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Normal bases of rings of continuous functions
constructed with the (qn)-digit principle

by

S. Evrard (Amiens)

When K is a local field with valuation ring V , K. Conrad [6] constructs
normal bases of the ring C(V,K) of continuous functions from V to K, using
what he calls extension by q-digit expansion, where q denotes the cardinality
of the residue field k of V . In this article, we extend Conrad’s method to the
ring C(S,K) of continuous functions from S to K where S denotes a subset
of V . Moreover, we no more assume the finiteness of the residue field k, but
replace this condition by the precompactness of S.

We first recall in Section 1 the notion of normal basis and Conrad’s
q-digit principle. In Section 2, we define extension by (qn)-digit expan-
sion. Then, in Section 3, we generalize Conrad’s q-digit principle to a
(qn)-digit principle (Theorem 3.6), which may be applied in particular to
Amice’s regular compact subsets [1]. In Section 4, we end with several ex-
amples.

1. The q-digit principle. Let (K, | · |) be a complete valued non-
archimedean field. Denote by V the corresponding valuation ring, M its
maximal ideal and k its residue field. Let (E, ‖ ·‖) be an ultrametric Banach
space over K.

Definition 1.1. A sequence (en)n≥0 of elements of E is called a normal
basis of E (orthonormal basis in [6]) if

(1) each x ∈ E has a representation as x =
∑

n≥0 xnen where xn ∈ K
and limn→∞ xn = 0,

(2) in the representation x =
∑

n≥0 xnen, we have ‖x‖ = supn |xn|.
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Let E0 = {x ∈ E : ‖x‖ ≤ 1}. Then E0/ME0 is a k-vector space. For
en ∈ E0, en denotes the reduction of en modulo ME0. The following propo-
sition allows one to characterize normal bases in purely algebraic terms.

Proposition 1.2 ([2, Prop. 3.1.5]). Assume that the valuation is dis-
crete and that ‖E‖ = |K|. A sequence (en)n∈N of elements of E is a normal
basis of E if and only if en ∈ E0 for every n ≥ 0 and (en)n∈N is a k-basis
of E0/ME0.

Assuming that k is finite with cardinality q (hence K is a local field),
K. Conrad [6] uses extension by q-digit expansion to construct some normal
bases of the ring C(V,K). We first recall this notion.

Definition 1.3. Let (en)n≥0 be a sequence of elements of C(V, V ). We
construct another sequence of functions (fi) in the following way:

if i = i0 + i1q + · · ·+ irq
r (0 ≤ ij < q) then fi = ei00 · · · e

ir
r .

The sequence (fi) is called the extension of (en) by q-digit expansion.

In characteristic p, V contains a field which is isomorphic to k, and so
it may be viewed as a k-vector space. In this case, the q-digit principle has
the following form:

Proposition 1.4 (Digit principle in characteristic p [6, Theorem 2]).
If the sequence (en) is a normal basis of the ring of continuous k-linear
functions from V to K, then the extension of (en) by q-digit expansion is a
normal basis of C(V,K).

As noted by K. Conrad, in characteristic 0 there is no analogue of the
subspace of linear functions. Nevertheless, there is another version that holds
in any characteristic:

Proposition 1.5 (Digit principle in any characteristic [6, Theorem 3]).
Let (en)n≥0 be a sequence of elements of C(V, V ) such that the reductions
ei ∈ C(V, k) are constant on cosets modulo Mi+1 and the map

φn : V/Mn → kn, x 7→ (e0(x), . . . , en−1(x)),

is bijective. Then the extension of (en) by q-digit expansion is a normal basis
of C(V,K).

To generalize the q-digit principle to subsets S, the map φr will be re-
quired to be only injective, as S/Mr does not necessarily contain qr elements.

2. The (qn)-digit expansion. Hypotheses and notation. Let V be a
discrete valuation domain, with valuation v. Denote by K the quotient field
of V , by M the maximal ideal of V , by π a generator of M (with v(π) = 1),
by k = V/M the residue field and by q the cardinality (finite or not) of k.
Let S be an infinite subset of V .
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We denote by V̂ , K̂, and Ŝ the completions of V , K and S with respect
to the M-adic topology. We still denote by v the extension of v to K̂. For
every n ≥ 0, we denote by S/Mn the set formed by the classes of S modulo
Mn and we define qn to be the cardinality of S/Mn (q0 = 1).

