Normal bases of rings of continuous functions constructed with the (q_n) -digit principle

by

S. EVRARD (Amiens)

When K is a local field with valuation ring V, K. Conrad [6] constructs normal bases of the ring $\mathcal{C}(V, K)$ of continuous functions from V to K, using what he calls extension by q-digit expansion, where q denotes the cardinality of the residue field k of V. In this article, we extend Conrad's method to the ring $\mathcal{C}(S, K)$ of continuous functions from S to K where S denotes a subset of V. Moreover, we no more assume the finiteness of the residue field k, but replace this condition by the precompactness of S.

We first recall in Section 1 the notion of normal basis and Conrad's q-digit principle. In Section 2, we define extension by (q_n) -digit expansion. Then, in Section 3, we generalize Conrad's q-digit principle to a (q_n) -digit principle (Theorem 3.6), which may be applied in particular to Amice's regular compact subsets [1]. In Section 4, we end with several examples.

1. The q-digit principle. Let $(K, |\cdot|)$ be a complete valued nonarchimedean field. Denote by V the corresponding valuation ring, \mathfrak{M} its maximal ideal and k its residue field. Let $(E, \|\cdot\|)$ be an ultrametric Banach space over K.

DEFINITION 1.1. A sequence $(e_n)_{n\geq 0}$ of elements of E is called a *normal* basis of E (orthonormal basis in [6]) if

- (1) each $x \in E$ has a representation as $x = \sum_{n \ge 0} x_n e_n$ where $x_n \in K$ and $\lim_{n \to \infty} x_n = 0$,
- (2) in the representation $x = \sum_{n \ge 0} x_n e_n$, we have $||x|| = \sup_n |x_n|$.

The author wishes to thank Professor Chabert for his remarks and great help.

²⁰⁰⁰ Mathematics Subject Classification: Primary 12J25, 11S99; Secondary 13F20, 11B65.

Key words and phrases: non-archimedean valued field, regular compact, generalized Vandermonde determinant, normal bases, Legendre set.

Let $E_0 = \{x \in E : ||x|| \leq 1\}$. Then $E_0/\mathfrak{M}E_0$ is a k-vector space. For $e_n \in E_0$, \overline{e}_n denotes the reduction of e_n modulo $\mathfrak{M}E_0$. The following proposition allows one to characterize normal bases in purely algebraic terms.

PROPOSITION 1.2 ([2, Prop. 3.1.5]). Assume that the valuation is discrete and that ||E|| = |K|. A sequence $(e_n)_{n \in \mathbb{N}}$ of elements of E is a normal basis of E if and only if $e_n \in E_0$ for every $n \ge 0$ and $(\overline{e}_n)_{n \in \mathbb{N}}$ is a k-basis of $E_0/\mathfrak{M}E_0$.

Assuming that k is finite with cardinality q (hence K is a local field), K. Conrad [6] uses extension by q-digit expansion to construct some normal bases of the ring $\mathcal{C}(V, K)$. We first recall this notion.

DEFINITION 1.3. Let $(e_n)_{n\geq 0}$ be a sequence of elements of $\mathcal{C}(V, V)$. We construct another sequence of functions (f_i) in the following way:

if $i = i_0 + i_1 q + \dots + i_r q^r$ $(0 \le i_j < q)$ then $f_i = e_0^{i_0} \cdots e_r^{i_r}$.

The sequence (f_i) is called the *extension* of (e_n) by q-digit expansion.

In characteristic p, V contains a field which is isomorphic to k, and so it may be viewed as a k-vector space. In this case, the q-digit principle has the following form:

PROPOSITION 1.4 (Digit principle in characteristic p [6, Theorem 2]). If the sequence (e_n) is a normal basis of the ring of continuous k-linear functions from V to K, then the extension of (e_n) by q-digit expansion is a normal basis of C(V, K).

As noted by K. Conrad, in characteristic 0 there is no analogue of the subspace of linear functions. Nevertheless, there is another version that holds in any characteristic:

PROPOSITION 1.5 (Digit principle in any characteristic [6, Theorem 3]). Let $(e_n)_{n\geq 0}$ be a sequence of elements of $\mathcal{C}(V, V)$ such that the reductions $\bar{e}_i \in \mathcal{C}(V, \bar{k})$ are constant on cosets modulo \mathfrak{M}^{i+1} and the map

 $\phi_n: V/\mathfrak{M}^n \to k^n, \quad x \mapsto (\overline{e}_0(x), \dots, \overline{e}_{n-1}(x)),$

is bijective. Then the extension of (e_n) by q-digit expansion is a normal basis of $\mathcal{C}(V, K)$.

