Certain maximal curves and Cartier operators

by

ARNALDO GARCIA and SAEED TAFAZOLIAN (Rio de Janeiro)

1. Introduction. More than half a century ago, André Weil proved a formula for the number $N = \#\mathcal{C}(\mathbb{F}_q)$ of rational points on a smooth geometrically irreducible projective curve \mathcal{C} of genus g defined over a finite field \mathbb{F}_q . This formula provides upper and lower bounds on the number of rational points possible. It states that

$$q+1-2g\sqrt{q} \le N \le q+1+2g\sqrt{q}.$$

In general, this bound is sharp. In fact, if q is a square, there exist several curves that attain the above upper bound (see [4], [5], [14] and [23]). We say a curve is *maximal* (resp. *minimal*) if it attains the above upper (resp. lower) bound.

There are however situations in which the bound can be improved. For instance, if q is not a square there is a nontrivial improvement due to Serre (see [17, Section V.3]):

 $q+1-g[2\sqrt{q}] \le N \le q+1+g[2\sqrt{q}],$

where [a] denotes the integer part of the real number a.

Ihara showed that if a curve C is maximal over \mathbb{F}_{q^2} then its genus satisfies

$$(1.1) g \le \frac{q^2 - q}{2}$$

There is a unique maximal curve over \mathbb{F}_{q^2} which attains the above genus bound, and it can be given by the affine equation (see [14])

(1.2)
$$y^q + y = x^{q+1}.$$

This is the so-called Hermitian curve over \mathbb{F}_{q^2} .

In this paper, we consider maximal (and also minimal) curves over a finite field with q^2 elements. We give a characterization of certain maxi-

[199]

²⁰⁰⁰ Mathematics Subject Classification: 11G20, 11M38, 14G15, 14H25.

Key words and phrases: finite fields, maximal curves, genus, Hasse–Witt invariant, Cartier operator, Fermat curves, Artin–Schreier curves, hyperelliptic curves.

A. Garcia was partially supported by a grant from CNPq-Brazil (# 307569/2006-3).

mal and minimal curves of the following types: Fermat, Artin–Schreier or hyperelliptic. The main tool is the Cartier operator, which is a nilpotent operator in the case of maximal (or minimal) curves over finite fields. We give generalizations of results from [1], [7], [9], [22] and [23].

In Section 2 we review some important properties of the curves in question. Of special interest is Proposition 2.9 which is used to prove in Section 3 that $\mathscr{C}^n = 0$ for a maximal or a minimal curve over \mathbb{F}_{q^2} with $q = p^n$, where \mathscr{C} denotes the Cartier operator (see Theorem 3.3). In Section 4 we consider the Fermat curve $\mathcal{C}(m)$ over \mathbb{F}_{q^2} , defined by the affine equation $y^m = 1 - x^m$. We show that $\mathcal{C}(m)$ is maximal over \mathbb{F}_{q^2} if and only if m divides q + 1. This generalizes [1, Corollary 3.5] which deals with the particular case when m belongs to the set of values of the polynomial $T^2 - T + 1$, and it also generalizes [9, Corollary 1] which deals with the case of q = p prime (see Remark 4.3).

In Section 5 we consider maximal curves \mathcal{C} over \mathbb{F}_{q^2} given by an affine equation $y^q - y = f(x)$, where f(x) is a polynomial in $\mathbb{F}_{q^2}[x]$ with degree dprime to the characteristic p. We show that $d \mid q + 1$ and that the maximal curve \mathcal{C} is isomorphic to the curve given by $y^q + y = x^d$ (see Theorem 5.4). In particular, this result shows that the hypothesis that $d \mid q + 1$ in Proposition 5.2 is superfluous and that the maximal curves \mathcal{C} in Theorem 5.4 are covered by the Hermitian curve over \mathbb{F}_{q^2} given by (1.2) (see Remark 5.5). The main ideas here come from [7] which deals with the case of q = p prime. In Section 6 we deal with maximal hyperelliptic curves \mathcal{C} over \mathbb{F}_{q^2} in characteristic p > 2. The genus of \mathcal{C} satisfies $g(\mathcal{C}) \leq (q-1)/2$ and we show that the curve \mathcal{C} given by the affine equation

$$y^2 = x^q + x$$

is the unique maximal hyperelliptic curve over \mathbb{F}_{q^2} with genus g = (q-1)/2(see Theorem 6.1). The main ideas here come from [22] which deals with hyperelliptic curves with zero Hasse–Witt matrix (see Remark 6.2).

In this paper the word *curve* will mean a projective nonsingular and geometrically irreducible algebraic curve defined over a perfect field of characteristic p > 0.

2. Maximal curves. In this section we review some well-known properties of maximal curves.

Let \mathcal{C} be a curve of genus g > 0 over the finite field $k = \mathbb{F}_q$ with q elements. The *zeta function* of \mathcal{C} is a rational function of the form

$$Z(\mathcal{C}/k) = \frac{L(t)}{(1-t)(1-qt)}$$

where $L(t) \in \mathbb{Z}[t]$ is a polynomial of degree 2g with integral coefficients. We call this polynomial the *L*-polynomial of \mathcal{C} over k.

Let K/k be the function field of \mathcal{C} over k. Then the divisor class group $C^0(K)$ is finite and it is isomorphic to the group of k-rational points of the Jacobian \mathcal{J} of \mathcal{C} ,

$$C^0(K) = \mathcal{J}(k).$$

It is well-known that the class number $h = \operatorname{ord}(C^0(K))$ of K/k is given by h = L(1). We have

$$L(t) = 1 + a_1 t + \dots + a_{2g-1} t^{2g-1} + q^g t^{2g} = \prod_{i=1}^{2g} (1 - \alpha_i t),$$

where $a_{2g-i} = q^{g-i}a_i$ for i = 1, ..., g, and moreover the α_i 's are complex numbers with absolute value $|\alpha_i| = \sqrt{q}$ for $1 \le i \le 2g$.

We recall the following fact about maximal curves (see [21]):

PROPOSITION 2.1. Suppose q is a square. For a smooth projective curve C of genus g, defined over $k = \mathbb{F}_q$, the following conditions are equivalent:

- C is maximal (minimal, respectively).
- $L(t) = (1 + \sqrt{q} t)^{2g} (L(t) = (1 \sqrt{q} t)^{2g}, respectively).$
- The Jacobian of C is k-isogenous to the gth power of a supersingular elliptic curve, all of whose endomorphisms are defined over k.

Let $h(t) = t^{2g}L(t^{-1})$. Then h(t) is the *characteristic polynomial* of the Frobenius action on the Jacobian variety \mathcal{J}/k .

REMARK 2.2. As shown by J.-P. Serre, if there is a morphism defined over the field k between two curves $f : \mathcal{C} \to \mathcal{D}$, then the L-polynomial of \mathcal{D} divides the one of \mathcal{C} . Hence a subcover \mathcal{D} of a maximal curve \mathcal{C} is also maximal (see [10]). So one way to construct explicit maximal curves is to find equations for subcovers of the Hermitian curve (see [1] and [4]).

