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1. Introduction. A. Pethő [P] reported some results obtained by com-
puter search for cubic Thue equations with rational integer coefficients, with
positive discriminant, and representing 1, which have many solutions. He
listed a finite number of Thue equations having 9 or 6 solutions (which had
been known in the literature), and two families of cubic Thue equations with
at least 5 solutions. One of the two families is x3−(a+1)x2y+axy2 +y3 = 1.
About this family, W. Ljunggren [L] had already pointed out that for a ≥ 2
the pairs (1, 0), (1, 1), (1,−a− 1), (0, 1), (a, 1) are its solutions. M. Mignotte
and N. Tzanakis [MT] proved that for a ≥ 3.67 · 1032 these are in fact the
only solutions, and Mignotte [M] proved that the same holds for a ≥ 5. The
other family is x3−a2xy2+y3 = 1. About this family, we show the following.

Theorem. For any integer a ≥ 1.35 · 1014, the only integer solutions
(x, y) of the Thue equation

(1) x3 − a2xy2 + y3 = 1

are the “trivial” solutions (x, y) = (0, 1), (1, 0), (1, a2), (a, 1), (−a, 1).

Our method for obtaining this result is based on Baker’s method and
consideration of a certain congruence condition. Let

f(x) = x3 − a2x+ 1

be the corresponding inhomogeneous polynomial. Its discriminant is 4a6−27.
In the case a ≥ 2, the discriminant is positive, and f has three real zeros
θ, θ′, and θ′′ with

θ′′ < 0 < θ < θ′.

For solutions (x, y) of (1) such that the quotient x/y is close to θ, a result
of [W2] (see also [W1] for a summary) obtained by the Padé approximation
method is applicable, and it is easy to find all solutions with this property.
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However, if x/y is close to θ′ or θ′′, then it seems that the Padé approxi-
mation method is not applicable. Therefore, for these cases we use Baker’s
method in order to obtain an upper bound for the solutions. To obtain a
lower bound for non-trivial solutions, we use a certain congruence condition.
This is the main feature of our method. Then we show that if a is sufficiently
large, then the lower bound is greater than the upper bound, and by this
we prove that for sufficiently large a, there is no non-trivial solution of (1)
close to θ′ or θ′′.

2. Preliminaries. In this paper we assume that the parameter a takes
always positive integer values.

For a ≥ 1 the polynomial f(x) is irreducible over Q since f(±1) 6= 0.

Lemma 1. For a ≥ 2 we have
1
a2 < θ <

1
a2 +

3
2a8 ,

a− 2
3a2 < θ′ < a− 1

2a2 ,

−a− 1
2a2 < θ′′ < −a− 1

3a2 .

Proof. We obtain this by studying the sign of f(x) at the given bounds.

Lemma 2. For a ≥ 1 the only solutions of (1) with |x| ≤ 1 or |y| ≤ 1
are the trivial solutions.

Proof. Elementary.

Lemma 3. Let a ≥ 2, and let (x, y) be a non-trivial solution of (1). Then
x/y belongs to one of the intervals

I =
(

1
a2 ,

1
a2 +

5
2a8

)
, I ′ =

(
a− 2

a2 , a

)
, I ′′ =

(
−a− 1

a2 ,−a
)
.

Proof. We easily see that |f |≥1 outside the intervals I ′, I ′′, and (0, 3/a2),
hence, from 1 = y3f(x/y) and |y| ≥ 2, x/y belongs to one of these intervals.
It remains to show that x/y 6∈ (0, 3/a2) \ I. Suppose x/y belongs to this
interval. Then, since |f | ≥ 1/a6 there, we have 1 = |y3f(x/y)| ≥ |y3/a6|,
hence |y| ≤ a2. Further, from (1), Lemma 1, and |y| ≥ 2, we have |x− θy| =
1/|(x/y − θ′)(x/y − θ′′)y2| < 1/a2, and from |x| ≥ 2 and |y| ≤ a2 we have
|x− θy| ≥ 2− θ|y| > 1− 3/(2a6), a contradiction.

