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Visibility of lattice points

by

Yong-Gao Chen (Nanjing) and Lin-Feng Cheng (Xuzhou)

1. Introduction. Two integer points P (a1, . . . , ak) and Q(b1, . . . , bk)
are said to be visible to each other if either P = Q or there are no other
integer points on the line segment joining P and Q. It is not difficult to
verify that if P 6= Q, then P and Q are visible to each other if and only if
gcd(a1 − b1, . . . , ak − bk) = 1. We say that an integer point set A is visible
from an integer point set B if each point of A is visible from some point
of B.

For k ≥ 2, let

∆k
n = {(x1, . . . , xk) : xi integers and 1 ≤ xi ≤ n (1 ≤ i ≤ n)}.

Define

fk(n) = min{|S| : S ⊂ Zk, ∆k
n is visible from S},

Fk(n) = min{|S| : S ⊆ ∆k
n, ∆

k
n is visible from S}.

It is clear that fk(n) ≤ Fk(n). Erdős, Gruber and Hammer [4] asked for
an explicit construction of S such that S ⊂ ∆2

n, |S| = O(logn) and ∆2
n

is visible from S. A better construction of S was given by Adhikari and
Balasubramanian [2]. We have

F2(n) ≥ 1
2

logn
log logn

, n ≥ n0, (Abbott [1])

F2(n) = O

(
logn log log logn

log logn

)
, (Adhikari, Balasubramanian [2])

Fk(n) = O

(
logn

log logn

)
, k ≥ 3, (Adhikari, Chen [3]).
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In fact, the method in Abbott [1] implies that

Fk(n) ≥ fk(n) ≥ 1
2

logn
log logn

, n ≥ n0, for all k ≥ 2.

Thus, for k ≥ 3, the main orders of fk(n) and Fk(n) are logn/log logn. In
this note we are interested in the constant factors. Let

ζ(k) =
∞∑

m=1

1
mk

=
∏

p

(
1− 1

pk

)
.

The following results are proved.

Theorem 1. For k ≥ 2 we have

fk(n) ≥ ζ(k)
logn

log logn
(1 + o(1)).

Theorem 2. For k ≥ 3 we have

Fk(n) ≤ ζ(k − 1)
logn

log logn
(1 + o(1)).

Remark. The first author conjectures that

fk(n) = ζ(k)
logn

log logn
(1 + o(1)), Fk(n) = ζ(k)

logn
log logn

(1 + o(1)).

By an analogous argument to the proof of Theorem 2, we can prove that
the conjecture for k ≥ 3 follows from the conjecture that for every fixed s,

max
s<m≤n

ω((m− 1)(m− 2) . . . (m− s)) = (1 + o(1))
logn

log logn
,

and the conjecture for k = 2 follows from the conjecture that

max
sn<m≤n

ω((m− 1)(m− 2) . . . (m− sn)) = (1 + o(1))
logn

log logn
,

where sn = [2 logn/log log n].

2. Proofs. Let p1, p2, . . . be all positive primes in increasing order, that
is, p1 = 2, p2 = 3, . . . As usual, we will use p to denote a prime. For two
points P and Q in Zk and an integer m, we say that P and Q are congruent
modm if all coordinates are congruent modm.

Lemma 1. Let B be a finite subset of Zk. Then there exist at least
|B|/pk points in B which are congruent mod p.

Proof. Lemma 1 follows from the fact that points in Zk mod p has pk

different possible values.
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Proof of Theorem 1. Let 0 < ε < 1/8. We take an integer t such that
t∏

i=1

(
1− 1

pki

)
≤ ζ(k)−1(1 + ε).

For n ≥ n1(ε, k) there exists an integer r such that

ζ(k)
logn

log logn
(1− 6ε) ≤ r ≤ ζ(k)

logn
log logn

(1− 5ε), pk1p
k
2 . . . p

k
t | r.