DEFINITION. The *p*-rank of an abelian variety \mathcal{A}/k is denoted by $\sigma(\mathcal{A})$; it is the number of copies of $\mathbb{Z}/p\mathbb{Z}$ in the group of points of order p in $\mathcal{A}(\bar{k})$. The *p*-rank $\sigma(\mathcal{C})$ of a curve \mathcal{C}/k is the *p*-rank of its Jacobian. We also call it the Hasse-Witt invariant of the curve.

If we have the *L*-polynomial of a curve C, we can use the following result to determine its Hasse–Witt invariant (see [16]):

PROPOSITION 2.3. Let C be a curve defined over $k = \mathbb{F}_q$. If the Lpolynomial is $L = 1 + a_1t + \cdots + a_{2g-1}t^{2g-1} + q^gt^{2g}$, then the Hasse-Witt invariant satisfies

$$\sigma(\mathcal{C}) = \max\{i \mid a_i \not\equiv 0 \pmod{p}\}.$$

REMARK 2.4. Since $a_{2g-i} = q^{g-i}a_i$, $i = 0, 1, \ldots, g$, we have $0 \le \sigma(\mathcal{C}) \le g$. If $\sigma(\mathcal{C}) = g$ the curve is called *ordinary*. COROLLARY 2.5. If a curve C is maximal (or minimal) over a finite field, then the Hasse–Witt invariant satisfies $\sigma(C) = 0$.

Proof. This follows from the above proposition and Proposition 2.1.

REMARK 2.6. In fact, the *p*-rank of an abelian variety is equal to the number of zero slopes in its *p*-adic Newton polygon and this number is not greater than the dimension. So in general we have $0 \leq \sigma(\mathcal{C}) \leq g(\mathcal{C})$. From Proposition 2.1 a maximal (or minimal) curve \mathcal{C} is supersingular, so all slopes of its Newton polygon are equal to 1/2. On the other hand, if a curve \mathcal{C} defined over a finite field $k = \mathbb{F}_q$ is supersingular, then \mathcal{C} is minimal over some finite extension of k (see [18, Proposition 1]). For additional information about Newton polygons, see [12].

We recall the following basic result concerning Jacobians. Let \mathcal{C} be a curve, \mathscr{F} the Frobenius endomorphism (relative to the base field) of the Jacobian \mathcal{J} of \mathcal{C} , and h(t) the characteristic polynomial of \mathscr{F} . Let $h(t) = \prod_{i=1}^{T} h_i(t)^{r_i}$ be the irreducible factorization of h(t) over $\mathbb{Z}[t]$. Then

(2.1)
$$\prod_{i=1}^{T} h_i(\mathscr{F}) = 0 \quad \text{on } \mathcal{J}.$$

This follows from the semisimplicity of \mathscr{F} and the fact that the representation of endomorphisms of \mathcal{J} on the Tate module is faithful (cf. [21, Theorem 2] and [11, VI, Section 3]). In the case of a maximal curve over \mathbb{F}_{q^2} , we have $h(t) = (t+q)^{2g}$. Therefore from (2.1) we obtain the following result, which is contained in the proof of [14, Lemma 1].

LEMMA 2.7. The Frobenius map \mathscr{F} (relative to \mathbb{F}_{q^2}) of the Jacobian \mathcal{J} of a maximal (resp. minimal) curve over \mathbb{F}_{q^2} acts as multiplication by -q (resp. by +q).

REMARK 2.8. Let \mathcal{A} be an abelian variety defined over \mathbb{F}_{q^2} , of dimension g. Then

$$(q-1)^{2g} \le #\mathcal{A}(\mathbb{F}_{q^2}) \le (q+1)^{2g}.$$

But if \mathcal{C} is a maximal (resp. minimal) curve over \mathbb{F}_{q^2} , then by the above lemma we have $\mathcal{J}(\mathbb{F}_{q^2}) = (\mathbb{Z}/(q+1)\mathbb{Z})^{2g}$ (resp. $\mathcal{J}(\mathbb{F}_{q^2}) = (\mathbb{Z}/(q-1)\mathbb{Z})^{2g}$). So the Jacobian of a maximal (resp. minimal) curve is maximal (resp. minimal) in the sense of the above bounds.

The following proposition is crucial for us (see [2, Proposition 1.2]):

PROPOSITION 2.9. Let \mathcal{A} be an abelian variety defined over \mathbb{F}_{q^2} , where $q = p^n$. If the Frobenius \mathscr{F} relative to \mathbb{F}_{q^2} acts on the abelian variety \mathcal{A} as multiplication by $\pm q$, then $\mathscr{F}^n = 0$ on $H^1(\mathcal{A}, \mathcal{O}_{\mathcal{A}})$.

3. Cartier operator. Let \mathcal{C} be a curve defined over a perfect field k of characteristic p > 0. Let Ω^1 be the sheaf of differential 1-forms on \mathcal{C} . Then there exists a unique operation $\mathscr{C} : \Omega^1 \to \Omega^1$, called the *Cartier operator*, such that

- (i) \mathscr{C} is 1/p-linear, i.e., \mathscr{C} is additive and $\mathscr{C}(f^p\omega) = f\mathscr{C}(\omega)$,
- (ii) \mathscr{C} vanishes on exact differentials, i.e., $\mathscr{C}(df) = 0$,
- (iii) $\mathscr{C}(f^{p-1}df) = df$,
- (iv) a differential $\omega \in \Omega^1$ is *logarithmic* (i.e., there exists a section $f \neq 0$ such that $\omega = df/f$) if and only if ω is closed and $\mathscr{C}(\omega) = \omega$,

where f (resp. ω) is a local section of \mathscr{O} (resp. Ω^1). This operator induces a 1/p-linear map

$$\mathscr{C}: H^0(\mathcal{C}, \Omega^1) \to H^0(\mathcal{C}, \Omega^1),$$

acting on the space of regular differential forms.

REMARK 3.1. Moreover, for a given natural number n, one can easily show that

$$\mathscr{C}^{n}(x^{j}dx) = \begin{cases} 0 & \text{if } p^{n} \nmid j+1, \\ x^{s-1}dx & \text{if } j+1 = p^{n}s \end{cases}$$

We mention here the following theorem of Hasse–Witt ([6]):

THEOREM 3.2. Let V be a finite-dimensional vector space over an algebraically closed field of characteristic p > 0. Let $\psi : V \to V$ be a 1/p-linear map. Then there are two subspaces V^s and V^0 of V satisfying the following conditions:

- V^s is spanned by ψ invariant elements.
- Each y in V^0 is killed by an iterate of ψ .
- $V = V^s \oplus V^0$.

DEFINITION. For a basis $\omega_1, \ldots, \omega_g$ of $H^0(\mathcal{C}, \Omega^1)$ let (a_{ij}) denote the associated matrix of the Cartier operator \mathscr{C} , i.e.,

$$\mathscr{C}(\omega_j) = \sum_{i=1}^g a_{ij}\omega_i.$$

The corresponding Hasse–Witt matrix $\mathscr{A}(\mathcal{C})$ is obtained by taking pth powers, i.e.,

$$\mathscr{A}(\mathcal{C}) = (a_{ij}^p).$$

Because of 1/p-linearity, the operator \mathscr{C}^n is represented with respect to the basis $\omega_1, \ldots, \omega_q$ by the product of the matrices below:

$$(a_{ij}^{1/p^{n-1}})\cdots(a_{ij}^{1/p})\cdot(a_{ij}).$$

By raising the coefficients to p^n th powers we get the matrix

$$\mathscr{A}(\mathcal{C})^{[n]} = (a_{ij}^p) \cdot (a_{ij}^{p^2}) \cdots (a_{ij}^{p^n}).$$

It is remarkable that if $n \geq g$ then the rank of the matrix $\mathscr{A}(\mathcal{C})^{[n]}$ does not depend on n and it is equal to the Hasse–Witt invariant of \mathcal{C} .

