1) d-3 . \tag{5.7}
\end{equation*}
$$

Suppose that $q-1=l d+a$ with $0 \leq a \leq a(l)$. Then the polynomial $f^{l} x^{a}$ has degree $q-1$ and it follows from Remark 3.1 that

$$
\mathscr{C}^{n}\left(f^{l} x^{a} d x\right)=a_{d}^{l / q} d x
$$

where a_{d} denotes the leading coefficient of $f(x)$. But this contradicts (5.4) with $r=h=l$.

Therefore (5.7) implies that

$$
\begin{equation*}
q-1 \geq l d+a(l)+1=(l+1) d-2 . \tag{5.8}
\end{equation*}
$$

By (5.6) and (5.8), we have

$$
\begin{equation*}
q+1=s d \quad \text { with } s:=l+1 \geq 2 . \tag{5.9}
\end{equation*}
$$

Since $\operatorname{gcd}(p, d)=1$, we can change variable $x \mapsto x+\alpha$, for a suitable $\alpha \in \mathbb{F}_{q^{2}}$, so that

$$
f(x)=a_{d} x^{d}+a_{i} x^{i}+\cdots+a_{0} \quad \text { with } i \leq d-2 .
$$

Therefore

$$
f(x)^{s}=a_{d}^{s} x^{s d}+s a_{d}^{s-1} a_{i} x^{i+(s-1) d}+\cdots+a_{0}^{s} .
$$

Suppose $d \geq 3$. In this case if $1 \leq i \leq d-2$, then

$$
0 \leq d-i-2 \leq d-3=a(s)
$$

We stress here that $a(l)=a(l+1)=d-3$. Therefore

$$
i+(s-1) d+d-i-2=s d-2=q-1,
$$

and we get

$$
\mathscr{C}^{n}\left(f^{s} x^{d-i-2} d x\right)=s\left(a_{d}^{s-1} a_{i}\right)^{1 / q} d x=0 .
$$

This implies $a_{i}=0$ since s is prime to p by (5.9). Hence $f(x)$ must be of the form (the case $d=2$ is trivial)

$$
f(x)=a x^{d}+b \quad \text { with } d \mid q+1 .
$$

Now if the curve is maximal, from Proposition 5.2 we know that $\operatorname{tr}(b)=0$ and $a^{v}=(-1)^{u}$ where $u=(q+1) / d$ and $v=\left(q^{2}-1\right) / d$. By Hilbert's 90 Theorem, there exists $\gamma \in \mathbb{F}_{q^{2}}$ such that $\gamma^{q}-\gamma=b$ and by changing variable $y \mapsto y+\gamma$ we can assume $b=0$.

Now we have two cases:
CASE 1: u is even. In this case $a^{v}=1$ and hence $a=c^{d}$ for some $c \in \mathbb{F}_{q^{2}}^{*}$. Changing variable $x \mapsto c^{-1} x$ we have

$$
y^{q}-y=x^{d} \quad \text { with } d \mid q+1 .
$$

Pick $\alpha \in \mathbb{F}_{q^{2}}$ with $\alpha^{q-1}=-1$. Substituting $y \mapsto \alpha^{-1} y$ we have $y^{q}+y=\alpha x^{d}$. Again here $\alpha^{v}=\alpha^{(q-1) u}=(-1)^{u}=1$ and hence $\alpha=\theta^{d}$ for some $\theta \in \mathbb{F}_{q^{2}}^{*}$, and we conclude that the curve is isomorphic to $y^{q}+y=x^{d}$.

Case 2: u is odd. In this case $a^{v}=-1$ and hence $\left(-a^{q-1}\right)^{u}=1$. So $-a^{q-1}=\beta^{d(q-1)}$ for some $\beta \in \mathbb{F}_{q^{2}}^{*}$. Set $\mu:=a \beta^{-d}$; then $\mu^{q-1}=-1$. Now by changing variables $x \mapsto \beta^{-1} x$ and $y \mapsto-\mu y$ we conclude that the curve \mathcal{C} is equivalent to

$$
y^{q}+y=x^{d} \quad \text { with } d \mid q+1 .
$$

Remark 5.5. Most of the argument above just uses the property $\mathscr{C}^{n}=0$, and we see that the hypothesis that $d \mid q+1$ in Proposition 5.2 is superfluous. We also infer that all maximal curves over $\mathbb{F}_{q^{2}}$ given by $y^{q}-y=f(x)$ as in Theorem 5.4 are covered by the Hermitian curve.