Definition. Let a ≥ 2. We call a solution (x, y) of (1) of type I, I′, or
I′′ if x/y belongs to the interval I, I ′, or I ′′ respectively. Note that x/y is
close to θ, θ′, or θ′′ respectively.

We see that three of the trivial solutions, except (0, 1) and (1, 0), each
belong to the boundary of one of the intervals I, I ′, and I ′′. Our aim is to
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prove that none of these intervals contains a solution of (1) if a is sufficiently
large.

Lemma 4. We have (a+ θ)(a− θ)θ = 1, and if a ≥ 2, then any pair of
two numbers from among θ, a+ θ, and a− θ forms a system of fundamental
units of the order Z[θ].

Proof. See H.-J. Stender [S] for the case a ≥ 3. For a = 2, see for example
M. Pohst and H. Zassenhaus [PZ, Table, p. 436].

3. Solution of type I. Here we shall prove that there is no solution of
type I if a ≥ 2. To show this for a ≥ 12, we use a result of [W2] which was
obtained by Padé approximation method. For type I, we can also actually
use the same method as will be used later for types I′ and I′′. However, the
Padé approximation method gives a stronger result, so we use this method
here.

In this section, we let (x, y) be a solution of (1) of type I, that is,

(3.1)
1
a2 <

x

y
<

1
a2 +

5
2a8 .

3.1. Upper bound for y. Since f has three real zeros, and |θ| is the
smallest of |θ|, |θ′|, and |θ′′|, we can use Theorem 1 of [W2] for θ. We recall
the theorem with a replaced by −a2.

Lemma 3.1. Let a ≥ 12. Then, for any integers p, q (q > 0), we have

(3.2)
∣∣∣∣θ −

p

q

∣∣∣∣ >
1

2.16 · 105a8qλ(a)
,

where

λ(a) = 1 +
log(4

√
R+ 12

√
6)

log(
√
R/27− 1/

√
R)

< 3 with R = 4a6 − 27.

Further , λ(a) is a decreasing function of a and tends to 2 as a→∞.

From this lemma we easily obtain an upper bound for |y|, a result cor-
responding to Theorem 2 of [W2].

Lemma 3.2. Let a ≥ 12. Then, for any solution (x, y) of (1) of type I,
we have

|y| < (2.161 · 105a6)1/(3−λ(a))

with the same λ(a) as above.

Proof. From (1), Lemma 1, and (3.1), we have

|θ − x/y| = 1
|(θ′ − x/y)(θ′′ − x/y)y3| <

1
a2(1− 1/(2a3))|y|3 .

Together with (3.2), this implies the lemma.
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3.2. Lower bound for y. From the fact that x− θy is a unit of Z[θ], we
shall obtain a lower bound for |y|.

Lemma 3.3. Let a ≥ 2. Then we can write

(3.3) x− θy = −(a− θ)−nθm

with positive integers m and n, and

(3.4) 0 < 3
4a

3(log 3a3)n < m.

Remark. For the relation between m and n, we can obtain the more
precise estimate

log((a− θ′′)/(a− θ′))
log(|θ′′|/θ′) n < m− 1 <

log((a− θ′′)/(a− θ′))
log(|θ′′|/θ′) n+

9
2
,

and for large a we can see

log((a− θ′′)/(a− θ′))
log(|θ′′|/θ′) ∼ 4a3(log 4a3).

We omit the proof, because it is tedious, and (3.4) is sufficient for our aims.

Proof of Lemma 3.3. Since x− θy is a unit of Z[θ], by Lemma 4 it can
be written as x− θy = ±(a− θ)−nθm with integers n and m. By Lemma 1
and (3.1),

x− θ′′y
x− θ′y =

x/y − θ′′
x/y − θ′ < 0,

hence x− θy < 0 by (1). Therefore, the ± sign in the above expression is a
minus sign. We also have

1− x/(yθ′′)
1− x/(yθ′) =

(
a− θ′
a− θ′′

)n(
θ′′

θ′

)m−1

.

By Lemma 1 and (3.1), we can estimate the left-hand side as

1 <
1− x/(yθ′′)
1− x/(yθ′) < 1 +

3
a3 .