THEOREM 3.3. Let C be an algebraic curve defined over a finite field with q^2 elements, where $q = p^n$ for some $n \in \mathbb{N}$. If the curve C is maximal (or minimal) over \mathbb{F}_{q^2} , then $\mathcal{C}^n = 0$.

Proof. From Lemma 2.7 we know that the Frobenius acting on the Tate module of the Jacobian of \mathcal{C} acts as multiplication by $\pm q$. Then one may apply Proposition 2.9 to conclude that $\mathscr{F}^n = 0$. Finally, since the Cartier operator acting on $H^0(\mathcal{C}, \Omega^1)$ is dual to the Frobenius acting on $H^1(\mathcal{C}, \mathscr{O}_{\mathcal{C}})$ by the Serre duality, one concludes that also $\mathscr{C}^n = 0$.

The next result (see [19, Corollary 2.7]) relates the Hasse–Witt matrix and the Weierstrass gap sequence at a rational point.

PROPOSITION 3.4. Let C be a curve defined over a perfect field and $n \in \mathbb{N}$. Let $\mathscr{A}(C)$ denote the Hasse–Witt matrix of the curve C. If P is a rational point on C, then the rank of $\mathscr{A}(C)^{[n]}$ is no smaller than the number of gaps at P divisible by p^n .

COROLLARY 3.5. Let C be a curve defined over \mathbb{F}_{q^2} . Let P be a rational point on the curve C. If C is maximal over \mathbb{F}_{q^2} then q is not a gap number of P.

Proof. If $q = p^n$ for some integer n and C is a maximal curve over \mathbb{F}_{q^2} then Theorem 3.3 yields $\mathscr{A}(\mathcal{C})^{[n]} = 0$. Thus the result follows from Proposition 3.4.

COROLLARY 3.6. Let C be a hyperelliptic curve over \mathbb{F}_{q^2} where $q = p^n$ and p > 2. If $\mathscr{C}^n = 0$, then

$$g(\mathcal{C}) \le \frac{q-1}{2}.$$

Proof. As the genus is fixed under a constant field extension, we can suppose that k is algebraically closed. We know that a Weierstrass point on a hyperelliptic curve has the gap sequence $1, 3, 5, \ldots, 2g - 1$, so the result follows from Proposition 3.4.

REMARK 3.7. If C is maximal over \mathbb{F}_{p^2} then $\mathscr{C} = 0$. On the other hand, the Cartier operator on a curve is zero if and only if the Jacobian of the curve is the product of supersingular elliptic curves (see [13, Theorem 4.1]). Now by Theorem 1.1 of [2] we also have

- $g(\mathcal{C}) \le (p^2 p)/2$,
- $g(\mathcal{C}) \leq (p-1)/2$ if \mathcal{C} is hyperelliptic and $(p,g) \neq (2,1)$.

4. Fermat curves. In this section we give a characterization of maximal Fermat curves.

Let k be a finite field with q^2 elements, where $q = p^n$ for some integer n. Let $\mathcal{C}(m)$ be the Fermat curve defined over k by

$$x^m + y^m = z^m$$

where m is an integer such that $m \ge 3$ and gcd(m, p) = 1.

As is well-known, the genus g of $\mathcal{C}(m)$ is g = (m-1)(m-2)/2. The affine model of $\mathcal{C}(m)$ is given by $x_1^m + y_1^m = 1$ $(x_1 = x/z, y_1 = y/z)$. Let μ_m denote the set of *m*th roots of unity. If *m* divides $q^2 - 1$, then the group $\mu_m \times \mu_m$ operates on rational points of $\mathcal{C}(m)$ by

(4.1)
$$(\xi,\zeta)(x_1,y_1) = (\xi x_1,\zeta y_1) \quad \text{with } \xi,\zeta \in \mu_m.$$

REMARK 4.1. If C is maximal over \mathbb{F}_{q^2} , then m divides $q^2 - 1$ (see the proof of Lemma 4.5 in [5]).

LEMMA 4.2. With notation and hypotheses as above, if C(m) is maximal over \mathbb{F}_{q^2} , then $m \leq q+1$.

Proof. Since the genus is g = (m-1)(m-2)/2 and the curve $\mathcal{C}(m)$ is maximal over \mathbb{F}_{q^2} , then

(4.2)
$$#\mathcal{C}(m)(\mathbb{F}_{q^2}) = 1 + q^2 + (m-1)(m-2)q.$$

Looking at the function field extension $\mathbb{F}_{q^2}(x, y)/\mathbb{F}_{q^2}(x)$, where $y^m = 1 - x^m$, we see that the points with $x^m = 1$ are totally ramified. Hence we also have

(4.3)
$$\#\mathcal{C}(m)(\mathbb{F}_{q^2}) \le m + (q^2 + 1 - m)m.$$

From (4.2) and (4.3) we conclude that $m \leq q+1$.

If m = q + 1 then C(q + 1) is the Hermitian curve over \mathbb{F}_{q^2} . Suppose m divides q + 1, i.e., q + 1 = mr for some integer r. Then we can define the following morphism:

$$\mathcal{C}(q+1) \to \mathcal{C}(m), \quad (x,y) \mapsto (x^r, y^r).$$

Hence $\mathcal{C}(m)$ is covered by $\mathcal{C}(q+1)$. Thus by Remark 2.2 if *m* divides q+1, then $\mathcal{C}(m)$ is maximal over \mathbb{F}_{q^2} . Now we want to show the converse. We start with a remark:

REMARK 4.3. Assume q = p is a prime number. If the curve $\mathcal{C}(m)$ is maximal over \mathbb{F}_{p^2} , then Theorem 3.3 implies that the Hasse–Witt matrix of $\mathcal{C}(m)$ is zero. Hence from [9, Corollary 1] we find that $m \mid p + 1$. The next theorem generalizes this result.

THEOREM 4.4. Let $\mathcal{C}(m)$ be the Fermat curve of degree m prime to the characteristic p defined over \mathbb{F}_{q^2} . Then $\mathcal{C}(m)$ is maximal over \mathbb{F}_{q^2} if and only if m divides q + 1.

Proof. If m | q+1, then the above discussion shows that $\mathcal{C}(m)$ is maximal over \mathbb{F}_{q^2} . Conversely, let $\mathcal{C}(m)$ be a maximal curve over \mathbb{F}_{q^2} . By Remark 4.1 we know that m divides $q^2 - 1$. As in the proof of the lemma above, looking at the function field extension $\mathbb{F}_{q^2}(x, y)/\mathbb{F}_{q^2}(x)$ we find that

(4.4)
$$\#\mathcal{C}(m)(\mathbb{F}_{q^2}) = m + \lambda m$$
 for some integer λ .