We can also classify minimal Artin-Schreier curves over $\mathbb{F}_{q^{2}}$:
Theorem 5.6. Let \mathcal{C} be a curve defined by the equation $y^{q}-y=f(x)$, where $f(x) \in \mathbb{F}_{q^{2}}[x]$ has degree prime to p and $p \neq 2$. If \mathcal{C} is minimal over $\mathbb{F}_{q^{2}}$ and $g(\mathcal{C}) \neq 0$, then \mathcal{C} is equivalent to the projective curve defined by the equation

$$
y^{q}-y=a x^{2} \quad \text { where } \quad a \in \mathbb{F}_{q^{2}}, a \neq 0, \text { and } a^{\left(q^{2}-1\right) / 2} \neq(-1)^{(q+1) / 2} .
$$

Proof. We know that if a curve is minimal over $\mathbb{F}_{q^{2}}$, with $q=p^{n}$, then again the operator \mathscr{C}^{n} is zero. So by the above proof, the curve can be defined by $y^{q}-y=a x^{d}+b$ where $d \mid q+1$. Now we can use again Proposition 5.2 ; it yields $d=2, \operatorname{tr}(b)=0$ and $a^{\left(q^{2}-1\right) / 2} \neq(-1)^{(q+1) / 2}$.

REmARK 5.7. In the above theorem, if $q \equiv 1(\bmod 4)$, then on changing variable $x \mapsto \alpha^{-1} x$, where $a=\alpha^{2}$, the minimal curve \mathcal{C} is equivalent to

$$
y^{q}-y=x^{2}
$$

Clearly, this last curve is maximal over $\mathbb{F}_{q^{2}}$ if $q \equiv 3(\bmod 4)$.
Let $\pi: \mathcal{C} \rightarrow \mathcal{D}$ be a p-cyclic covering of projective nonsingular curves over the algebraic closure \bar{k}. Then we have the so-called Deuring-Shafarevich formula:

$$
\begin{equation*}
\sigma(\mathcal{C})-1+r=p(\sigma(\mathcal{D})-1+r) \tag{5.10}
\end{equation*}
$$

where r is the number of ramification points of the covering π.
Corollary 5.8. Let \mathcal{C} be a curve defined over $k=\mathbb{F}_{p^{2}}$ such that there exists a cyclic covering $\mathcal{C} \rightarrow \mathbb{P}^{1}$ of degree p which is also defined over k. If the curve \mathcal{C} is maximal over $\mathbb{F}_{p^{2}}$, then \mathcal{C} is isomorphic to the curve given by the affine equation $y^{p}+y=x^{d}$, where d divides $p+1$.

Proof. From Remark 5.1 we can assume that \mathcal{C} is given by

$$
y^{p}-y=f(x)
$$

where every pole of $f(x)$ in \bar{k} occurs with a multiplicity relatively prime to p. Now if \mathcal{C} is maximal, then $\sigma(\mathcal{C})=0$ by Corollary 2.5 . Note that from (5.10) we must have $r=1$ and we can put this unique ramification point at infinity; hence we can assume that $f(x) \in k[x]$. Note here that the unique ramification point is k-rational. The result now follows from Theorem 5.4.
6. Hyperelliptic curves. Let $k=\mathbb{F}_{q^{2}}$ be a finite field of characteristic $p>2$. Let \mathcal{C} be a projective nonsingular hyperelliptic curve over k of genus g. Then \mathcal{C} can be defined by an affine equation of the form

$$
y^{2}=f(x)
$$

where $f(x)$ is a polynomial over k of degree $2 g+1$, without multiple roots. If \mathcal{C} is maximal over $\mathbb{F}_{q^{2}}$ then by Corollary 3.6 we have an upper bound on the genus, namely

$$
g(\mathcal{C}) \leq \frac{q-1}{2}
$$

In the next theorem we establish a characterization of maximal hyperelliptic curves in characteristic $p>2$ that attain this upper bound.

Theorem 6.1. Suppose that $p>2$. There is a unique maximal hyperelliptic curve over $\mathbb{F}_{q^{2}}$ with genus $g=(q-1) / 2$. It can be given by the affine equation

$$
y^{2}=x^{q}+x
$$

Before proving this theorem, we need to explain how the matrix associated to \mathscr{C}^{n}, where $q=p^{n}$, is determined from $f(x)$.