In fact, the last inequality can be obtained for example as follows, under the
assumption a ≥ 2:

1− x/(yθ′′)
1− x/(yθ′) <

1 +
(

1
a2 + 5

2a8

)
/
(
a+ 1

3a2

)

1−
(

1
a2 + 5

2a8

)
/
(
a− 2

3a2

)

<
1 + 1

a3

(
1 + 5

2a6

)
/
(
1 + 1

3a3

)

1− 1
a3

(
1 + 5

2a6

)
/
(
1− 2

3a3

) < 1 + 1
a3

1− 1
a3

(
1 + 4

3a3

) < 1 +
3
a3 .

(In the following, we also need some estimates which can be proved in the
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similar way, but the details will be omitted.) Hence we obtain

(3.5) 1 <
(
a− θ′
a− θ′′

)n(
θ′′

θ′

)m−1

< 1 +
3
a3 ,

and

(3.6) 0 < n log
a− θ′
a− θ′′ + (m− 1) log

|θ′′|
θ′

<
3
a3 .

First we show n 6= 0. Suppose to the contrary that n = 0. Then from
(3.5) with n = 0 we see that m must be odd and > 1, since θ′′ < 0 and
|θ′′|/θ > 1 by Lemma 1. If m = 3, then x − θy = −θ3 = 1 − a2θ, that
is, x = 1 and y = a2. However, this contradicts (3.1). Hence m ≥ 5. Then
from Lemma 1 we would have (θ′′/θ′)m−1 ≥ (θ′′/θ′)4 > 1 + 3/a3, which
contradicts (3.5). Therefore, n 6= 0.

Next we show n > 0. Suppose to the contrary that n < 0. Then, since
from (3.6) we have

(m− 1) log
|θ′′|
θ′

< n log
a− θ′′
a− θ′ +

3
a3 ,

and from Lemma 1 we obtain log((a−θ′′)/(a−θ′)) > log(3a3) and |θ′′|/θ > 1,
we would have m− 1 < 0, that is, m ≤ 0. Then |x− θy| = (a− θ)−nθm > 1,
which contradicts (1) by (3.1). Therefore, n > 0.

Finally, from the first inequality of (3.6) and the estimate

log((a− θ′′)/(a− θ′))
log(|θ′′|/θ′) >

3
4
a3 log 3a3,

we obtain (3.4).

Lemma 3.4. Let a ≥ 2. Then

y > a2a3 log a.

Proof. From (3.3) we have

x− θy = −(a− θ)−nθm and x− θ′y = −(a− θ′)−nθ′m,
hence

(θ′ − θ)y = (a− θ′)−nθ′m − (a− θ)−nθm,
and, since |x− θy| < 1, n ≥ 1, (a− θ′)−1 > 1, and θ′ − θ > 1, using Lemma
1 and (3.4) we have

y =
(a− θ′)−n
θ′ − θ θ′m − |x− θy|

θ′ − θ >
1

(a− θ′)(θ′ − θ) θ
′m − 1

θ′ − θ

>
3a
2

(
a− 2

3a2

)m
− 1 >

(
a− 2

3a2

)m
>

(
a− 2

3a2

)3a3(log 3a3)/4

> a2a3 log a.
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3.3. Bound for a. Combining Lemmas 3.2 and 3.4, we obtain the follow-
ing.

Lemma 3.5. If a ≥ 2, then there is no solution of (1) of type I.

Proof. (i) Case a ≥ 12. Suppose that there exists a solution (x, y) of
type I. Then from Lemmas 3.2 and 3.4, we have

a2a3 log a < y < (2.161 · 105a6)1/(3−λ(a)),

hence

2a3 log a <
1

3− λ(a)

(
6 +

log(2.161 · 105)
log a

)
.

However, for a = 12 we have λ(a) = 2.9654, and the above inequality does
not hold. Therefore, since the right-hand side is a decreasing function of a,
it does not hold for a ≥ 12 either, which is a contradiction.

(ii) Case 2 ≤ a ≤ 11. We used the computer software KANT [D] which
is based on Baker’s method, and is able to solve given Thue equations, and
we found that there is no solution of (1) of type I.