In fact, $\mathcal{C}(m)$ has *m* rational points which correspond to the totally ramified points with $x^m = 1$ and some others that are completely splitting. On the other hand, from the maximality of $\mathcal{C}(m)$ we have

(4.5)
$$#\mathcal{C}(m)(\mathbb{F}_{q^2}) = 1 + q^2 + (m-1)(m-2)q.$$

Comparing (4.4) and (4.5) we deduce that $m \mid (q+1)^2$. Hence $m \mid 2(q+1)$, since $m \mid q^2 - 1$. Now we have two cases:

CASE 1: p = 2. In this case since gcd(m, p) = 1, we see that m is odd and hence it divides q + 1, since it divides 2(q + 1).

CASE 2: p = odd. In this case gcd(q + 1, q - 1) = 2. Reasoning as for p = 2, we find that if d is an odd divisor of m, then d | q + 1. The only situation still to be investigated is the following: $q + 1 = 2^r s$ with s an odd integer and $m = 2^{r+1}s_1$ with $s_1 | s$. But according to Remark 2.2 and the following lemma, this situation does not occur.

LEMMA 4.5. Assume that the characteristic p is odd and write $q+1 = 2^r s$ with s an odd integer. Set $m := 2^{r+1}$. Then the Fermat curve $\mathcal{C}(m)$ is not maximal over \mathbb{F}_{q^2} .

Proof. Writing $q = p^n$ we consider three cases:

CASE 1: $p \equiv 1 \pmod{4}$. In this case we have q + 1 = 2s with s odd. So we must show that the curve $\mathcal{C}(4)$ is not maximal over \mathbb{F}_{q^2} . But it follows from [9, Theorem 2] that $\mathcal{C}(4)$ with $p \equiv 1 \pmod{4}$ is ordinary and so it is not maximal.

CASE 2: $p \equiv 3 \pmod{4}$ and *n* even. In this case we have again q+1 = 2s with *s* odd and we must show that the curve $\mathcal{C}(4)$ is not maximal over \mathbb{F}_{q^2} . Since $4 \mid p+1$, the curve $\mathcal{C}(4)$ is maximal over \mathbb{F}_{p^2} . Hence $\mathcal{C}(4)$ is minimal over \mathbb{F}_{q^2} because *n* is even.

CASE 3: $p \equiv 3 \pmod{4}$ and *n* odd. As *n* is odd, we have $q + 1 = 2^r s$ with $r \geq 2$ and *s* odd. Here we can assume that $r \geq 3$. In fact, for r = 2 according to [8, p. 204], the curve $\mathcal{C}(8)$ is not supersingular and hence cannot be maximal. Note that r = 2 implies $p \equiv 3 \pmod{8}$.

Consider now the curve $\mathcal{C}(m)$ with $m = 2^{r+1}$ and $r \ge 3$. As $m = 2^{r+1}$ is the largest power of 2 that divides $q^2 - 1$, -1 is not an *m*th power in $\mathbb{F}_{q^2}^*$. Hence the points at infinity on $y^m = 1 - x^m$ are not rational. This implies that (see (4.1))

(4.6)
$$\#\mathcal{C}(m)(\mathbb{F}_{q^2}) = m + \lambda_1 m^2$$
 for some integer λ_1 .

Then from (4.5) and (4.6) we get

$$q^2 + 1 + 2q - 3mq - m \equiv 0 \pmod{m^2}.$$

Hence $(q+1)^2 - m(2q+2) - m(q-1) \equiv 0 \pmod{m^2}$. Since $m \mid 2q+2$, we obtain $4(q+1)^2 - 4m(q-1) \equiv 0 \pmod{4m^2}$. This implies that $m \mid 4(q-1)$, and this is impossible as $r \geq 3$ and $4(q-1) = 8s_1$ with s_1 odd. This completes the proofs of Lemma 4.5 and of Theorem 4.4.

REMARK 4.6. The particular case of Theorem 4.4 when m is of the form $m = t^2 - t + 1$ with $t \in \mathbb{N}$ was proved in Corollary 3.5 of [1].

5. Artin–Schreier curves. In this section we consider curves C over $k = \mathbb{F}_{q^2}$ given by an affine equation

$$(5.1) y^q - y = f(x),$$

where f(x) is an *admissible* rational function in k(x), i.e., a rational function such that every pole of f(x) in the algebraic closure \overline{k} occurs with a multiplicity relatively prime to the characteristic p. If C is a maximal curve over \mathbb{F}_{q^2} , from [5, Remark 4.2] we can assume that f(x) is a polynomial of degree $\leq q+1$. In the following we apply results introduced in the preceding sections to characterize maximal curves given by (5.1).

The following remark is due to Stichtenoth:

REMARK 5.1. Suppose that q = p in (5.1) considered over a perfect field k. Then we can change variables to assume that the curve C is given by (5.1) with an admissible rational function f(x). This follows from the partial fraction decomposition and from arguments similar to the proof of [17, Lemma III.7.7]. In fact, let u(x) in k[x] be an irreducible polynomial and suppose that the rational function f(x) involves a partial fraction of the form $c(x)/u(x)^{lp}$, with c(x) a polynomial in k[x] prime to u(x) and with l a natural number. Since the quotient field k[x]/(u(x)) is perfect, we can find polynomials a(x) and b(x) in k[x] such that $c(x) = a(x)^p + b(x)u(x)$. Setting $z = a(x)/u(x)^l$ we get

$$c(x)/u(x)^{lp} - (z^p - z) = z + b(x)/u(x)^{lp-1}.$$

Performing the substitution $y \mapsto y - z$ and repeating this argument as in the proof of [17, Lemma III.7.7], we get the desired result.

Denote by tr the trace of \mathbb{F}_{q^2} over \mathbb{F}_q . We have (see [23]):

PROPOSITION 5.2. Let C be a curve defined over \mathbb{F}_{q^2} by the equation

$$y^q - y = ax^d + b$$

where $a, b \in \mathbb{F}_{q^2}$, $a \neq 0$ and d is any positive integer relatively prime to the characteristic p. Suppose d divides q + 1 and define v and u by $vd = q^2 - 1$ and ud = q + 1. Then

- (i) If C is maximal over \mathbb{F}_{q^2} , then $\operatorname{tr}(b) = 0$ and $a^v = (-1)^u$.
- (ii) If C is minimal over \mathbb{F}_{q^2} and $q \neq 2$, then d = 2, tr(b) = 0 and $a^v \neq (-1)^u$.

REMARK 5.3. Let q = 2 and $b \in \mathbb{F}_4 \setminus \mathbb{F}_2$; apart from the curves listed in item (ii) of the above proposition, we have another minimal one of the form (5.1): the minimal elliptic curve over \mathbb{F}_4 given by the affine equation $y^2 + y = x^3 + b$.

Suppose q = p is a prime. Then a curve given by (5.1) is a *p*-cyclic extension of \mathbb{P}^1 . In [7] we have a characterization of such curves, defined over an algebraically closed field, with zero Hasse–Witt matrix. Here we generalize their argument, and we characterize such curves in the general case $q = p^n$ with nilpotent Cartier operator, $\mathscr{C}^n = 0$.