To generalize the q-digit principle to subsets S, the map ϕ_r will be required to be only injective, as S/\mathfrak{M}^r does not necessarily contain q^r elements.

2. The (q_n) -digit expansion. Hypotheses and notation. Let V be a discrete valuation domain, with valuation v. Denote by K the quotient field of V, by \mathfrak{M} the maximal ideal of V, by π a generator of \mathfrak{M} (with $v(\pi) = 1$), by $k = V/\mathfrak{M}$ the residue field and by q the cardinality (finite or not) of k. Let S be an infinite subset of V.

We denote by \widehat{V} , \widehat{K} , and \widehat{S} the completions of V, K and S with respect to the \mathfrak{M} -adic topology. We still denote by v the extension of v to \widehat{K} . For every $n \geq 0$, we denote by S/\mathfrak{M}^n the set formed by the classes of S modulo \mathfrak{M}^n and we define q_n to be the cardinality of S/\mathfrak{M}^n ($q_0 = 1$).

We assume that S is precompact, that is, \widehat{S} is compact, and we know that this is equivalent to the fact that all the q_n 's are finite.

Of course, (q_n) is a non-decreasing and non-stationary sequence. Now, we define the (q_n) -digit expansion of a positive integer m:

PROPOSITION 2.1. Let $(q_n)_{n\geq 0}$ be a non-decreasing and non-stationary sequence of integers, with $q_0 = 1$. For every m > 0, there exists a unique representation of m as

$$m = m_0 + m_1 q_1 + \dots + m_r q_r$$

where r is such that

$$q_r \le m < q_{r+1}$$

and where, for every j in [1, r],

$$m_j \ge 0$$
 and $m_0 + m_1 q_1 + \dots + m_j q_j < q_{j+1}$.

This representation is called the (q_n) -digit expansion of m.

Proof. Suppose there is such a representation of m. For $0 \le k \le r$, let

$$N_k = m_0 + m_1 q_1 + \dots + m_k q_k.$$

Hence, for $1 \le k \le r$, one has

$$N_k = N_{k-1} + m_k q_k \quad \text{with} \quad N_{k-1} < q_k.$$

So, m_k is the quotient of the division of N_k by q_k , and N_{k-1} is the rest. Consequently, the sequence (m_k) is uniquely determined.

Conversely, let us prove that such a sequence satisfies our hypothesis. Consider the sequences $N_r, N_{r-1}, \ldots, N_0$ and $m_r, m_{r-1}, \ldots, m_0$ defined by induction in the following way:

$$\begin{cases} N_r = m, \\ m_k = [N_k/q_k] & \text{for } 0 \le k \le r, \\ N_{k-1} = N_k - m_k q_k & \text{for } 1 \le k \le r. \end{cases}$$

By definition of r, $m_r = [m/q_r] \neq 0$. At each step $(1 \leq k \leq r)$, one has $N_{k-1} < q_k$ and $m = N_{k-1} + m_k q_k + \cdots + m_r q_r$. Indeed,

$$\sum_{l=k}^{\prime} m_l q_l = \sum_{l=k}^{\prime} (N_l - N_{l-1}) = m - N_{k-1}.$$

Hence,

$$m = N_0 + m_1 q_1 + \dots + m_r q_r, \quad m_0 = \left[\frac{N_0}{q_0}\right] = N_0.$$

Finally, $m = \sum_{k=0}^{r} m_k q_k$ and, for $0 \le k \le r$,

 $m_0 + m_1 q_1 + \dots + m_k q_k = m - (m_{k+1} q_{k+1} + \dots + m_r q_r) = N_k < q_{k+1}.$ Remarks 2.2.