The lemma follows from (i) and (ii).

4. Solution of type I′. Here we shall prove that there is no solution of
type I′ if a is sufficiently large. In this section, we always assume a ≥ 100,
and often do not refer to this in lemmas etc. Further, we let (x, y) be a
solution of (1) of type I′, that is,

(4.1) a− 2
a2 <

x

y
< a.

4.1. Preliminaries

Lemma 4.1. We can write

(4.2) x− θy = (a− θ)nθ−m

with an even positive integer m and a positive integer n, and n > m+ 4.

Remark. We can obtain the more precise estimate

log(|θ′′|/θ)
log((a− θ′′)/(a− θ)) m−

2
a3 < n− 1 <

log(|θ′′|/θ)
log((a− θ′′)/(a− θ)) m+

2
a3 ,

and for large a,
log(|θ′′|/θ)

log((a− θ′′)/(a− θ)) ∼
3 log a
log 2

.

We omit the proof.
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Proof of Lemma 4.1. Since x− θy is a unit of Z[θ], by Lemma 4 it can
be written as x− θy = ±(a− θ)nθ−m with integers n and m. Hence

x/y − θ′′
x/y − θ =

x− θ′′y
x− θy =

(
a− θ′′
a− θ

)n(
θ′′

θ

)−m
.

By Lemma 1 and (4.1), the left-hand side is positive. This implies that
m is even, since only θ′′ is negative on the right-hand side. Also we have
(x − θ′′y)(x − θy) > 0, hence x − θ′y > 0 by (1). Therefore, the ± sign in
the above expression is a plus sign.

By Lemma 1 and (4.1), we have 3/2 < (x/y−θ′′)/(x/y−θ) < 9/4. Hence

(4.3) log
3
2
< n log

a− θ′′
a− θ −m log

|θ′′|
θ

< log
9
4
.

We first prove that m > 0. If m = 0, then, since 3/2 < (a−θ′′)/(a−θ) <
9/4 by Lemma 1, we would have n = 1 from (4.3). Hence x − θy = a − θ,
and we would have x = a, y = 1, which contradicts (4.1). If m < 0, then,
since |θ′′|/θ > a3 > 9/4 by Lemma 1, we would have n < 0 by (4.3). Hence
x − θ′y = (a − θ′)nθ′−m > 1. On the other hand, |x − θ′y| < 1 by (1) and
(4.1), a contradiction. Therefore, m > 0.

Next, from Lemma 1, the first inequality of (4.3), and the inequality
m ≥ 2, we obtain

n−m− 4 > m

(
log(|θ′′|/θ)

log((a− θ′′)/(a− θ)) − 1
)
− 4 > 0,

which completes the proof of the lemma.

4.2. Linear form and lower bound. From Siegel’s identity

(θ′ − θ′′)(x− θy) + (θ′′ − θ)(x− θ′y) + (θ − θ′)(x− θ′′y) = 0

and (4.2), we obtain

Λ := log
θ′ − θ′′
θ′ − θ + n log

a− θ
a− θ′′ +m log |θ′′/θ|(4.4)

= log
(

1 +
(θ − θ′′)(x− θ′y)
(θ′ − θ)(x− θ′′y)

)
.

For an algebraic number α, we denote by h(α) the absolute logarithmic
height.

We recall the following result of M. Waldschmidt [Wal, Cor. 1.5, p. 212].

Lemma 4.2. Let Λ be a linear form in the principal values of logarithm
of l positive algebraic numbers α1, . . . , αl, with rational integer coefficients
b1, . . . , bl (bl 6= 0). Put D = [Q(α1, . . . , αl) : Q]. Let A1, . . . , Al, A,E, % be
positive numbers satisfying

logAi ≥ h(αi) (1 ≤ i ≤ l), A = max{A1, . . . , Al},
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and

e ≤ E ≤ min
{
AD1 , . . . , A

D
l ,
lD

%

( l∑

i=1

|logαi|
logAi

)−1}
.