We now state the main result of this section:

THEOREM 5.4. Let C be a curve defined by the equation $y^q - y = f(x)$, where $f(x) \in \mathbb{F}_{q^2}[x]$ has degree d prime to p. If the curve C is maximal over \mathbb{F}_{q^2} , then C is isomorphic to the projective curve defined over \mathbb{F}_{q^2} by the affine equation

$$y^q + y = x^d \quad with \ d \mid q+1.$$

Proof. Write $q = p^n$. As \mathcal{C} is maximal over \mathbb{F}_{q^2} , from Theorem 3.3 we know that $\mathscr{C}^n = 0$.

A basis for $H^0(\mathcal{C}, \Omega^1)$ is

(5.2)
$$\mathcal{B} = \{ y^r x^a dx \mid 0 \le a, r \text{ and } ap^n + rd \le (p^n - 1)(d - 1) - 2 \}.$$

Since $y = y^q - f(x)$ we have

$$\mathscr{C}^n(y^r x^a dx) = \mathscr{C}^n((y^q - f)^r x^a dx).$$

From Remark 3.1 we get

(5.3)
$$\mathscr{C}^{n}(y^{r}x^{a}dx) = \sum_{h=0}^{r} \binom{r}{h} (-1)^{h} y^{r-h} \mathscr{C}^{n}(f^{h}x^{a}dx)$$

Hence

(5.4)
$$\mathscr{C}^n(f^h x^a dx) = 0$$

for all h, r and a such that $0 \le h \le r$, $\binom{r}{h}$ is prime to p and

(5.5)
$$ap^n + rd \le (p^n - 1)(d - 1) - 2.$$

First we show again that the degree of f(x) is at most q + 1. In fact, if $d = \deg(f(x)) \ge q + 2$, then $x^{q-1}dx \in \mathcal{B}$, because

$$q(q-1) \le (q-1)(q+1) - 2.$$

From Remark 3.1 we get $\mathscr{C}^n(x^{p^n-1}dx) = dx$ and this contradicts $\mathscr{C}^n = 0$.

Now if d = q + 1, then the genus of the curve C is g = q(q-1)/2. Hence according to [14], C is the Hermitian curve given by

 $y^q + y = x^{q+1}.$

Hence we can assume $d \leq q$, and so $d \leq q - 1$. Then there exists $l \geq 1$ such that

$$ld + 1 \le q < (l+1)d + 1.$$

Again since gcd(p, d) = 1, we have

(5.6)
$$ld + 1 \le q \le (l+1)d - 1.$$

For $r \in \mathbb{N}$ satisfying

$$(q-1-r)d \ge q+1$$

we define

$$a(r) := \left[d - 1 - \frac{(r+1)d + 1}{q}\right],$$

which is the largest possible $a \in \mathbb{N}$ satisfying (5.5).

From (5.6) and $d \leq q - 1$, we find that a(l) = d - 3 and therefore

(5.7)
$$\deg(f^l x^{a(l)}) = ld + a(l) = (l+1)d - 3.$$

Suppose that q - 1 = ld + a with $0 \le a \le a(l)$. Then the polynomial $f^l x^a$ has degree q - 1 and it follows from Remark 3.1 that

$$\mathscr{C}^n(f^l x^a dx) = a_d^{l/q} dx$$

where a_d denotes the leading coefficient of f(x). But this contradicts (5.4) with r = h = l.

Therefore (5.7) implies that

(5.8)
$$q-1 \ge ld + a(l) + 1 = (l+1)d - 2.$$

By (5.6) and (5.8), we have

(5.9)
$$q+1 = sd$$
 with $s := l+1 \ge 2$

Since gcd(p,d) = 1, we can change variable $x \mapsto x + \alpha$, for a suitable $\alpha \in \mathbb{F}_{q^2}$, so that

$$f(x) = a_d x^d + a_i x^i + \dots + a_0 \quad \text{with } i \le d - 2.$$

Therefore

$$f(x)^{s} = a_{d}^{s} x^{sd} + s a_{d}^{s-1} a_{i} x^{i+(s-1)d} + \dots + a_{0}^{s}.$$

Suppose $d \ge 3$. In this case if $1 \le i \le d-2$, then

$$0 \le d - i - 2 \le d - 3 = a(s).$$

We stress here that a(l) = a(l+1) = d - 3. Therefore

$$i + (s - 1)d + d - i - 2 = sd - 2 = q - 1,$$

and we get

$$\mathscr{C}^{n}(f^{s}x^{d-i-2}dx) = s(a_{d}^{s-1}a_{i})^{1/q}dx = 0.$$

This implies $a_i = 0$ since s is prime to p by (5.9). Hence f(x) must be of the form (the case d = 2 is trivial)

$$f(x) = ax^d + b \quad \text{with } d \,|\, q+1.$$

Now if the curve is maximal, from Proposition 5.2 we know that $\operatorname{tr}(b) = 0$ and $a^v = (-1)^u$ where u = (q+1)/d and $v = (q^2 - 1)/d$. By Hilbert's 90 Theorem, there exists $\gamma \in \mathbb{F}_{q^2}$ such that $\gamma^q - \gamma = b$ and by changing variable $y \mapsto y + \gamma$ we can assume b = 0.

Now we have two cases:

CASE 1: *u* is even. In this case $a^v = 1$ and hence $a = c^d$ for some $c \in \mathbb{F}_{q^2}^*$. Changing variable $x \mapsto c^{-1}x$ we have

$$y^q - y = x^d$$
 with $d | q + 1$.

Pick $\alpha \in \mathbb{F}_{q^2}$ with $\alpha^{q-1} = -1$. Substituting $y \mapsto \alpha^{-1}y$ we have $y^q + y = \alpha x^d$. Again here $\alpha^v = \alpha^{(q-1)u} = (-1)^u = 1$ and hence $\alpha = \theta^d$ for some $\theta \in \mathbb{F}_{q^2}^*$, and we conclude that the curve is isomorphic to $y^q + y = x^d$.

CASE 2: *u* is odd. In this case $a^v = -1$ and hence $(-a^{q-1})^u = 1$. So $-a^{q-1} = \beta^{d(q-1)}$ for some $\beta \in \mathbb{F}_{q^2}^*$. Set $\mu := a\beta^{-d}$; then $\mu^{q-1} = -1$. Now by changing variables $x \mapsto \beta^{-1}x$ and $y \mapsto -\mu y$ we conclude that the curve \mathcal{C} is equivalent to

 $y^q + y = x^d$ with $d \mid q + 1$.

REMARK 5.5. Most of the argument above just uses the property $\mathscr{C}^n = 0$, and we see that the hypothesis that $d \mid q+1$ in Proposition 5.2 is superfluous. We also infer that all maximal curves over \mathbb{F}_{q^2} given by $y^q - y = f(x)$ as in Theorem 5.4 are covered by the Hermitian curve.

We can also classify minimal Artin–Schreier curves over \mathbb{F}_{q^2} :

THEOREM 5.6. Let C be a curve defined by the equation $y^q - y = f(x)$, where $f(x) \in \mathbb{F}_{q^2}[x]$ has degree prime to p and $p \neq 2$. If C is minimal over \mathbb{F}_{q^2} and $g(C) \neq 0$, then C is equivalent to the projective curve defined by the equation

$$y^{q} - y = ax^{2}$$
 where $a \in \mathbb{F}_{q^{2}}, a \neq 0, and a^{(q^{2}-1)/2} \neq (-1)^{(q+1)/2}$

Proof. We know that if a curve is minimal over \mathbb{F}_{q^2} , with $q = p^n$, then again the operator \mathscr{C}^n is zero. So by the above proof, the curve can be defined by $y^q - y = ax^d + b$ where $d \mid q + 1$. Now we can use again Proposition 5.2; it yields d = 2, $\operatorname{tr}(b) = 0$ and $a^{(q^2-1)/2} \neq (-1)^{(q+1)/2}$.