We assume that S is precompact, that is, Ŝ is compact, and we know
that this is equivalent to the fact that all the qn’s are finite.

Of course, (qn) is a non-decreasing and non-stationary sequence. Now,
we define the (qn)-digit expansion of a positive integer m:

Proposition 2.1. Let (qn)n≥0 be a non-decreasing and non-stationary
sequence of integers, with q0 = 1. For every m > 0, there exists a unique
representation of m as

m = m0 +m1q1 + · · ·+mrqr

where r is such that
qr ≤ m < qr+1

and where, for every j in [1, r],

mj ≥ 0 and m0 +m1q1 + · · ·+mjqj < qj+1.

This representation is called the (qn)-digit expansion of m.

Proof. Suppose there is such a representation of m. For 0 ≤ k ≤ r, let

Nk = m0 +m1q1 + · · ·+mkqk.

Hence, for 1 ≤ k ≤ r, one has

Nk = Nk−1 +mkqk with Nk−1 < qk.

So, mk is the quotient of the division of Nk by qk, and Nk−1 is the rest.
Consequently, the sequence (mk) is uniquely determined.

Conversely, let us prove that such a sequence satisfies our hypothesis.
Consider the sequences Nr, Nr−1, . . . , N0 and mr,mr−1, . . . ,m0 defined by
induction in the following way:

Nr = m,

mk = [Nk/qk] for 0 ≤ k ≤ r,
Nk−1 = Nk −mkqk for 1 ≤ k ≤ r.

By definition of r, mr = [m/qr] 6= 0. At each step (1 ≤ k ≤ r), one has
Nk−1 < qk and m = Nk−1 +mkqk + · · ·+mrqr. Indeed,

r∑
l=k

mlql =
r∑
l=k

(Nl −Nl−1) = m−Nk−1.

Hence,

m = N0 +m1q1 + · · ·+mrqr, m0 =
[
N0

q0

]
= N0.
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Finally, m =
∑r

k=0mkqk and, for 0 ≤ k ≤ r,
m0 +m1q1 + · · ·+mkqk = m− (mk+1qk+1 + · · ·+mrqr) = Nk < qk+1.

Remarks 2.2.

(1) Let m = m0 + m1q1 + · · · + mrqr be the (qn)-digit expansion of m.
Then, for 0 ≤ j ≤ r, one has:

• 0 ≤ mj < qj+1/qj ,
• in particular, if qj = qj+1 then mj = 0.

(2) The condition 0 ≤ mj < qj+1/qj is not sufficient to define the mj ’s.
If we consider the sequence qn = 2n + 1 of odd integers, the (qn)-
digit expansion of m = 5 is m = 5 = q2, but one can also write
m = 2 + 3 = 2q0 + q1 with m0 = 2 < q1/q0 = 3.

(3) On the contrary, the condition 0 ≤ mj < qj+1/qj does characterize
the (qn)-digit expansion when qj divides qj+1. Indeed, if αj = qj+1/qj
is an integer and 0 ≤ mj < αj , then m0 < q1, and by induction,
(m0 +m1q1 + · · ·+mj−1qj−1)+mjqj < qj+(αj−1)qj = αjqj = qj+1.

(4) If the sequence (qn) is associated to a subset S (that is, qn =
card(S/Mn)), then we have qn ≤ qn+1 ≤ qqn. As already said, (qn) is
a non-decreasing and non-stationary sequence. Note that it need not
be strictly increasing and qn does not necessarily divide qn+1, as
shown by V = Z5 and S = 125Z5 ∪ {25 + 125Z5} ∪ {1 + 125Z5}.
One has: S/(5) = {0, 1} and q1 = 2; S/(25) = {0, 1} and q2 = 2;
S/(125) = {0, 1, 25} and q3 = 3; q4 = 15 and, more generally,
qn = 3 · 5n−3 for n ≥ 3.

Definition 2.3. Let (en)n≥0 be a sequence of elements of a commutative
monoid (with an identity element). The extension of the sequence (en)n≥0

by (qn)-digit expansion is the following sequence (fm)m≥0:

fm = em0
0 × em1

1 × · · · × emr
r

where m = m0 +m1q1 + · · ·+mrqr is the (qn)-digit expansion of m.

Remarks 2.4.