Put

M = max
1≤i<l

{ |bl|
logAi

+
|bi|

logAl

}
,

Z0 = max{7 + 3 log l, (logE)/D, log(D/logE)},
G0 = max{4lZ0, logM},

U0 = max{D2 logA,Dl+2G0Z0 logA1 · · · logAl(logE)−l−1}.
Then

log |Λ| ≥ −1500 · 22ll3l+5(1 + 1/%)lU0.

Further , in the case l = 3, the number 1500 can be replaced by 1320.

Lemma 4.3. A lower bound for the linear form (4.4) is given by

log |Λ| > − 4.91 · 1016
(

1 +
log 2

3 log a

)(
1 +

2 log 2
3 log a

)(
1 +

1
6a3 log a

)

× (log a)3 max{12(7 + 3 log 3), logn}.
Proof. We put

α1 =
θ′ − θ′′
θ′ − θ , α2 =

a− θ
a− θ′′ , α3 = |θ′′|/θ,

and apply Lemma 4.2. We have l = 3,D = 6, b1 = 1, b2 = n, b3 = m. Using
Lemma 1, we have the following estimates, and we define Ai as indicated:

h(α1) ≤ 2h(θ′ − θ) =
2
3

log((θ′ − θ)(θ′ − θ′′)(θ − θ′′))

< 2 log a+
2
3

log 2 = logA1,

h(α2) =
1
3

log(θ′(a+ θ′)(a− θ′′)) < log a+
2
3

log 2 = logA2,

h(α3) =
1
3

log
|θ′′|
θ

< log a+
1

6a3 = logA3.

Using Lemma 1 (always under the assumption a ≥ 100) we also have
3∑

i=1

|logαi|
logAi

< 3.21.

We put % = 0.63, E = 8.9. Then Z0 = 7 + 3 log 3. Using the inequality
m < n− 4 of Lemma 4.1, we also have M < n. Hence

G0 ≤ max{12(7 + 3 log 3), logn}.
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We also have

U0 = D5G0Z0 logA1 logA2 logA3(logE)−4.

These data and Lemma 4.2 imply Lemma 4.3.

4.3. Upper bound for Λ

Lemma 4.4. We have

log |Λ| < −3n log a.

Proof. We estimate the right-hand side of (4.4). By Lemmas 1 and 4.1,

0 <
(θ − θ′′)(x− θ′y)
(θ′ − θ)(x− θ′′y)

=
θ − θ′′
θ′ − θ ·

(a− θ′)nθ′′m
(a− θ′′)nθ′m

<
θ − θ′′
θ′ − θ ·

(
a− θ′
a− θ′′

)n( |θ′′|
θ′

)n−4

<
1
a3n ,

which implies the lemma.

4.4. Lower bound for n. By considering some congruence condition, we
shall obtain a lower bound for n. (This means a lower bound for |y| of solu-
tions (x, y) of type I′.) This is our main point in the proof of the Theorem.

Lemma 4.5. We have n >
√

2a3.

Proof. Since n > m+ 4 by Lemma 4.1, we put n−m− 2 = 3k + i with
i = 0, 1, or 2, and k > 0. We write (a − θ)nθ−m as a linear combination
of 1, θ, and θ2, and calculate the coefficient of θ2 in the ring (Z/a3+iZ)[θ].
Note that there is no relation between 1, θ, and θ2 in this ring, and that θ−1

belongs to this ring. We have

(a− θ)n = (−θ)n + na(−θ)n−1 +
(
n

2

)
a2(−θ)n−2 + . . . ,

and
x−θy = (a− θ)nθ−m

= (−1)n
(
θ2−naθ+

(
n

2

)
a2−

(
n

3

)
a3θ−1+

(
n

4

)
a4θ−2−. . .

)
θn−m−2.

Since

θn−m−2 = θ3k+i = (−1 + a2θ)kθi(4.5)

= (−1)k
(

1− ka2θ +
(
k

2

)
a4θ2 − . . .