- (1) Let $m = m_0 + m_1q_1 + \cdots + m_rq_r$ be the (q_n) -digit expansion of m. Then, for $0 \le j \le r$, one has:
 - $0 \le m_j < q_{j+1}/q_j$,
 - in particular, if $q_j = q_{j+1}$ then $m_j = 0$.
- (2) The condition $0 \le m_j < q_{j+1}/q_j$ is not sufficient to define the m_j 's. If we consider the sequence $q_n = 2n + 1$ of odd integers, the (q_n) -digit expansion of m = 5 is $m = 5 = q_2$, but one can also write $m = 2 + 3 = 2q_0 + q_1$ with $m_0 = 2 < q_1/q_0 = 3$.
- (3) On the contrary, the condition $0 \le m_j < q_{j+1}/q_j$ does characterize the (q_n) -digit expansion when q_j divides q_{j+1} . Indeed, if $\alpha_j = q_{j+1}/q_j$ is an integer and $0 \le m_j < \alpha_j$, then $m_0 < q_1$, and by induction, $(m_0+m_1q_1+\cdots+m_{j-1}q_{j-1})+m_jq_j < q_j+(\alpha_j-1)q_j = \alpha_jq_j = q_{j+1}$.
- (4) If the sequence (q_n) is associated to a subset S (that is, $q_n = \operatorname{card}(S/\mathfrak{M}^n)$), then we have $q_n \leq q_{n+1} \leq qq_n$. As already said, (q_n) is a non-decreasing and non-stationary sequence. Note that it need not be strictly increasing and q_n does not necessarily divide q_{n+1} , as shown by $V = \mathbb{Z}_5$ and $S = 125\mathbb{Z}_5 \cup \{25 + 125\mathbb{Z}_5\} \cup \{1 + 125\mathbb{Z}_5\}$. One has: $S/(5) = \{0, 1\}$ and $q_1 = 2$; $S/(25) = \{0, 1\}$ and $q_2 = 2$; $S/(125) = \{0, 1, 25\}$ and $q_3 = 3$; $q_4 = 15$ and, more generally, $q_n = 3 \cdot 5^{n-3}$ for $n \geq 3$.

DEFINITION 2.3. Let $(e_n)_{n\geq 0}$ be a sequence of elements of a commutative monoid (with an identity element). The extension of the sequence $(e_n)_{n\geq 0}$ by (q_n) -digit expansion is the following sequence $(f_m)_{m\geq 0}$:

$$f_m = e_0^{m_0} \times e_1^{m_1} \times \dots \times e_r^{m_r}$$

where $m = m_0 + m_1 q_1 + \dots + m_r q_r$ is the (q_n) -digit expansion of m.

Remarks 2.4.

- (1) $f_0 = 1$.
- (2) If there exists j such that $q_j = q_{j+1}$, then the term e_j of the sequence (e_n) never appears in any element of the sequence (f_m) .
- (3) For $q_r \leq m < q_{r+1}$, if $m = m_r q_r + N_r$ with $N_r < q_r$, then

$$f_m = e_r^{m_r} \times f_{N_r}.$$

We now try to find conditions on the subset S and on the sequence $(e_n)_{n\geq 0}$ of elements of $\mathcal{C}(\widehat{S}, \widehat{V})$ for the sequence $(f_m)_{m\geq 0}$ to be a normal basis of $\mathcal{C}(\widehat{S}, \widehat{K})$. We first assume that the sequence $(e_n)_{n\geq 0}$ satisfies a condition similar to that considered by K. Conrad. More precisely, let $(e_n)_{n\geq 0}$ be a

sequence of elements of $\mathcal{C}(\widehat{S}, \widehat{V})$ such that, for each $n \geq 0$, the reduction \overline{e}_n of e_n in $\mathcal{C}(\widehat{S}, k)$ is constant on cosets of S modulo \mathfrak{M}^{n+1} . Denote by $(f_m)_{m\geq 0}$ the extension of $(e_n)_{n\geq 0}$ by (q_n) -digit expansion. It is obvious that, for $0 \leq m < q_r$, the reductions \overline{f}_m in $\mathcal{C}(\widehat{S}, k)$ are constant on cosets of S modulo \mathfrak{M}^r . In order to determine when this sequence is a normal basis of $\mathcal{C}(\widehat{S}, \widehat{K})$, we use the following lemma.

LEMMA 2.5 ([8]). Let $(g_n)_{n\geq 0}$ be a sequence of $\mathcal{C}(\widehat{S}, \widehat{V})$ such that, for $0 \leq m < q_r$, the reductions \overline{g}_m in $\mathcal{C}(\widehat{S}, k)$ are constant on cosets of S modulo \mathfrak{M}^r . The following assertions are equivalent:

- (1) (g_n) is a normal basis of $\mathcal{C}(\widehat{S}, \widehat{K})$,
- (2) (\overline{g}_n) is a k-linear basis of $\mathcal{C}(\widehat{S}, k)$,
- (3) for each integer $r \geq 1$, $(\overline{g}_m)_{0 \leq m < q_r}$ is a k-basis of $\mathcal{F}(S/\mathfrak{M}^r, k)$, the space of functions from S/\mathfrak{M}^r to k,
- (4) for each n, the \overline{g}_m 's $(0 \le m < n)$ are k-linearly independent.

Proof. Proposition 1.2 gives the equivalence between assertions (1) and (2). The equivalence between (3) and (4) follows from the dimension of the vector space $\mathcal{F}(S/\mathfrak{M}^r, k)$. Obviously, (2) implies (4). Finally, (3) implies (2), as a continuous function from \widehat{S} to k is locally constant and can be viewed as a map from S/\mathfrak{M}^r to k for some r.