REMARK 5.7. In the above theorem, if $q \equiv 1 \pmod{4}$, then on changing variable $x \mapsto \alpha^{-1}x$, where $a = \alpha^2$, the minimal curve \mathcal{C} is equivalent to

$$y^q - y = x^2.$$

Clearly, this last curve is maximal over \mathbb{F}_{q^2} if $q \equiv 3 \pmod{4}$.

Let $\pi : \mathcal{C} \to \mathcal{D}$ be a *p*-cyclic covering of projective nonsingular curves over the algebraic closure \overline{k} . Then we have the so-called Deuring–Shafarevich formula:

(5.10)
$$\sigma(\mathcal{C}) - 1 + r = p(\sigma(\mathcal{D}) - 1 + r),$$

where r is the number of ramification points of the covering π .

COROLLARY 5.8. Let C be a curve defined over $k = \mathbb{F}_{p^2}$ such that there exists a cyclic covering $C \to \mathbb{P}^1$ of degree p which is also defined over k. If the curve C is maximal over \mathbb{F}_{p^2} , then C is isomorphic to the curve given by the affine equation $y^p + y = x^d$, where d divides p + 1.

Proof. From Remark 5.1 we can assume that C is given by

$$y^p - y = f(x),$$

where every pole of f(x) in \overline{k} occurs with a multiplicity relatively prime to p. Now if C is maximal, then $\sigma(C) = 0$ by Corollary 2.5. Note that from (5.10) we must have r = 1 and we can put this unique ramification point at infinity; hence we can assume that $f(x) \in k[x]$. Note here that the unique ramification point is k-rational. The result now follows from Theorem 5.4.

6. Hyperelliptic curves. Let $k = \mathbb{F}_{q^2}$ be a finite field of characteristic p > 2. Let \mathcal{C} be a projective nonsingular hyperelliptic curve over k of genus g. Then \mathcal{C} can be defined by an affine equation of the form

$$y^2 = f(x)$$

where f(x) is a polynomial over k of degree 2g + 1, without multiple roots. If \mathcal{C} is maximal over \mathbb{F}_{q^2} then by Corollary 3.6 we have an upper bound on the genus, namely

$$g(\mathcal{C}) \le \frac{q-1}{2}.$$

In the next theorem we establish a characterization of maximal hyperelliptic curves in characteristic p > 2 that attain this upper bound. THEOREM 6.1. Suppose that p > 2. There is a unique maximal hyperelliptic curve over \mathbb{F}_{q^2} with genus g = (q-1)/2. It can be given by the affine equation

$$y^2 = x^q + x$$

Before proving this theorem, we need to explain how the matrix associated to \mathscr{C}^n , where $q = p^n$, is determined from f(x).

The differential 1-forms of the first kind on \mathcal{C} form a k-vector space $H^0(\mathcal{C}, \Omega^1)$ of dimension g with basis

$$\mathcal{B} = \{\omega_i = x^{i-1} dx/y \mid i = 1, \dots, g\}.$$

The images under the operator \mathscr{C}^n are determined in the following way. Rewrite

$$\omega_i = \frac{x^{i-1}dx}{y} = x^{i-1}y^{-q}y^{q-1}dx = y^{-q}x^{i-1}\sum_{j=0}^N c_j x^j dx,$$

where the coefficients $c_j \in k$ are obtained from the expansion

$$y^{q-1} = f(x)^{(q-1)/2} = \sum_{j=0}^{N} c_j x^j$$
 with $N = \frac{q-1}{2}(2g+1).$

Then for $i = 1, \ldots, g$ we get

$$\omega_i = y^{-q} \Big(\sum_{\substack{j \\ i+j \neq 0 \, (\text{mod } q)}} c_j x^{i+j-1} dx \Big) + \sum_l c_{(l+1)q-i} \, \frac{x^{(l+1)q}}{y^q} \, \frac{dx}{x}$$

(1.4)

Note here that $0 \leq l \leq (N+i)/q - 1 < g - 1/2$. On the other hand, we know from Remark 3.1 that if $\mathscr{C}^n(x^{r-1}dx) \neq 0$ then $r \equiv 0 \pmod{q}$. Thus we have

$$\mathscr{C}^{n}(\omega_{i}) = \sum_{l=0}^{g-1} \left(c_{(l+1)q-i} \right)^{1/q} \cdot \frac{x^{l}}{y} \, dx.$$

If we write $\omega = (\omega_1, \ldots, \omega_g)$ as a row vector we have

$$\mathscr{C}^n(\omega) = \omega M^{1/q},$$

where M is the $(q \times q)$ matrix with elements in k given as

$$M = \begin{pmatrix} c_{q-1} & c_{q-2} & \dots & c_{q-g} \\ c_{2q-1} & c_{2q-2} & \dots & c_{2q-g} \\ \vdots & \dots & \vdots \\ c_{gq-1} & c_{gq-2} & \dots & c_{gq-g} \end{pmatrix}$$

REMARK 6.2. In [22] the author found a characterization for hyperelliptic curves defined over an algebraically closed field whose Hasse–Witt matrix is zero. In the proof below we use his ideas to classify hyperelliptic curves with a nilpotent Cartier operator.

Proof of Theorem 6.1. Let C be a hyperelliptic curve of genus g = (q-1)/2. Then C can be defined by the equation $y^2 = f(x)$ with a square-free polynomial

$$f(x) = a_q x^q + a_{q-1} x^{q-1} + \dots + a_1 x + a_0 \in \mathbb{F}_{q^2}[x] \text{ and } a_q \neq 0.$$

As C is maximal over \mathbb{F}_{q^2} , it has $1 + q^2 + q(q-1)$ rational points. On the other hand, if we consider C as a double cover of \mathbb{P}^1 , the ramification points are the roots of f(x) and the point at infinity. As the latter is a rational point and $1+q^2+q(q-1)$ is an even number, f(x) must have an odd number of rational roots. Hence f(x) has at least one rational root in \mathbb{F}_{q^2} , say θ . By substituting $x + \theta$ for x, we can assume that C is defined by the equation $y^2 = f(x)$ with f(0) = 0. We then write

$$f(x) = a_q x^q + a_{q-1} x^{q-1} + \dots + a_1 x \in \mathbb{F}_{q^2}[x] \text{ and } a_1 a_q \neq 0.$$