(1) f0 = 1.
(2) If there exists j such that qj = qj+1, then the term ej of the sequence

(en) never appears in any element of the sequence (fm).
(3) For qr ≤ m < qr+1, if m = mrqr +Nr with Nr < qr, then

fm = emr
r × fNr .

We now try to find conditions on the subset S and on the sequence
(en)n≥0 of elements of C(Ŝ, V̂ ) for the sequence (fm)m≥0 to be a normal basis
of C(Ŝ, K̂). We first assume that the sequence (en)n≥0 satisfies a condition
similar to that considered by K. Conrad. More precisely, let (en)n≥0 be a
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sequence of elements of C(Ŝ, V̂ ) such that, for each n ≥ 0, the reduction
en of en in C(Ŝ, k) is constant on cosets of S modulo Mn+1. Denote by
(fm)m≥0 the extension of (en)n≥0 by (qn)-digit expansion. It is obvious that,
for 0 ≤ m < qr, the reductions fm in C(Ŝ, k) are constant on cosets of S
modulo Mr. In order to determine when this sequence is a normal basis of
C(Ŝ, K̂), we use the following lemma.

Lemma 2.5 ([8]). Let (gn)n≥0 be a sequence of C(Ŝ, V̂ ) such that , for 0≤
m<qr, the reductions gm in C(Ŝ, k) are constant on cosets of S modulo Mr.
The following assertions are equivalent :

(1) (gn) is a normal basis of C(Ŝ, K̂),
(2) (gn) is a k-linear basis of C(Ŝ, k),
(3) for each integer r ≥ 1, (gm)0≤m<qr is a k-basis of F(S/Mr, k), the

space of functions from S/Mr to k,
(4) for each n, the gm’s (0 ≤ m < n) are k-linearly independent.

Proof. Proposition 1.2 gives the equivalence between assertions (1)
and (2). The equivalence between (3) and (4) follows from the dimension
of the vector space F(S/Mr, k). Obviously, (2) implies (4). Finally, (3) im-
plies (2), as a continuous function from Ŝ to k is locally constant and can
be viewed as a map from S/Mr to k for some r.

Proposition 2.6. Let (gn)n≥0 be a sequence of functions such that , for
every 0 ≤ m < qr, the reductions gm in C(Ŝ, k) are constant on cosets of S
modulo Mr. For r ≥ 1, let Gr be the following matrix :

Gr = (gj(ai))0≤i,j<qr ,

where (ai)0≤i<qr denotes a complete set of residues of S modulo Mr. Then:

(1) detGr does not depend on the ai’s (except for the sign).
(2) The gm’s (0 ≤ m < qr) are k-linearly independent if and only if

detGr 6= 0.

Proof. (1) If (bi)0≤i<qr is another complete set of residues of S mod-
ulo Mr, there exists a permutation σ such that bi ≡ aσ(i) (mod Mr).
As the gj ’s are constant on cosets of S modulo Mr, the sets of rows of
(gj(ai))0≤i,j<qr and of (gj(bi))0≤i,j<qr are permutations of each other.

(2) Suppose that the λm ∈ k (0 ≤ m < qr) are such that

λ0g0 + λ1g1 + · · ·+ λqr−1gqr−1 = 0.

Evaluating the gm’s (0 ≤ m < qr) on the qr elements of S/Mr, we obtain
a system of qr equations in the qr unknowns λm. This system has a unique
solution if and only if detGr 6= 0.
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3. Normal basis obtained by the (qn)-digit principle. We still
maintain the hypotheses and notation introduced in Section 2 and we com-
plete them by the following:

Hypotheses and notation. Let r ∈ N be fixed and denote by (ai)0≤i<qr+1 a
complete set of residues of S modulo Mr+1 such that (ai)0≤i<qr is a complete
set of residues of S modulo Mr. For 0 ≤ i < qr, let

γi = card{j : 0 ≤ j < qr+1, aj ≡ ai (mod Mr)}.
Moreover, we order the ai’s (0 ≤ i < qr) so that

γ0 ≥ · · · ≥ γqr−1 ≥ 1.