)
θi

≡ (−1)k





1− ka2θ mod a3 for i = 0,

θ − ka2θ2 mod a4 for i = 1,

ka2 − k(k+1)
2 a4θ + θ2 mod a5 for i = 2,
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we see that the coefficient of θ2 of (a− θ)nθ−m is

≡





(−1)n+k mod a3 for i = 0,

(−1)n+k+1na mod a4 for i = 1,

(−1)n+k
(
1 + k +

(
n
2

))
a2 mod a5 for i = 2,

which should be zero. However, if n ≤
√

2a3, then it would not be zero for
all cases, since for example, for i = 2 we have

0 < 1 + k +
(
n

2

)
= 1 + (n−m− 4)/3 +

(
n

2

)
< n2/2 ≤ a3.

This yields the lemma.

4.5. Bound for a. Combining Lemmas 4.3–4.5, we obtain

Lemma 4.6. If a ≥ 1.34 ·1014, then there is no solution of (1) of type I′.

Proof. Let a ≥ 1.34 · 1014. Suppose that there exists a solution (x, y)
of type I′. Then, through the linear form (4.4), we have, from Lemmas 4.3
and 4.4,

3n log a < 4.91 · 1016
(

1 +
log 2

3 log a

)(
1 +

2 log 2
3 log a

)(
1 +

1
6a3 log a

)

× (log a)3 max{12(7 + 3 log 3), logn}.
We divide the proof into two cases.

(i) Case 12(7+3 log 3) ≥ logn. By Lemma 4.5 and the above inequality,
√

2a3 < n < 4.91 · 4(7 + 3 log 3) · 1016
(

1 +
log 2

3 log a

)

×
(

1 +
2 log 2
3 log a

)(
1 +

1
6a3 log a

)
(log a)2.

However, this does not hold for a ≥ 1.34 · 1014.
(ii) Case 12(7 + 3 log 3) < log n. We have

n < 1.64 · 1016
(

1 +
log 2

3 log a

)(
1 +

2 log 2
3 log a

)(
1 +

1
6a3 log a

)
(log a)2 logn.

Hence, by Lemma 4.5 we obtain
√

2a3

log
√

2a3
<

n

logn

< 1.64 · 1016
(

1 +
log 2

3 log a

)(
1 +

2 log 2
3 log a

)(
1 +

1
6a3 log a

)
(log a)2.

However, this does not hold for a ≥ 6.96 · 1013, which concludes the proof.
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5. Solution of type I′′. Here we shall prove that there is no solution of
type I′′ if a is sufficiently large. The method is exactly the same as for type
I′, so we shall give only a brief sketch. In this section, we always assume
a ≥ 100. Further, we let (x, y) be a solution of (1) of type I′′, that is,

(5.1) −a− 1
a2 <

x

y
< −a.

5.1. Preliminaries

Lemma 5.1. We can write

(5.2) x− θy = ±(a+ θ)nθ−m

with positive integers m and n, and n > m+ 4.

Remark. We can obtain the more precise estimate

log(θ′/θ)
log((a+ θ′)/(a+ θ))

m− 2
a3 < n− 1 <

log(θ′/θ)
log((a+ θ′)/(a+ θ))

m+
1
a3 ,

and for large a,
log(θ′/θ)

log((a+ θ′)/(a+ θ))
∼ 3 log a

log 2
.

We omit the proof.

Proof of Lemma 5.1. By Lemma 4 we can write x− θy = ±(a+ θ)nθ−m

with integers n and m. Hence

θ′ − x/y
θ − x/y =

(
a+ θ′

a+ θ

)n(
θ′

θ

)−m
.

By Lemma 1 and (5.1), the left-hand side lies in (3/2, 9/4), hence

(5.3) log
3
2
< n log

a+ θ′

a+ θ
−m log

θ′

θ
< log

9
4
.

This implies m > 0. In fact, if m = 0, then since 3/2 < (a+θ′)/(a+θ) < 9/4
by Lemma 1, we would have n = 1 from (5.3), hence x = ±a, y = ∓1, so
x/y = −a, which contradicts (5.1). If m < 0, then since θ′/θ > 9/4, we
would have n < 0. Hence |x−θ′′y| = |(a+θ′′)nθ′′−m| > 1, which contradicts
the inequality |x− θ′′y| < 1 implied by (1) and (5.1). Therefore, m > 0.