Now as the curve C is maximal over \mathbb{F}_{q^2} , with $q = p^n$ for some integer n, it follows that $\mathscr{C}^n = 0$. So the above matrix M is the zero matrix. Hence looking at the last row of M, we see that

$$c_{gq-1} = c_{gq-2} = \dots = c_{gq-g} = 0.$$

We will show by induction that this means

$$a_{q-1} = a_{q-2} = \dots = a_{q-g} = 0.$$

First we observe that

$$c_{gq-1} = ga_q^{g-1}a_{q-1}.$$

So $c_{gq-1} = 0$ implies $a_{q-1} = 0$. Now assume $a_{q-i} = 0$ for all $1 \le i < m \le g$. We want to show that $a_{q-m} = 0$. Under the assumption above, f(x) reduces to

$$f(x) = a_q x^q + a_{q-m} x^{q-m} + \dots + a_1 x.$$

Thus $c_{gq-m} = ga_q^{g-1}a_{q-m}$. So $c_{gq-m} = 0$ implies that $a_{q-m} = 0$. By induction, f(x) reduces to

$$f(x) = a_q x^q + a_g x^g + \dots + a_2 x^2 + a_1 x.$$

Now we want to show that $a_t = 0$ for all $2 \le t \le g$. Looking at the first row of the matrix M, we see that

$$c_{q-1} = c_{q-2} = \dots = c_{g+1} = 0.$$

By induction we can show that this means

$$a_2 = a_3 = \dots = a_g = 0.$$

In fact, we first observe that $c_{g+1} = ga_1^{g-1}a_2$. Because $a_1 \neq 0$, $c_{g+1} = 0$ implies $a_2 = 0$. Now assume that $a_i = 0$ for all i with $2 \leq i < m \leq g$. We

want to show that $a_m = 0$. Under the above assumption,

$$f(x) = a_q x^q + a_g x^g + \dots + a_m x^m + a_1 x$$

Therefore $c_{g-1+m} = ga_1^{g-1}a_m$. Again because $a_1 \neq 0$, we see that $c_{g-1+m} = 0$ implies $a_m = 0$. Thus by induction we have shown that

$$f(x) = a_q x^q + a_1 x \quad \text{with } a_1 a_q \neq 0.$$

Now we can write the equation of the curve \mathcal{C} as

 $x^q + \mu x = \lambda y^2$ for some $\mu, \lambda \in \mathbb{F}_{q^2}^*$.

Since C is maximal over \mathbb{F}_{q^2} , one can show easily that the additive polynomial $A(x) := x^q + \mu x$ has a nonzero root $\beta \in \mathbb{F}_{q^2}^*$. In fact, more is true: it follows from [5, Theorem 4.3] that all roots of A(x) belong to \mathbb{F}_{q^2} .

Set $\alpha := \beta^q$ and $x_1 := \alpha x$. Then

$$A(x) = \alpha^{-q} (\alpha x)^q + (\mu \alpha^{-1})(\alpha x).$$

Hence

$$A(x) = \alpha^{-q} (x_1^q + \mu \alpha^{q-1} x_1)$$

has the root $x_1 = \alpha \beta = \beta^{q+1} \in \mathbb{F}_q^*$. So $\mu \alpha^{q-1} = -1$, and this means that \mathcal{C} is equivalent to the curve given by the equation

$$x_1^q - x_1 = ay^2$$
, where $a := \alpha^q \lambda$.

Now as we have seen at the end of the proof of Theorem 5.4, this curve is isomorphic to the curve given by the equation

$$y^2 = x^q + x. \blacksquare$$

In the next theorem we also classify minimal hyperelliptic curves over \mathbb{F}_{q^2} in characteristic p > 2 with genus satisfying g = (q-1)/2:

THEOREM 6.3. Suppose that p > 2. There is a unique curve C which is a minimal hyperelliptic curve over \mathbb{F}_{q^2} with genus g = (q-1)/2; it can be given by the affine equation

$$ay^2 = x^q - x$$
 with $a \in \mathbb{F}_{q^2}^*$ such that $a^{(q^2-1)/2} \neq (-1)^{(q+1)/2}$.

Proof. The curve C can be given by $y^2 = f(x)$ with f(x) a square-free polynomial in $\mathbb{F}_{q^2}[x]$ of degree deg $(f(x)) = q = p^n$. We have

$$#\mathcal{C}(\mathbb{F}_{q^2}) = q^2 + 1 - (q-1)q = q + 1$$

and in particular $\#\mathcal{C}(\mathbb{F}_{q^2})$ is an even number. As in the proof of Theorem 6.1 we can assume that f(0) = 0, and from $\mathscr{C}^n = 0$ we then conclude that

$$f(x) = a_q x^q + a_1 x \quad \text{with } a_1 a_q \neq 0.$$

Hence the minimal curve \mathcal{C} can be defined by

$$x^{q} + \mu x = \lambda y^{2}$$
 for some $\mu, \lambda \in \mathbb{F}_{q^{2}}^{*}$.

The polynomial $A(x) = x^q + \mu x$ must have a nonzero root in \mathbb{F}_{q^2} ; otherwise the map sending x to A(x) would be an additive automorphism of \mathbb{F}_{q^2} and hence the cardinality of rational points would satisfy

$$#\mathcal{C}(\mathbb{F}_{q^2}) = 1 + q^2.$$

Having such a nonzero root $\beta \in \mathbb{F}_{q^2}^*$, we conclude as in the proof of Theorem 6.1 that the curve \mathcal{C} can be given by the equation

$$x_1^q - x_1 = ay^2$$
 with $a \in \mathbb{F}_{q^2}^*$

It now follows from Proposition 5.2 that

$$a^{v} \neq (-1)^{u}$$
 with $u = \frac{q+1}{2}$ and $v = \frac{q^{2}-1}{2}$.

The element $a \in \mathbb{F}_{q^2}^*$ satisfies $a^v = \pm 1$. Consider two curves over \mathbb{F}_{q^2} given by $a_1y^2 = x^q - x$ and $a_2y^2 = x^q - x$ respectively, with $a_1^v \neq (-1)^u$ and $a_2^v \neq (-1)^u$. Hence $a_1^v = a_2^v$ and $a_2 = a_1c^2$ for some $c \in \mathbb{F}_{q^2}^*$. The substitution $y \mapsto cy$ shows that the two curves above are isomorphic to each other.

The theorem below is the analogue of Theorem 6.1 in characteristic p = 2:

THEOREM 6.4. Suppose that p = 2. There exists a unique maximal hyperelliptic curve over \mathbb{F}_{q^2} with genus g = q/2. It can be given by the affine equation

$$y^2 + y = x^{q+1}$$

Proof. With arguments as in the proof of Corollary 5.8, we find that the curve can be given by $y^2 + y = f(x)$ with $f(x) \in \mathbb{F}_{q^2}[x]$ of degree q + 1. The result now follows from item 3) of Theorem 2.3 of [3].

7. Serre maximal curves. In this section we consider curves C that attain the Serre upper bound (we call them *SW-maximal curves*), i.e., curves C defined over \mathbb{F}_q such that

$$#\mathcal{C}(\mathbb{F}_q) = q + 1 + [2\sqrt{q}]g(\mathcal{C}).$$

PROPOSITION 7.1. Let k be a field with q elements and set $m = [2\sqrt{q}]$. For a smooth projective curve C of genus g defined over $k = \mathbb{F}_q$, the following conditions are equivalent:

- The curve C is SW-maximal.
- The L-polynomial of C satisfies $L(t) = (1 + mt + qt^2)^g$.

Proof. See [10] and [17, p. 180].