Let (en)n≥0 be a sequence of elements of C(Ŝ, V̂ ) such that, for each n ≥ 0,
the reduction en of en in C(Ŝ, k) is constant on cosets of S modulo Mn+1.
Denote by (fm)m≥0 the extension of (en)n≥0 by (qn)-digit expansion. Clearly,
we have:

Lemma 3.1. There are exactly γqr−1 complete sets of residues of S mod-
ulo Mr in a complete set of residues of S/Mr+1. Moreover , for all 0 ≤ i, j
< qr+1 such that ai ≡ aj (mod Mr), one has:

(1) ∀k < r, ek(ai) = ek(aj),
(2) ∀k < qr, fk(ai) = fk(aj).

3.1. A necessary condition

Lemma 3.2. Suppose that there exists r such that qr divides qr+1 and
write qr+1 = αrqr. If the fm’s (0 ≤ m < qr+1) are k-linearly independent ,
then

γ0 = γ1 = · · · = γqr−1 = αr = qr+1/qr.

Proof. Assume that γ0 >αr. First, note that qr < qr+1 since, if qr = qr+1,
one has γi = 1 =αr for every i. In the matrix Gr+1 = (fj(ai))0≤i,j<qr+1 , we
arrange the columns into the following sequence:

1, er, . . . , eαr−1
r , f1, . . . , f1e

αr−1
r , . . . , fie

j
r, . . . , fqr−1e

αr−1
r .

We denote by Ci,j the column corresponding to fie
j
r and, for 1 ≤ i < qr and

0 ≤ j < αr, we use the following elementary transformations on columns:

Ci,j ← Ci,j − fi(a0)C0,j .

For 1 ≤ l < qr+1, the term in the column Ci,j and the row Ll becomes

fi(al)ejr(al)− fi(a0)ejr(al).

It follows from Lemma 3.1 that, whenever l (0 ≤ l < qr+1) is such that
al ≡ a0 (mod Mr), then fi(a0) = fi(al) and, after permuting the rows of
the matrix, the first γ0 new rows (corresponding to such an al) end with
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zeros. Consequently, the new matrix is of the form(
A | 0
B | C

)
where A ∈Mαr(k),

and, as γ0 > αr, the first line of C is null. Finally,

detGr+1 = detA · detC = 0.

This necessary condition defines a class of subsets of V called Legendre
subsets in [7]. Before stating our main theorem, we recall some properties
of these sets.

3.2. Legendre sets

Definition 3.3. The subset S is called a Legendre set if, for every r
in N, each class of S modulo Mr contains the same number of elements
modulo Mr+1.

If S is a Legendre set then, for every r ≥ 0, qr divides qr+1 and for every
0 ≤ i < qr, one has

γi = qr+1/qr.

Such subsets have been studied by Y. Amice [1] as regular compact
subsets in the case when K is a local field and S is compact, and by Y. Fares
and the author [7] in a more general setting. Let us recall a property of
the Legendre sets that we will use in the applications. We first recall the
following definitions:

Definition 3.4. Let (an)n≥0 be a sequence of elements of S.

(1) The sequence is called a v-ordering of S (see [3]) when, for every
n > 0,

v
( ∏

0≤k<n
(an − ak)

)
= inf

x∈S
v
( ∏

0≤k<n
(x− ak)

)
.

(2) The sequence is called a very well distributed sequence of S (see [1])
if, for every r > 0 and every λ ∈ N, (aλqr , . . . , a(λ+1)qr−1) is a com-
plete set of residues of S/Mr.

We then have a very nice property:

Proposition 3.5 ([7]).

• A very well distributed sequence of a subset is a v-ordering.
• Every v-ordering of a Legendre set is a very well distributed sequence.

Here are some examples of Legendre sets:

Example 1. Assume that the residue field k is finite of cardinality q.

(1) V is a Legendre set and qn = qqn−1 = qn.
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(2) Let S =
⋃r
j=1 bj +M, where b1, . . . , br are not congruent modulo M.

Then S is a Legendre set and qn = rqn−1.
(3) Let u ∈ V be such that v(u) = 0. Then S = {un : n ∈ N} is a

Legendre set.

We are ready to state our theorem.

3.3. Extension of Conrad’s q-digit principle

Theorem 3.6. Let V be a discrete valuation domain with maximal ideal
M and residue field k = V/M. Let S be a precompact subset of V and ,
for n ≥ 0, let qn = card(S/Mn). Assume that , for every r, qr divides
qr+1. Let (ei) be a sequence of elements of C(Ŝ, V̂ ) such that the reductions
ei ∈ C(Ŝ, k) are constant on cosets of S modulo Mi+1 and suppose that , for
every r ≥ 0, the following map is injective:

φr : S/Mr+1 → kr+1, x 7→ (e0(x), . . . , er(x)).