PROPOSITION 2.6. Let $(g_n)_{n\geq 0}$ be a sequence of functions such that, for every $0 \leq m < q_r$, the reductions \overline{g}_m in $\mathcal{C}(\widehat{S}, k)$ are constant on cosets of Smodulo \mathfrak{M}^r . For $r \geq 1$, let G_r be the following matrix:

$$G_r = (\overline{g}_j(a_i))_{0 \le i, j < q_r},$$

where $(a_i)_{0 \leq i < q_r}$ denotes a complete set of residues of S modulo \mathfrak{M}^r . Then:

- (1) det G_r does not depend on the a_i 's (except for the sign).
- (2) The \overline{g}_m 's $(0 \le m < q_r)$ are k-linearly independent if and only if $\det G_r \ne 0$.

Proof. (1) If $(b_i)_{0 \le i < q_r}$ is another complete set of residues of S modulo \mathfrak{M}^r , there exists a permutation σ such that $b_i \equiv a_{\sigma(i)} \pmod{\mathfrak{M}^r}$. As the \overline{g}_j 's are constant on cosets of S modulo \mathfrak{M}^r , the sets of rows of $(\overline{g}_j(a_i))_{0 \le i,j < q_r}$ and of $(\overline{g}_j(b_i))_{0 \le i,j < q_r}$ are permutations of each other.

(2) Suppose that the $\lambda_m \in k \ (0 \le m < q_r)$ are such that

$$\lambda_0 \overline{g}_0 + \lambda_1 \overline{g}_1 + \dots + \lambda_{q_r - 1} \overline{g}_{q_r - 1} = 0.$$

Evaluating the g_m 's $(0 \le m < q_r)$ on the q_r elements of S/\mathfrak{M}^r , we obtain a system of q_r equations in the q_r unknowns λ_m . This system has a unique solution if and only if det $G_r \ne 0$. 3. Normal basis obtained by the (q_n) -digit principle. We still maintain the hypotheses and notation introduced in Section 2 and we complete them by the following:

Hypotheses and notation. Let $r \in \mathbb{N}$ be fixed and denote by $(a_i)_{0 \leq i < q_{r+1}}$ a complete set of residues of S modulo \mathfrak{M}^{r+1} such that $(a_i)_{0 \leq i < q_r}$ is a complete set of residues of S modulo \mathfrak{M}^r . For $0 \leq i < q_r$, let

$$\gamma_i = \operatorname{card}\{j : 0 \le j < q_{r+1}, a_j \equiv a_i \pmod{\mathfrak{M}^r}\}.$$

Moreover, we order the a_i 's $(0 \le i < q_r)$ so that

$$\gamma_0 \geq \cdots \geq \gamma_{q_r-1} \geq 1.$$

Let $(e_n)_{n\geq 0}$ be a sequence of elements of $\mathcal{C}(\widehat{S}, \widehat{V})$ such that, for each $n \geq 0$, the reduction \overline{e}_n of e_n in $\mathcal{C}(\widehat{S}, k)$ is constant on cosets of S modulo \mathfrak{M}^{n+1} . Denote by $(f_m)_{m\geq 0}$ the extension of $(e_n)_{n\geq 0}$ by (q_n) -digit expansion. Clearly, we have:

LEMMA 3.1. There are exactly γ_{q_r-1} complete sets of residues of S modulo \mathfrak{M}^r in a complete set of residues of S/\mathfrak{M}^{r+1} . Moreover, for all $0 \leq i, j$ $\langle q_{r+1}$ such that $a_i \equiv a_j \pmod{\mathfrak{M}^r}$, one has:

(1)
$$\forall k < r, \overline{e}_k(a_i) = \overline{e}_k(a_j),$$

(2)
$$\forall k < q_r, \overline{f}_k(a_i) = \overline{f}_k(a_j).$$

3.1. A necessary condition

LEMMA 3.2. Suppose that there exists r such that q_r divides q_{r+1} and write $q_{r+1} = \alpha_r q_r$. If the \overline{f}_m 's $(0 \le m < q_{r+1})$ are k-linearly independent, then

$$\gamma_0 = \gamma_1 = \dots = \gamma_{q_r-1} = \alpha_r = q_{r+1}/q_r.$$

Proof. Assume that $\gamma_0 > \alpha_r$. First, note that $q_r < q_{r+1}$ since, if $q_r = q_{r+1}$, one has $\gamma_i = 1 = \alpha_r$ for every *i*. In the matrix $G_{r+1} = (\overline{f}_j(a_i))_{0 \le i, j < q_{r+1}}$, we arrange the columns into the following sequence:

$$1, \overline{e}_r, \dots, \overline{e}_r^{\alpha_r-1}, \overline{f}_1, \dots, \overline{f}_1 \overline{e}_r^{\alpha_r-1}, \dots, \overline{f}_i \overline{e}_r^j, \dots, \overline{f}_{q_r-1} \overline{e}_r^{\alpha_r-1}.$$