COROLLARY 7.2. Let C be a smooth projective curve of genus g defined over $k = \mathbb{F}_q$ which attains the Serre upper bound. Then its Hasse-Witt invariant satisfies

$$\sigma(\mathcal{C}) = \begin{cases} g & \text{if } \gcd(p,m) = 1, \\ 0 & \text{if } p \mid m. \end{cases}$$

Proof. Since C is SW-maximal, from Proposition 7.1 we have

$$L(t) = (1 + mt + qt^2)^g = 1 + \sum_{i=1}^g {g \choose i} t^i (m + qt)^i$$
$$= 1 + \sum_{i=1}^g {g \choose i} t^i \left(\sum_{j=0}^i {i \choose j} m^{i-j} q^j t^j\right)$$

If $p \mid m$, then it is clear from Proposition 2.3 that $\sigma(\mathcal{C}) = 0$. Now suppose that gcd(p,m) = 1. We have to show that the coefficient of t^g in the *L*-polynomial L(t) is not divisible by p. Denote it by a_g . From the last equality above, we then obtain

$$a_g \equiv m^g \pmod{p}$$
.

We recall that an admissible rational function $f(x) \in k(x)$ is such that every pole of f(x) in the algebraic closure \overline{k} occurs with a multiplicity prime to the characteristic p. We then have:

THEOREM 7.3. Let C be an SW-maximal curve over \mathbb{F}_q given by an affine equation of the form

where $A(y) \in \mathbb{F}_q[y]$ is an additive and separable polynomial and where f(x) is an admissible rational function. Set $m = \lfloor 2\sqrt{q} \rfloor$ and suppose that gcd(p,m) = 1. Then all poles of f(x) are simple.

Proof. We know that a curve C given by (7.1) is ordinary if and only if the rational function f(x) has only simple poles (see [20, Corollary 1]). Thus Theorem 7.3 follows directly from Corollary 7.2.

COROLLARY 7.4. Let C be an SW-maximal curve as in the above theorem with gcd(p,m) = 1. Then its genus satisfies g(C) = (deg A - 1)(s - 1), where s denotes the number of poles of f(x).

We finish with two examples of SW-maximal Artin–Schreier curves. In the first example $p \mid m$ and the rational function f(x) has a nonsimple pole; in the second, gcd(p, m) = 1 and f(x) has only simple poles, as follows from Theorem 7.3.

EXAMPLE 7.5. Let $k = \mathbb{F}_2$. So $m = \lfloor 2\sqrt{2} \rfloor = 2$ and $p \mid m$. Let \mathcal{C} be the elliptic curve over \mathbb{F}_2 , given by the affine equation

$$y^2 + y = x^3 + x.$$

One can easily see that C has five k-rational points, which means that C is SW-maximal over k. Note that $f(x) = x^3 + x$ has a pole of order 3 at infinity.

EXAMPLE 7.6. Let $k = \mathbb{F}_8$. So $m = \lfloor 2\sqrt{8} \rfloor = 5$ and gcd(p, m) = 1. Let \mathcal{C} be the elliptic curve over \mathbb{F}_8 , given by the affine equation

$$y^2 + y = \frac{x^2 + x + 1}{x}.$$

Then the curve C is SW-maximal since it has 14 k-rational points. In fact, the two simple poles of $(x^2 + x + 1)/x$ are totally ramified in the extension k(x,y)/k(x) and they correspond to two k-rational points on C. By Hilbert's 90 Theorem, we have

$$#\mathcal{C}(\mathbb{F}_8) = 2 + 2B,$$

where $B := \#\{\alpha \in \mathbb{F}_8 \mid \operatorname{tr}_{\mathbb{F}_8|\mathbb{F}_2}\left(\frac{\alpha^2 + \alpha + 1}{\alpha}\right) = 0\}$. But one can show that B = 6; in fact, the points $x = \alpha \in \mathbb{F}_8 \setminus \mathbb{F}_2$ are completely splitting in k(x, y)/k(x).

References

- A. Aguglia, G. Korchmáros and F. Torres, *Plane maximal curves*, Acta Arith. 98 (2001), 165–179.
- [2] T. Ekedahl, On supersingular curves and abelian varieties, Math. Scand. 60 (1987), 151–178.
- [3] A. Garcia and F. Özbudak, Some maximal function fields and additive polynomials, Comm. Algebra 35 (2007), 1553–1566.
- [4] A. Garcia, H. Stichtenoth and C. P. Xing, On subfields of Hermitian function fields, Compos. Math. 120 (2000), 137–170.
- [5] A. Garcia and S. Tafazolian, On additive polynomials and certain maximal curves, J. Pure Appl. Algebra 212 (2008), 2513–2521.
- [6] H. Hasse und E. Witt, Zyklische unverzweigte Erweiterungskörper vom Primzahlgrade p über einen algebraischen Funktionenkörper der Characteristic p, Monatsh. Math. 43 (1936), 477–492.
- [7] S. Irokawo and R. Sasaki, A remark on Artin-Schreier curves whose Hasse-Witt maps are the zero maps, Tsubuka J. Math. 1 (1991), 185–192.
- [8] N. Koblitz, p-adic variation of the zeta-function over families of varieties defined over finite fields, Compos. Math. 31 (1975), 119–218.
- T. Kodama and T. Washio, Hasse-Witt matrices of Fermat curves, Manuscripta Math. 60 (1988), 185–195.
- [10] G. Lachaud, Sommes d'Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis, C. R. Acad. Sci. Paris Sér. I 305 (1987), 729–732.
- [11] S. Lang, *Abelian Varieties*, Interscience, New York, 1959.
- [12] Yu. I. Manin, Theory of commutative formal groups over fields of finite characteristic, Uspekhi Mat. Nauk 18 (1963), no. 6, 3–90 (in Russian).
- [13] N. O. Nygaard, Slopes of powers of Frobenius on crystalline cohomology, Ann. Sci. École Norm. Sup. 14 (1981), 369–401.

- [14] H. G. Rück and H. Stichtenoth, A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math. 457 (1994), 185–188.
- [15] J.-P. Serre, Sur la topologie des variétés algébriques en caractéristique p, in: Symposium internacional de topología algebraica, Univ. Nacional Autónoma de México, 1958, 24–53.
- [16] H. Stichtenoth, Die Hasse-Witt Invariante eines Kongruenzfunktionenkörpers, Arch. Math. (Basel) 33 (1979/80), 357–360.
- [17] —, Algebraic Function Fields and Codes, Universitext, Springer, Berlin, 1993.
- [18] H. Stichtenoth and C. P. Xing, On the structure of the divisor class group of curves over finite fields, Arch. Math. (Basel) 65 (1995), 141–150.
- K. O. Stöhr and P. Viana, A study of Hasse-Witt matrices by local methods, Math. Z. 200 (1989), 397-407.
- [20] F. J. Sullivan, p-torsion in the class group of curves with too many automorphisms, Arch. Math. (Basel) 26 (1975), 253–261.
- [21] J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144.
- [22] R. C. Valentini, Hyperelliptic curves with zero Hasse-Witt matrix, Manuscripta Math. 86 (1995), 185–194.
- J. Wolfmann, The number of points on certain algebraic curves over finite fields, Comm. Algebra 17 (1989), 2055–2060.

IMPA-Instituto Nacional de Matemática Pura e Aplicada Estrada Dona Castorina 110, Jardim Botanico 22460-320, Rio de Janeiro, Brazil E-mail: garcia@impa.br saeed@impa.br

Received on 8.10.2007

(5543)