The differential 1 -forms of the first kind on \mathcal{C} form a k-vector space $H^{0}\left(\mathcal{C}, \Omega^{1}\right)$ of dimension g with basis

$$
\mathcal{B}=\left\{\omega_{i}=x^{i-1} d x / y \mid i=1, \ldots, g\right\} .
$$

The images under the operator \mathscr{C}^{n} are determined in the following way. Rewrite

$$
\omega_{i}=\frac{x^{i-1} d x}{y}=x^{i-1} y^{-q} y^{q-1} d x=y^{-q} x^{i-1} \sum_{j=0}^{N} c_{j} x^{j} d x
$$

where the coefficients $c_{j} \in k$ are obtained from the expansion

$$
y^{q-1}=f(x)^{(q-1) / 2}=\sum_{j=0}^{N} c_{j} x^{j} \quad \text { with } \quad N=\frac{q-1}{2}(2 g+1)
$$

Then for $i=1, \ldots, g$ we get

$$
\omega_{i}=y^{-q}\left(\sum_{\substack{j \\ i+j \neq 0(\bmod q)}} c_{j} x^{i+j-1} d x\right)+\sum_{l} c_{(l+1) q-i} \frac{x^{(l+1) q}}{y^{q}} \frac{d x}{x} .
$$

Note here that $0 \leq l \leq(N+i) / q-1<g-1 / 2$. On the other hand, we know from Remark 3.1 that if $\mathscr{C}^{n}\left(x^{r-1} d x\right) \neq 0$ then $r \equiv 0(\bmod q)$. Thus we have

$$
\mathscr{C}^{n}\left(\omega_{i}\right)=\sum_{l=0}^{g-1}\left(c_{(l+1) q-i}\right)^{1 / q} \cdot \frac{x^{l}}{y} d x
$$

If we write $\omega=\left(\omega_{1}, \ldots, \omega_{g}\right)$ as a row vector we have

$$
\mathscr{C}^{n}(\omega)=\omega M^{1 / q}
$$

where M is the $(g \times g)$ matrix with elements in k given as

$$
M=\left(\begin{array}{cccc}
c_{q-1} & c_{q-2} & \ldots & c_{q-g} \\
c_{2 q-1} & c_{2 q-2} & \ldots & c_{2 q-g} \\
\vdots & \ldots & \ldots & \vdots \\
c_{g q-1} & c_{g q-2} & \ldots & c_{g q-g}
\end{array}\right)
$$

Remark 6.2. In [22] the author found a characterization for hyperelliptic curves defined over an algebraically closed field whose Hasse-Witt matrix
is zero. In the proof below we use his ideas to classify hyperelliptic curves with a nilpotent Cartier operator.

Proof of Theorem 6.1. Let \mathcal{C} be a hyperelliptic curve of genus $g=$ $(q-1) / 2$. Then \mathcal{C} can be defined by the equation $y^{2}=f(x)$ with a square-free polynomial

$$
f(x)=a_{q} x^{q}+a_{q-1} x^{q-1}+\cdots+a_{1} x+a_{0} \in \mathbb{F}_{q^{2}}[x] \quad \text { and } \quad a_{q} \neq 0
$$

As \mathcal{C} is maximal over $\mathbb{F}_{q^{2}}$, it has $1+q^{2}+q(q-1)$ rational points. On the other hand, if we consider \mathcal{C} as a double cover of \mathbb{P}^{1}, the ramification points are the roots of $f(x)$ and the point at infinity. As the latter is a rational point and $1+q^{2}+q(q-1)$ is an even number, $f(x)$ must have an odd number of rational roots. Hence $f(x)$ has at least one rational root in $\mathbb{F}_{q^{2}}$, say θ. By substituting $x+\theta$ for x, we can assume that \mathcal{C} is defined by the equation $y^{2}=f(x)$ with $f(0)=0$. We then write

$$
f(x)=a_{q} x^{q}+a_{q-1} x^{q-1}+\cdots+a_{1} x \in \mathbb{F}_{q^{2}}[x] \quad \text { and } \quad a_{1} a_{q} \neq 0
$$