We denote by $C_{i,j}$ the column corresponding to $\overline{f}_i \overline{e}_r^j$ and, for $1 \leq i < q_r$ and $0 \leq j < \alpha_r$, we use the following elementary transformations on columns:

$$C_{i,j} \leftarrow C_{i,j} - \overline{f}_i(a_0) C_{0,j}.$$

For $1 \leq l < q_{r+1}$, the term in the column $C_{i,j}$ and the row L_l becomes

$$\overline{f}_i(a_l)\overline{e}_r^j(a_l) - \overline{f}_i(a_0)\overline{e}_r^j(a_l).$$

It follows from Lemma 3.1 that, whenever $l \ (0 \leq l < q_{r+1})$ is such that $a_l \equiv a_0 \pmod{\mathfrak{M}^r}$, then $\overline{f}_i(a_0) = \overline{f}_i(a_l)$ and, after permuting the rows of the matrix, the first γ_0 new rows (corresponding to such an a_l) end with

zeros. Consequently, the new matrix is of the form

$$\begin{pmatrix} A & | & 0 \\ B & | & C \end{pmatrix} \quad \text{where} \quad A \in M_{\alpha_r}(k),$$

and, as $\gamma_0 > \alpha_r$, the first line of C is null. Finally,

$$\det G_{r+1} = \det A \cdot \det C = 0. \quad \bullet$$

This necessary condition defines a class of subsets of V called Legendre subsets in [7]. Before stating our main theorem, we recall some properties of these sets.

3.2. Legendre sets

DEFINITION 3.3. The subset S is called a Legendre set if, for every r in \mathbb{N} , each class of S modulo \mathfrak{M}^r contains the same number of elements modulo \mathfrak{M}^{r+1} .

If S is a Legendre set then, for every $r \ge 0$, q_r divides q_{r+1} and for every $0 \le i < q_r$, one has

$$\gamma_i = q_{r+1}/q_r.$$

Such subsets have been studied by Y. Amice [1] as regular compact subsets in the case when K is a local field and S is compact, and by Y. Fares and the author [7] in a more general setting. Let us recall a property of the Legendre sets that we will use in the applications. We first recall the following definitions:

DEFINITION 3.4. Let $(a_n)_{n\geq 0}$ be a sequence of elements of S.

(1) The sequence is called a *v*-ordering of S (see [3]) when, for every n > 0,

$$v\Big(\prod_{0 \le k < n} (a_n - a_k)\Big) = \inf_{x \in S} v\Big(\prod_{0 \le k < n} (x - a_k)\Big).$$

(2) The sequence is called a very well distributed sequence of S (see [1]) if, for every r > 0 and every $\lambda \in \mathbb{N}$, $(a_{\lambda q_r}, \ldots, a_{(\lambda+1)q_r-1})$ is a complete set of residues of S/\mathfrak{M}^r .

We then have a very nice property:

PROPOSITION 3.5 ([7]).

- A very well distributed sequence of a subset is a v-ordering.
- Every v-ordering of a Legendre set is a very well distributed sequence.

Here are some examples of Legendre sets:

EXAMPLE 1. Assume that the residue field k is finite of cardinality q.

(1) V is a Legendre set and $q_n = qq_{n-1} = q^n$.

- (2) Let $S = \bigcup_{j=1}^{r} b_j + \mathfrak{M}$, where b_1, \ldots, b_r are not congruent modulo \mathfrak{M} . Then S is a Legendre set and $q_n = rq^{n-1}$.
- (3) Let $u \in V$ be such that v(u) = 0. Then $S = \{u^n : n \in \mathbb{N}\}$ is a Legendre set.

We are ready to state our theorem.

3.3. Extension of Conrad's q-digit principle

THEOREM 3.6. Let V be a discrete valuation domain with maximal ideal \mathfrak{M} and residue field $k = V/\mathfrak{M}$. Let S be a precompact subset of V and, for $n \geq 0$, let $q_n = \operatorname{card}(S/\mathfrak{M}^n)$. Assume that, for every r, q_r divides q_{r+1} . Let (e_i) be a sequence of elements of $\mathcal{C}(\widehat{S}, \widehat{V})$ such that the reductions $\overline{e}_i \in \mathcal{C}(\widehat{S}, k)$ are constant on cosets of S modulo \mathfrak{M}^{i+1} and suppose that, for every $r \geq 0$, the following map is injective:

$$\phi_r: S/\mathfrak{M}^{r+1} \to k^{r+1}, \quad x \mapsto (\overline{e}_0(x), \dots, \overline{e}_r(x)).$$

Then the extension $(f_m)_{m\geq 0}$ of $(e_n)_{n\geq 0}$ by (q_n) -digit expansion is a normal basis of $\mathcal{C}(\widehat{S}, \widehat{K})$ if and only if S is a Legendre set.