As before, we obtain n−m− 4 > 0 by Lemma 1, the first inequality of
(5.3), and the inequality m ≥ 1.

5.2. Linear form and lower bound. From Siegel’s identity and (5.2), we
obtain

Λ := log
θ′ − θ′′
θ − θ′′ + n log

a+ θ

a+ θ′
+m log(θ′/θ)(5.4)

= log
(

1 +
(θ − θ′)(x− θ′′y)
(θ′′ − θ)(x− θ′y)

)
.



296 I. Wakabayashi

Lemma 5.2. A lower bound for the linear form (5.4) is given by

log |Λ| > − 4.91 · 1016
(

1 +
log 2

3 log a

)(
1 +

log 6
3 log a

)(
1 +

1
6a3 log a

)

× (log a)3 max{12(7 + 3 log 3), logn}.
Proof. We put

α1 =
θ′ − θ′′
θ − θ′′ , α2 =

a+ θ

a+ θ′
, α3 = θ′/θ,

and apply Lemma 4.2. We have l = 3,D = 6, b1 = 1, b2 = n, b3 = m. Using
Lemma 1, we have the following estimates, and we define Ai as indicated:

h(α1) ≤ 2h(θ′ − θ) < 2 log a+
2
3

log 2 = logA1,

h(α2) =
1
3

log((a+ θ′)/|a+ θ′′|) < log a+
1
3

log 6 = logA2,

h(α3) = h(θ′′/θ) < log a+
1

6a3 = logA3.

Using Lemma 1, we also have
3∑

i=1

|logαi|
logAi

< 3.21.

We put % = 0.63, E = 8.9. Then Z0 = 7 + 3 log 3.
Using the inequality m < n− 4, we also have M < n. Hence

G0 ≤ max{12(7 + 3 log 3), logn}.
We also have

U0 = D5G0Z0 logA1 logA2 logA3(logE)−4.

These data and Lemma 4.2 imply Lemma 5.2.

5.3. Upper bound for Λ

Lemma 5.3. We have

log |Λ| < −3n log a.

Proof. We estimate the right-hand side of (5.4) by Lemmas 1 and 5.1.

5.4. Lower bound for n. By considering the same congruence condition
as before, we obtain a lower bound for n.

Lemma 5.4. We have n >
√

2a3.

Proof. Since n > m+ 4 by Lemma 5.1, we put n−m− 2 = 3k + i with
i = 0, 1, or 2, and k > 0. We write (a + θ)nθ−m as a linear combination of
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1, θ, and θ2, and calculate the coefficient of θ2 in the ring (Z/a3+iZ)[θ]. We
have

±(x− θy) = (a+ θ)nθ−m

=
(
θ2 + naθ +

(
n

2

)
a2 +

(
n

3

)
a3θ−1 +

(
n

4

)
a4θ−2 + . . .

)
θn−m−2,

and by (4.5) the coefficient of θ2 of (a+ θ)nθ−m is

≡





(−1)k mod a3 for i = 0,

(−1)kna mod a4 for i = 1,

(−1)k
(
1 + k +

(
n
2

))
a2 mod a5 for i = 2,

which should be zero. However, if n ≤
√

2a3, then it is not zero for any case,
which yields the lemma.

5.5. Bound for a. Combining Lemmas 5.2, 5.3, and 5.4, we obtain the
following.

Lemma 5.5. If a ≥ 1.35 ·1014, then there is no solution of (1) of type I′′.

Proof. Let a ≥ 1.35 · 1014. Suppose that there exists a solution (x, y) of
type I′′. Then, from Lemmas 5.2 and 5.3, we obtain

3n log a < 4.91 · 1016
(

1 +
log 2

3 log a

)(
1 +

log 6
3 log a

)(
1 +

1
6a3 log a

)

× (log a)3 max{12(7 + 3 log 3), logn}.
By Lemma 5.4 and this inequality, the lemma is proven in exactly the same
way as Lemma 4.6.

Conclusion. Lemmas 3, 3.5, 4.6, and 5.5 yield the Theorem.
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