Now as the curve \mathcal{C} is maximal over $\mathbb{F}_{q^{2}}$, with $q=p^{n}$ for some integer n, it follows that $\mathscr{C}^{n}=0$. So the above matrix M is the zero matrix. Hence looking at the last row of M, we see that

$$
c_{g q-1}=c_{g q-2}=\cdots=c_{g q-g}=0
$$

We will show by induction that this means

$$
a_{q-1}=a_{q-2}=\cdots=a_{q-g}=0
$$

First we observe that

$$
c_{g q-1}=g a_{q}^{g-1} a_{q-1}
$$

So $c_{g q-1}=0$ implies $a_{q-1}=0$. Now assume $a_{q-i}=0$ for all $1 \leq i<m \leq g$. We want to show that $a_{q-m}=0$. Under the assumption above, $f(x)$ reduces to

$$
f(x)=a_{q} x^{q}+a_{q-m} x^{q-m}+\cdots+a_{1} x .
$$

Thus $c_{g q-m}=g a_{q}^{g-1} a_{q-m}$. So $c_{g q-m}=0$ implies that $a_{q-m}=0$. By induction, $f(x)$ reduces to

$$
f(x)=a_{q} x^{q}+a_{g} x^{g}+\cdots+a_{2} x^{2}+a_{1} x .
$$

Now we want to show that $a_{t}=0$ for all $2 \leq t \leq g$. Looking at the first row of the matrix M, we see that

$$
c_{q-1}=c_{q-2}=\cdots=c_{g+1}=0
$$

By induction we can show that this means

$$
a_{2}=a_{3}=\cdots=a_{g}=0
$$

In fact, we first observe that $c_{g+1}=g a_{1}^{g-1} a_{2}$. Because $a_{1} \neq 0, c_{g+1}=0$ implies $a_{2}=0$. Now assume that $a_{i}=0$ for all i with $2 \leq i<m \leq g$. We
want to show that $a_{m}=0$. Under the above assumption,

$$
f(x)=a_{q} x^{q}+a_{g} x^{g}+\cdots+a_{m} x^{m}+a_{1} x
$$

Therefore $c_{g-1+m}=g a_{1}^{g-1} a_{m}$. Again because $a_{1} \neq 0$, we see that $c_{g-1+m}=0$ implies $a_{m}=0$. Thus by induction we have shown that

$$
f(x)=a_{q} x^{q}+a_{1} x \quad \text { with } a_{1} a_{q} \neq 0
$$

Now we can write the equation of the curve \mathcal{C} as

$$
x^{q}+\mu x=\lambda y^{2} \quad \text { for some } \mu, \lambda \in \mathbb{F}_{q^{2}}^{*}
$$

Since \mathcal{C} is maximal over $\mathbb{F}_{q^{2}}$, one can show easily that the additive polynomial $A(x):=x^{q}+\mu x$ has a nonzero root $\beta \in \mathbb{F}_{q^{2}}^{*}$. In fact, more is true: it follows from [5, Theorem 4.3] that all roots of $A(x)$ belong to $\mathbb{F}_{q^{2}}$.

Set $\alpha:=\beta^{q}$ and $x_{1}:=\alpha x$. Then

$$
A(x)=\alpha^{-q}(\alpha x)^{q}+\left(\mu \alpha^{-1}\right)(\alpha x)
$$

Hence

$$
A(x)=\alpha^{-q}\left(x_{1}^{q}+\mu \alpha^{q-1} x_{1}\right)
$$

has the root $x_{1}=\alpha \beta=\beta^{q+1} \in \mathbb{F}_{q}^{*}$. So $\mu \alpha^{q-1}=-1$, and this means that \mathcal{C} is equivalent to the curve given by the equation

$$
x_{1}^{q}-x_{1}=a y^{2}, \quad \text { where } \quad a:=\alpha^{q} \lambda
$$

Now as we have seen at the end of the proof of Theorem 5.4, this curve is isomorphic to the curve given by the equation

$$
y^{2}=x^{q}+x
$$

In the next theorem we also classify minimal hyperelliptic curves over $\mathbb{F}_{q^{2}}$ in characteristic $p>2$ with genus satisfying $g=(q-1) / 2$:

TheOrem 6.3. Suppose that $p>2$. There is a unique curve \mathcal{C} which is a minimal hyperelliptic curve over $\mathbb{F}_{q^{2}}$ with genus $g=(q-1) / 2$; it can be given by the affine equation

$$
a y^{2}=x^{q}-x \quad \text { with } a \in \mathbb{F}_{q^{2}}^{*} \text { such that } a^{\left(q^{2}-1\right) / 2} \neq(-1)^{(q+1) / 2}
$$

Proof. The curve \mathcal{C} can be given by $y^{2}=f(x)$ with $f(x)$ a square-free polynomial in $\mathbb{F}_{q^{2}}[x]$ of degree $\operatorname{deg}(f(x))=q=p^{n}$. We have

$$
\# \mathcal{C}\left(\mathbb{F}_{q^{2}}\right)=q^{2}+1-(q-1) q=q+1
$$

and in particular $\# \mathcal{C}\left(\mathbb{F}_{q^{2}}\right)$ is an even number. As in the proof of Theorem 6.1 we can assume that $f(0)=0$, and from $\mathscr{C}^{n}=0$ we then conclude that

$$
f(x)=a_{q} x^{q}+a_{1} x \quad \text { with } a_{1} a_{q} \neq 0
$$

Hence the minimal curve \mathcal{C} can be defined by

$$
x^{q}+\mu x=\lambda y^{2} \quad \text { for some } \mu, \lambda \in \mathbb{F}_{q^{2}}^{*} .
$$

The polynomial $A(x)=x^{q}+\mu x$ must have a nonzero root in $\mathbb{F}_{q^{2}}$; otherwise the map sending x to $A(x)$ would be an additive automorphism of $\mathbb{F}_{q^{2}}$ and hence the cardinality of rational points would satisfy

$$
\# \mathcal{C}\left(\mathbb{F}_{q^{2}}\right)=1+q^{2} .
$$

Having such a nonzero root $\beta \in \mathbb{F}_{q^{2}}^{*}$, we conclude as in the proof of Theorem 6.1 that the curve \mathcal{C} can be given by the equation

$$
x_{1}^{q}-x_{1}=a y^{2} \quad \text { with } a \in \mathbb{F}_{q^{2}}^{*} .
$$

It now follows from Proposition 5.2 that

$$
a^{v} \neq(-1)^{u} \quad \text { with } \quad u=\frac{q+1}{2} \text { and } v=\frac{q^{2}-1}{2} .
$$

The element $a \in \mathbb{F}_{q^{2}}^{*}$ satisfies $a^{v}= \pm 1$. Consider two curves over $\mathbb{F}_{q^{2}}$ given by $a_{1} y^{2}=x^{q}-x$ and $a_{2} y^{2}=x^{q}-x$ respectively, with $a_{1}^{v} \neq(-1)^{u}$ and $a_{2}^{v} \neq(-1)^{u}$. Hence $a_{1}^{v}=a_{2}^{v}$ and $a_{2}=a_{1} c^{2}$ for some $c \in \mathbb{F}_{q^{2}}^{*}$. The substitution $y \mapsto c y$ shows that the two curves above are isomorphic to each other.

The theorem below is the analogue of Theorem 6.1 in characteristic $p=2$:
Theorem 6.4. Suppose that $p=2$. There exists a unique maximal hyperelliptic curve over $\mathbb{F}_{q^{2}}$ with genus $g=q / 2$. It can be given by the affine equation

$$
y^{2}+y=x^{q+1} .
$$

Proof. With arguments as in the proof of Corollary 5.8, we find that the curve can be given by $y^{2}+y=f(x)$ with $f(x) \in \mathbb{F}_{q^{2}}[x]$ of degree $q+1$. The result now follows from item 3) of Theorem 2.3 of [3].
7. Serre maximal curves. In this section we consider curves \mathcal{C} that attain the Serre upper bound (we call them $S W$-maximal curves), i.e., curves \mathcal{C} defined over \mathbb{F}_{q} such that

$$
\# \mathcal{C}\left(\mathbb{F}_{q}\right)=q+1+[2 \sqrt{q}] g(\mathcal{C}) .
$$

Proposition 7.1. Let k be a field with q elements and set $m=[2 \sqrt{q}]$. For a smooth projective curve \mathcal{C} of genus g defined over $k=\mathbb{F}_{q}$, the following conditions are equivalent:

- The curve \mathcal{C} is $S W$-maximal.
- The L-polynomial of \mathcal{C} satisfies $L(t)=\left(1+m t+q t^{2}\right)^{g}$.