Proof. The necessity follows from Lemmas 2.5 and 3.2. Using Proposition 2.6, we now show that the condition is sufficient. We prove by induction on r that det $G_r \neq 0$. For r = 0, one has

$$\det G_1 = V(\overline{e}_0(a_0), \dots, \overline{e}_0(a_{q_1-1}))$$

where $V(\cdot)$ denotes the Vandermonde determinant. By hypothesis, ϕ_0 is injective, hence det $G_1 \neq 0$. Now, we suppose that det $G_r \neq 0$ and we show that det $G_{r+1} \neq 0$. First, as there are exactly α_r complete sets of residues of S modulo \mathfrak{M}^r in $(a_i)_{0 \leq i < q_r}$, we can assume that for $0 \leq i < q_r$ and $0 \leq l < \alpha_r$,

$$a_{i+lq_r} \equiv a_i \pmod{\mathfrak{M}^r}.$$

Then we compute det G_{r+1} by ordering each row L_{r+1} in the matrix as follows:

$$L_1 = (\bar{f}_0, \dots, \bar{f}_{q_1-1}) = (1, \bar{e}_0, \dots, \bar{e}_0^{q_1-1})$$

and, for $r \geq 1$,

$$L_{r+1} = (L_r, \overline{e}_r L_r, \dots, \overline{e}_r^{\alpha_r - 1} L_r).$$

So we can write

$$G_{r+1} = \begin{pmatrix} I_{q_r} & J_0 & \dots & J_0^{\alpha_r - 1} \\ \vdots & J_1 & \dots & J_1^{\alpha_r - 1} \\ \vdots & \vdots & \vdots & \vdots \\ I_{q_r} & J_{\alpha_r - 1} & \dots & J_{\alpha_r - 1}^{\alpha_r - 1} \end{pmatrix} \cdot \begin{pmatrix} G_r & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & G_r \end{pmatrix},$$

with, for $0 \leq l < \alpha_r$,

$$J_{l} = \begin{pmatrix} \overline{e}_{r}(a_{lq_{r}}) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \overline{e}_{r}(a_{(l+1)q_{r}-1}) \end{pmatrix}$$

We now compute the determinant of B, noticing that the matrices J_l and J_j commute:

$$\det B = V(J_0, \dots, J_{\alpha_r - 1}) = \prod_{0 \le l < j < \alpha_r} \det(J_j - J_l).$$

We then obtain

$$\det G_{r+1} = \det G_r^{\alpha_r} \cdot \prod_{i=0}^{q_r-1} V(\overline{e}_r(a_i), \overline{e}_r(a_{q_r+i}), \dots, \overline{e}_r(a_{(\alpha_r-1)q_r+i})).$$

By induction hypothesis, det $G_r \neq 0$. Moreover, as

$$\overline{e}_j(a_i) = \overline{e}_j(a_{lq_r+i}) \quad \text{for } j < r \text{ and } 0 \le l < \alpha_r,$$

the injectivity of ϕ_{r+1} implies that

$$\overline{e}_r(a_{i+jq_r}) \neq \overline{e}_r(a_{i+lq_r}) \quad \text{ for } 0 \le j < l \le \alpha_r.$$

Hence,

$$V(\overline{e}_r(a_i), \overline{e}_r(a_{q_r+i}), \dots, \overline{e}_r(a_{(\alpha_r-1)q_r+i})) \neq 0 \quad \text{for } 1 \le i \le q_r. \blacksquare$$

4. Applications

4.1. Examples of normal bases obtained by the (q_n) -digit principle. For the following examples, the hypotheses of Theorem 3.6 are clearly satisfied.

PROPOSITION 4.1. Let S be a Legendre set, and denote by F a complete set of residues of V modulo \mathfrak{M} . Each x in S has a unique representation of the form $x = x_0 + x_1\pi + \cdots + x_j\pi^j + \cdots$ with $x_j \in F$. For each $j \ge 0$, let

 $\omega_j: S \to V, \quad x \mapsto x_j.$

Then (Ω_m) , the extension of (ω_n) by (q_n) -digit expansion, is a normal basis of $C(\widehat{S}, \widehat{K})$.