Then the extension (fm)m≥0 of (en)n≥0 by (qn)-digit expansion is a normal
basis of C(Ŝ, K̂) if and only if S is a Legendre set.

Proof. The necessity follows from Lemmas 2.5 and 3.2. Using Proposi-
tion 2.6, we now show that the condition is sufficient. We prove by induction
on r that detGr 6= 0. For r = 0, one has

detG1 = V (e0(a0), . . . , e0(aq1−1))

where V (·) denotes the Vandermonde determinant. By hypothesis, φ0 is
injective, hence detG1 6= 0. Now, we suppose that detGr 6= 0 and we show
that detGr+1 6= 0. First, as there are exactly αr complete sets of residues
of S modulo Mr in (ai)0≤i<qr , we can assume that for 0 ≤ i < qr and
0 ≤ l < αr,

ai+lqr ≡ ai (mod Mr).

Then we compute detGr+1 by ordering each row Lr+1 in the matrix as
follows:

L1 = (f0, . . . , fq1−1) = (1, e0, . . . , e
q1−1
0 )

and, for r ≥ 1,
Lr+1 = (Lr, erLr, . . . , eαr−1

r Lr).

So we can write

Gr+1 =


Iqr J0 . . . Jαr−1

0
... J1 . . . Jαr−1

1
...

...
...

...
Iqr Jαr−1 . . . Jαr−1

αr−1

 ·


Gr 0 0

0
. . . 0

0 0 Gr

 ,
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with, for 0 ≤ l < αr,

Jl =


er(alqr) 0 0

0
. . . 0

0 0 er(a(l+1)qr−1)

 .

We now compute the determinant of B, noticing that the matrices Jl and
Jj commute:

detB = V (J0, . . . , Jαr−1) =
∏

0≤l<j<αr

det(Jj − Jl).

We then obtain

detGr+1 = detGαr
r ·

qr−1∏
i=0

V (er(ai), er(aqr+i), . . . , er(a(αr−1)qr+i)).

By induction hypothesis, detGr 6= 0. Moreover, as

ej(ai) = ej(alqr+i) for j < r and 0 ≤ l < αr,

the injectivity of φr+1 implies that

er(ai+jqr) 6= er(ai+lqr) for 0 ≤ j < l ≤ αr.
Hence,

V (er(ai), er(aqr+i), . . . , er(a(αr−1)qr+i)) 6= 0 for 1 ≤ i ≤ qr.

4. Applications

4.1. Examples of normal bases obtained by the (qn)-digit principle. For
the following examples, the hypotheses of Theorem 3.6 are clearly satisfied.

Proposition 4.1. Let S be a Legendre set , and denote by F a complete
set of residues of V modulo M. Each x in S has a unique representation of
the form x = x0 + x1π + · · ·+ xjπ

j + · · · with xj ∈ F . For each j ≥ 0, let

ωj : S → V, x 7→ xj .

Then (Ωm), the extension of (ωn) by (qn)-digit expansion, is a normal basis
of C(Ŝ, K̂).

The second example uses hyperdifferential operators as defined by Voloch
in [9]: We suppose here that the characteristic of V is p > 0, so we can
consider V as a k-vector space. He defines a sequence of k-linear maps δr by
the following condition:

∀r ∈ N, ∀m ∈ N, δr(πm) =
(
m

r

)
πm−r.
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Proposition 4.2. Let S be a Legendre set of V . Then the extension
(∆m) of (δr) by (qn)-digit expansion is a normal basis of C(Ŝ, K̂).

4.2. A polynomial example. We end with a polynomial example. We
already know ([5] or [4]) that, if S is a subset in a discrete valuation ring V
and (an)n≥0 is a v-ordering of S, then the sequence of polynomials

ur(X) =
∏

0≤i<r

X − ai
ar − ai

is a normal basis of C(Ŝ, K̂). Here is another example:

Proposition 4.3. Let S be a Legendre set and (an)n≥0 be a v-ordering
of S. Let (er) be defined by

e0(X) = X, er(X) =
∏

0≤i<qr

X − ai
aqr − ai

for r ≥ 1.

Then the extension (fm) of (er) by (qn)-digit expansion is a normal basis of
C(Ŝ, K̂).