Proof. See [10] and [17, p. 180].
Corollary 7.2. Let \mathcal{C} be a smooth projective curve of genus g defined over $k=\mathbb{F}_{q}$ which attains the Serre upper bound. Then its Hasse-Witt
invariant satisfies

$$
\sigma(\mathcal{C})= \begin{cases}g & \text { if } \operatorname{gcd}(p, m)=1 \\ 0 & \text { if } p \mid m\end{cases}
$$

Proof. Since \mathcal{C} is SW-maximal, from Proposition 7.1 we have

$$
\begin{aligned}
L(t)=\left(1+m t+q t^{2}\right)^{g} & =1+\sum_{i=1}^{g}\binom{g}{i} t^{i}(m+q t)^{i} \\
& =1+\sum_{i=1}^{g}\binom{g}{i} t^{i}\left(\sum_{j=0}^{i}\binom{i}{j} m^{i-j} q^{j} t^{j}\right)
\end{aligned}
$$

If $p \mid m$, then it is clear from Proposition 2.3 that $\sigma(\mathcal{C})=0$. Now suppose that $\operatorname{gcd}(p, m)=1$. We have to show that the coefficient of t^{g} in the L-polynomial $L(t)$ is not divisible by p. Denote it by a_{g}. From the last equality above, we then obtain

$$
a_{g} \equiv m^{g}(\bmod p)
$$

We recall that an admissible rational function $f(x) \in k(x)$ is such that every pole of $f(x)$ in the algebraic closure \bar{k} occurs with a multiplicity prime to the characteristic p. We then have:

Theorem 7.3. Let \mathcal{C} be an $S W$-maximal curve over \mathbb{F}_{q} given by an affine equation of the form

$$
\begin{equation*}
A(y)=f(x) \tag{7.1}
\end{equation*}
$$

where $A(y) \in \mathbb{F}_{q}[y]$ is an additive and separable polynomial and where $f(x)$ is an admissible rational function. Set $m=[2 \sqrt{q}]$ and suppose that $\operatorname{gcd}(p, m)=1$. Then all poles of $f(x)$ are simple.

Proof. We know that a curve \mathcal{C} given by (7.1) is ordinary if and only if the rational function $f(x)$ has only simple poles (see [20, Corollary 1]). Thus Theorem 7.3 follows directly from Corollary 7.2.

Corollary 7.4. Let \mathcal{C} be an $S W$-maximal curve as in the above theorem with $\operatorname{gcd}(p, m)=1$. Then its genus satisfies $g(\mathcal{C})=(\operatorname{deg} A-1)(s-1)$, where s denotes the number of poles of $f(x)$.

We finish with two examples of SW-maximal Artin-Schreier curves. In the first example $p \mid m$ and the rational function $f(x)$ has a nonsimple pole; in the second, $\operatorname{gcd}(p, m)=1$ and $f(x)$ has only simple poles, as follows from Theorem 7.3.

Example 7.5. Let $k=\mathbb{F}_{2}$. So $m=[2 \sqrt{2}]=2$ and $p \mid m$. Let \mathcal{C} be the elliptic curve over \mathbb{F}_{2}, given by the affine equation

$$
y^{2}+y=x^{3}+x
$$

One can easily see that \mathcal{C} has five k-rational points, which means that \mathcal{C} is SW-maximal over k. Note that $f(x)=x^{3}+x$ has a pole of order 3 at infinity.

Example 7.6. Let $k=\mathbb{F}_{8}$. So $m=[2 \sqrt{8}]=5$ and $\operatorname{gcd}(p, m)=1$. Let \mathcal{C} be the elliptic curve over \mathbb{F}_{8}, given by the affine equation

$$
y^{2}+y=\frac{x^{2}+x+1}{x} .
$$

Then the curve \mathcal{C} is SW-maximal since it has $14 k$-rational points. In fact, the two simple poles of $\left(x^{2}+x+1\right) / x$ are totally ramified in the extension $k(x, y) / k(x)$ and they correspond to two k-rational points on \mathcal{C}. By Hilbert's 90 Theorem, we have

$$
\# \mathcal{C}\left(\mathbb{F}_{8}\right)=2+2 B,
$$

where $B:=\#\left\{\alpha \in \mathbb{F}_{8} \left\lvert\, \operatorname{tr}_{\mathbb{F}_{8} \mid \mathbb{F}_{2}}\left(\frac{\alpha^{2}+\alpha+1}{\alpha}\right)=0\right.\right\}$. But one can show that $B=6$; in fact, the points $x=\alpha \in \mathbb{F}_{8} \backslash \mathbb{F}_{2}$ are completely splitting in $k(x, y) / k(x)$.