The second example uses hyperdifferential operators as defined by Voloch in [9]: We suppose here that the characteristic of V is p > 0, so we can consider V as a k-vector space. He defines a sequence of k-linear maps δ_r by the following condition:

$$\forall r \in \mathbb{N}, \, \forall m \in \mathbb{N}, \quad \delta_r(\pi^m) = \binom{m}{r} \pi^{m-r}.$$

PROPOSITION 4.2. Let S be a Legendre set of V. Then the extension (Δ_m) of (δ_r) by (q_n) -digit expansion is a normal basis of $\mathcal{C}(\widehat{S}, \widehat{K})$.

4.2. A polynomial example. We end with a polynomial example. We already know ([5] or [4]) that, if S is a subset in a discrete valuation ring V and $(a_n)_{n\geq 0}$ is a v-ordering of S, then the sequence of polynomials

$$u_r(X) = \prod_{0 \le i < r} \frac{X - a_i}{a_r - a_i}$$

is a normal basis of $\mathcal{C}(\widehat{S}, \widehat{K})$. Here is another example:

PROPOSITION 4.3. Let S be a Legendre set and $(a_n)_{n\geq 0}$ be a v-ordering of S. Let (e_r) be defined by

$$e_0(X) = X, \quad e_r(X) = \prod_{0 \le i < q_r} \frac{X - a_i}{a_{q_r} - a_i} \quad \text{for } r \ge 1.$$

Then the extension (f_m) of (e_r) by (q_n) -digit expansion is a normal basis of $\mathcal{C}(\widehat{S}, \widehat{K})$.

Proof. Of course, e_r is an integer-valued polynomial with $\deg(e_r) = q_r$. First, we prove that for every r, $\overline{e}_r \in \mathcal{C}(\widehat{S}, k)$ is constant on cosets of S modulo \mathfrak{M}^{r+1} . As recalled in Proposition 3.5, every *v*-ordering of a Legendre set S is very well distributed in S. So, for each x in S, there exists a unique s such that $0 \leq s < q_{r+1}$ and $x \equiv a_s \pmod{\mathfrak{M}^{r+1}}$. We have to prove that

$$\overline{e}_r(x) = \overline{e}_r(a_s).$$

First suppose that $s \ge q_r$. Then

$$\forall i \in \{0, \dots, q_r - 1\}, \quad \frac{x - a_i}{a_s - a_i} = 1 + \frac{x - a_s}{a_s - a_i}$$

As $v(x - a_s) \ge r + 1$ and $v(a_s - a_i) < r + 1$, we have

$$\frac{x-a_s}{a_s-a_i} \equiv 0 \pmod{\mathfrak{M}} \quad \text{and} \quad \prod_{0 \leq i \leq q_r-1} \frac{x-a_i}{a_s-a_i} \equiv 1 \pmod{\mathfrak{M}}.$$

To conclude, write

$$e_r(x) = e_r(a_s) \cdot \prod_{0 \le i < q_r} \frac{x - a_i}{a_s - a_i}$$

Then $e_r(x) \equiv e_r(a_s) \pmod{\mathfrak{M}}$.

Suppose now that $s < q_r$. Then $\overline{e}_r(a_s) = 0$. If we had

$$v\Big(\prod_{0 \le i < q_r} (x - a_i)\Big) = v\Big(\prod_{0 \le i < q_r} (a_{q_r} - a_i)\Big),$$

then x could replace a_{q_r} in a v-ordering. Meanwhile, we could construct a new v-ordering

$$a_0, \ldots, a_{q_r-1}, x, b_{q_r+1}, \ldots, b_{q_{r+1}-1}, \ldots$$

Since a *v*-ordering must be a very well distributed sequence,

$$a_0, \ldots, a_{q_r-1}, x, b_{q_r+1}, \ldots, b_{q_{r+1}-1}$$

must be a complete set of residues modulo \mathfrak{M}^{r+1} . This is impossible, since $v(x-a_s) \geq r+1$. So

$$v\left(\prod_{0 \le i < q_r} (x - a_i)\right) > v\left(\prod_{0 \le i < q_r} (a_{q_r} - a_i)\right)$$
 and $\overline{e}_r(x) = 0.$

We now prove by induction on r that the ϕ_r 's are injective. This is equivalent to proving that

$$\Phi_r(x) = \Phi_r(y) \Rightarrow x \equiv y \pmod{\mathfrak{M}^{r+1}},$$

where

$$\Phi_r: S \to k^{r+1}, \quad x \mapsto (\overline{e}_0(x), \dots, \overline{e}_r(x)).$$

Since $\overline{e}_0(X) = X$, clearly $\overline{e}_0(x) = \overline{e}_0(y)$ implies $x \equiv y \pmod{\mathfrak{M}}$, so ϕ_0 is injective. Now suppose that ϕ_{r-1} is injective. If $x \not\equiv y \pmod{\mathfrak{M}^r}$, it follows by induction that $\Phi_{r-1}(x) \neq \Phi_{r-1}(y)$ and then $\Phi_r(x) \neq \Phi_r(y)$. Thus we may assume that x and y are both in the class of some a_j $(j < q_r)$ modulo \mathfrak{M}^r :

 $x = a_j + b\pi^r$ and $y = a_j + c\pi^r$, with $b, c \in V$.