Proof. Of course, er is an integer-valued polynomial with deg(er) = qr.
First, we prove that for every r, er ∈ C(Ŝ, k) is constant on cosets of S
modulo Mr+1. As recalled in Proposition 3.5, every v-ordering of a Legendre
set S is very well distributed in S. So, for each x in S, there exists a unique
s such that 0 ≤ s < qr+1 and x ≡ as (mod Mr+1). We have to prove that

er(x) = er(as).

First suppose that s ≥ qr. Then

∀i ∈ {0, . . . , qr − 1}, x− ai
as − ai

= 1 +
x− as
as − ai

.

As v(x− as) ≥ r + 1 and v(as − ai) < r + 1, we have
x− as
as − ai

≡ 0 (mod M) and
∏

0≤i≤qr−1

x− ai
as − ai

≡ 1 (mod M).

To conclude, write

er(x) = er(as) ·
∏

0≤i<qr

x− ai
as − ai

.

Then er(x) ≡ er(as) (mod M).
Suppose now that s < qr. Then er(as) = 0. If we had

v
( ∏

0≤i<qr

(x− ai)
)

= v
( ∏

0≤i<qr

(aqr − ai)
)
,



The (qn)-digit principle 229

then x could replace aqr in a v-ordering. Meanwhile, we could construct a
new v-ordering

a0, . . . , aqr−1, x, bqr+1, . . . , bqr+1−1, . . . .

Since a v-ordering must be a very well distributed sequence,

a0, . . . , aqr−1, x, bqr+1, . . . , bqr+1−1

must be a complete set of residues modulo Mr+1. This is impossible, since
v(x− as) ≥ r + 1. So

v
( ∏

0≤i<qr

(x− ai)
)
> v
( ∏

0≤i<qr

(aqr − ai)
)

and er(x) = 0.

We now prove by induction on r that the φr’s are injective. This is
equivalent to proving that

Φr(x) = Φr(y) ⇒ x ≡ y (mod Mr+1),

where
Φr : S → kr+1, x 7→ (e0(x), . . . , er(x)).

Since e0(X) = X, clearly e0(x) = e0(y) implies x ≡ y (mod M), so φ0 is
injective. Now suppose that φr−1 is injective. If x 6≡ y (mod Mr), it follows
by induction that Φr−1(x) 6= Φr−1(y) and then Φr(x) 6= Φr(y). Thus we may
assume that x and y are both in the class of some aj (j < qr) modulo Mr:

x = aj + bπr and y = aj + cπr, with b, c ∈ V.
Considering the classes of b and c in S/M, we show that b 6= c implies
er(x) 6= er(y).

1) We first note that, for b 6= 0, er(x) 6= 0. Indeed, a0, . . . , aqr−1, x are
then in distinct classes modulo Mr+1. They thus form the beginning of a
very well distributed sequence, and hence this sequence is a v-ordering. Then

v
( ∏

0≤i<qr

(aqr − ai)
)

= v
( ∏

0≤i<qr

(x− ai)
)
.

Consequently, v(er(x)) = 0, and er(x) 6= 0.
If c = 0, as er is constant on cosets modulo Mr+1, we have er(y) =

er(aj) = 0, and so er(y) 6= er(x). Similarly, if b = 0 and c 6= 0, we have
again er(y) = 0 and er(x) 6= 0.

2) Now we suppose that b 6= 0 and c 6= 0. Then er(x) 6= 0 and er(y) 6= 0.
We have

er(x)
er(y)

=
x− aj
y − aj

·
∏

0≤k<qr, k 6=j

x− ak
y − ak

.

For k 6= j,
x− ak
y − ak

= 1 +
x− y
y − ak

.
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As v(x− y) = r and v(y − ak) < r, it follows that x−y
y−ak

is in V and

x− ak
y − ak

≡ 1 (mod M).

On the other hand,
x− aj
y − aj

=
b

c
.

As V is local and c 6∈M, it follows that b
c is an element of V , thus so is er(x)

er(y)

and
er(x)
er(y)

≡ b

c
(mod M).

Now, b 6= c implies b
c 6= 1, hence er(x)

er(y) 6= 1, that is, er(x) 6= er(y).
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Université de Picardie
80039 Amiens, France
E-mail: sabine.evrard@u-picardie.fr

Received on 14.1.2008
and in revised form on 5.9.2008 (5612)