References

[1] A. Aguglia, G. Korchmáros and F. Torres, Plane maximal curves, Acta Arith. 98 (2001), 165-179.
[2] T. Ekedahl, On supersingular curves and abelian varieties, Math. Scand. 60 (1987), 151-178.
[3] A. Garcia and F. Özbudak, Some maximal function fields and additive polynomials, Comm. Algebra 35 (2007), 1553-1566.
[4] A. Garcia, H. Stichtenoth and C. P. Xing, On subfields of Hermitian function fields, Compos. Math. 120 (2000), 137-170.
[5] A. Garcia and S. Tafazolian, On additive polynomials and certain maximal curves, J. Pure Appl. Algebra 212 (2008), 2513-2521.
[6] H. Hasse und E. Witt, Zyklische unverzweigte Erweiterungskörper vom Primzahlgrade p über einen algebraischen Funktionenkörper der Characteristic p, Monatsh. Math. 43 (1936), 477-492.
[7] S. Irokawo and R. Sasaki, A remark on Artin-Schreier curves whose Hasse-Witt maps are the zero maps, Tsubuka J. Math. 1 (1991), 185-192.
[8] N. Koblitz, p-adic variation of the zeta-function over families of varieties defined over finite fields, Compos. Math. 31 (1975), 119-218.
[9] T. Kodama and T. Washio, Hasse-Witt matrices of Fermat curves, Manuscripta Math. 60 (1988), 185-195.
[10] G. Lachaud, Sommes d'Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis, C. R. Acad. Sci. Paris Sér. I 305 (1987), 729-732.
[11] S. Lang, Abelian Varieties, Interscience, New York, 1959.
[12] Yu. I. Manin, Theory of commutative formal groups over fields of finite characteristic, Uspekhi Mat. Nauk 18 (1963), no. 6, 3-90 (in Russian).
[13] N. O. Nygaard, Slopes of powers of Frobenius on crystalline cohomology, Ann. Sci. École Norm. Sup. 14 (1981), 369-401.
[14] H. G. Rück and H. Stichtenoth, A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math. 457 (1994), 185-188.
[15] J.-P. Serre, Sur la topologie des variétés algébriques en caractéristique p, in: Symposium internacional de topología algebraica, Univ. Nacional Autónoma de México, 1958, 24-53.
[16] H. Stichtenoth, Die Hasse-Witt Invariante eines Kongruenzfunktionenkörpers, Arch. Math. (Basel) 33 (1979/80), 357-360.
[17] -, Algebraic Function Fields and Codes, Universitext, Springer, Berlin, 1993.
[18] H. Stichtenoth and C. P. Xing, On the structure of the divisor class group of curves over finite fields, Arch. Math. (Basel) 65 (1995), 141-150.
[19] K. O. Stöhr and P. Viana, A study of Hasse-Witt matrices by local methods, Math. Z. 200 (1989), 397-407.
[20] F. J. Sullivan, p-torsion in the class group of curves with too many automorphisms, Arch. Math. (Basel) 26 (1975), 253-261.
[21] J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144.
[22] R. C. Valentini, Hyperelliptic curves with zero Hasse-Witt matrix, Manuscripta Math. 86 (1995), 185-194.
[23] J. Wolfmann, The number of points on certain algebraic curves over finite fields, Comm. Algebra 17 (1989), 2055-2060.

IMPA-Instituto Nacional de Matemática Pura e Aplicada
Estrada Dona Castorina 110, Jardim Botanico
22460-320, Rio de Janeiro, Brazil
E-mail: garcia@impa.br
saeed@impa.br

[^0]: 2000 Mathematics Subject Classification: 11G20, 11M38, 14G15, 14H25.
 Key words and phrases: finite fields, maximal curves, genus, Hasse-Witt invariant, Cartier operator, Fermat curves, Artin-Schreier curves, hyperelliptic curves.
 A. Garcia was partially supported by a grant from CNPq-Brazil (\# 307569/2006-3).