Considering the classes of b and c in S/\mathfrak{M} , we show that $b \neq \overline{c}$ implies $\overline{e}_r(x) \neq \overline{e}_r(y)$.

1) We first note that, for $\bar{b} \neq 0$, $\bar{e}_r(x) \neq 0$. Indeed, $a_0, \ldots, a_{q_r-1}, x$ are then in distinct classes modulo \mathfrak{M}^{r+1} . They thus form the beginning of a very well distributed sequence, and hence this sequence is a *v*-ordering. Then

$$v\Big(\prod_{0 \le i < q_r} (a_{q_r} - a_i)\Big) = v\Big(\prod_{0 \le i < q_r} (x - a_i)\Big).$$

Consequently, $v(e_r(x)) = 0$, and $\overline{e}_r(x) \neq 0$.

If $\overline{c} = 0$, as \overline{e}_r is constant on cosets modulo \mathfrak{M}^{r+1} , we have $\overline{e}_r(y) = \overline{e}_r(a_j) = 0$, and so $\overline{e}_r(y) \neq \overline{e}_r(x)$. Similarly, if $\overline{b} = 0$ and $\overline{c} \neq 0$, we have again $\overline{e}_r(y) = 0$ and $\overline{e}_r(x) \neq 0$.

2) Now we suppose that $\overline{b} \neq 0$ and $\overline{c} \neq 0$. Then $\overline{e}_r(x) \neq 0$ and $\overline{e}_r(y) \neq 0$. We have

$$\frac{e_r(x)}{e_r(y)} = \frac{x - a_j}{y - a_j} \cdot \prod_{0 \le k < q_r, \ k \ne j} \frac{x - a_k}{y - a_k}$$

For $k \neq j$,

$$\frac{x-a_k}{y-a_k} = 1 + \frac{x-y}{y-a_k}.$$

S. Evrard

As v(x-y) = r and $v(y-a_k) < r$, it follows that $\frac{x-y}{y-a_k}$ is in V and

$$\frac{x-a_k}{y-a_k} \equiv 1 \pmod{\mathfrak{M}}.$$

On the other hand,

$$\frac{x-a_j}{y-a_j} = \frac{b}{c}.$$

As V is local and $c \notin \mathfrak{M}$, it follows that $\frac{b}{c}$ is an element of V, thus so is $\frac{e_r(x)}{e_r(y)}$ and

$$\frac{e_r(x)}{e_r(y)} \equiv \frac{b}{c} \pmod{\mathfrak{M}}.$$

Now, $\overline{b} \neq \overline{c}$ implies $\frac{\overline{b}}{\overline{c}} \neq 1$, hence $\frac{\overline{e}_r(x)}{\overline{e}_r(y)} \neq 1$, that is, $\overline{e}_r(x) \neq \overline{e}_r(y)$.

References

- [1] Y. Amice, Interpolation p-adique, Bull. Soc. Math. France 92 (1964), 117–180.
- [2] —, Les nombres p-adiques, Presses Univ. de France, Paris, 1975.
- M. Bhargava, P-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math. 490 (1997), 101–127.
- M. Bhargava and K. S. Kedlaya, Continuous functions on compact subsets of local fields, Acta Arith. 91 (1999), 191–198.
- [5] P. J. Cahen and J. L. Chabert, *Integer-Valued Polynomials*, Math. Surveys Monogr. 48, Amer. Math. Soc., Providence, 1997.
- [6] K. Conrad, The digit principle, J. Number Theory 84 (2000), 230–257.
- [7] S. Evrard and Y. Fares, p-adic subsets whose factorials satisfy a generalized Legendre formula, Bull. London Math. Soc. 40 (2008), 3750.
- [8] A. M. Robert, A Course in p-Adic Analysis, Grad. Texts in Math. 198, Springer, 2000.
- J. F Voloch, Differential operators and interpolation series in power series field, J. Number Theory 71 (1998), 106–108.

LAMFA CNRS UMR 6140 Université de Picardie 80039 Amiens, France E-mail: sabine.evrard@u-picardie.fr

> Received on 14.1.2008 and in revised form on 5.9.2008 (5612)

230