Suppose that Q1, . . . , Qr are r distinct points in Zk. By Lemma 1 there
exists A1 ⊆ {Q1, . . . , Qr} such that |A1| = r/pk1 and the points in A1 are
congruent mod p1. Let B1 = {Q1, . . . , Qr} \ A1. Then |B1| = (1− 1/pk1)r is
divisible by pk2 . By Lemma 1 there exists A2 ⊆ B1 such that |A2| = |B1|/pk2
and the points in A2 are congruent mod p2. Let B2 = B1 \A2. Then |B2| =
(1− 1/pk2)(1− 1/pk1)r is divisible by pk3 . Similarly, we obtain A3, . . . , At and
B3, . . . , Bt such that |Ai| = |Bi−1|/pki , Bi = Bi−1 \Ai and the points in Ai
are congruent mod pi for 3 ≤ i ≤ t. Then

|Bt| =
(

1− 1
pkt

)
|Bt−1| = . . . = r

t∏

i=1

(
1− 1

pki

)
≤ logn

log logn
(1− 4ε).

Hence, for n ≥ n2(ε, k),

(1) t+ |Bt| ≤
logn

log log n
(1− 3ε).

Let s = t+ |Bt|. Let Bt = At+1 ∪ . . .∪As with |Ai| = 1 and Ai ∩Aj = ∅ for
t+ 1 ≤ i, j ≤ s and i 6= j. By the Chinese Remainder Theorem, there exists
a point Q in ∆k

(r+1)p1...ps
which is different from Q1, . . . , Qr and congruent

to the points of Ai mod pi for each i. For n ≥ n3(ε, k) by (1) we have

log((r + 1)p1 . . . ps) ≤ log(r + 1) + s log ps
≤ ε logn+ (1− 2ε) logn < logn.

Hence, Q ∈ ∆k
n and Q is invisible from any point of Q1, . . . , Qr. Therefore

fk(n) > r ≥ ζ(k)
logn

log logn
(1− 6ε).

This completes the proof of Theorem 1.

Proof of Theorem 2. Let 0 < ε < 1/4. Let t be an integer with

2k−1
∑

p>pt

1
pk−1 < εζ(k − 1)−1.

For n ≥ n4(ε, k) there exists an integer r with

ζ(k−1)
logn

log logn
1 + 2ε
1− ε ≤ r

k−1 ≤ ζ(k−1)
logn

log logn
1 + 3ε
1− ε , p1p2 . . . pt | r.
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Let
Gn = {(a1, . . . , ak−1, 1) : ai integers, 1 ≤ ai ≤ r (1 ≤ i ≤ k − 1)}

∪ {(2, 2, . . . , 2)}.
Given any point (x1, . . . , xk) ∈ ∆k

n. If xk = 1, then (x1, . . . , xk) is visible
from (2, 2, . . . , 2). Now we assume that xk > 1. We will show that there
exists at least one point (a1, . . . , ak−1, 1) ∈ Gn such that

(x1 − a1, . . . , xk−1 − ak−1, xk − 1) = 1.

In order to prove this, we use a simple sieving argument. Let q1, . . . , qm be
the prime divisors of xk − 1. We know that

m = ω(xk − 1) ≤ (1 + o(1)) logn/log log n.

We want to find (a1, . . . , ak−1, 1) ∈ Gn so that no qi divides each xj−aj , 1 ≤
j ≤ k − 1.

For the primes qj that are among p1, . . . , pt we use the combinatorial
sieve. We find that the number of remaining vectors is

rk−1
∏

(1− p−(k−1)
i ) > ζ(k − 1)−1rk−1.

Each prime qj with pt < qj ≤ r excludes at most (1+[r/qj ])k−1 < (2r/qj)k−1

vectors. The total number of these is

< (2r)k−1
∑

qj>pt

q
−(k−1)
j < εζ(k − 1)−1rk−1.

Finally, a qj > r excludes at most one, altogether (1 + o(1)) logn/log log n
at most. Since

ζ(k − 1)−1rk−1 > (1 + ε)
logn

log log n
+ εζ(k − 1)−1rk−1,

we are done.
Therefore

Fk(n) ≤ |Gn|+ 1 ≤ rk−1 + 1 ≤ ζ(k − 1)
1 + 3ε
1− ε

log n
log logn

+ 1.

This completes the proof.

Acknowledgements. I am grateful to the referee for his/her sugges-
tions to shorten the proof of Theorem 2 and to add more remarks pertaining
to Theorem 2.
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[4] P. Erdős, P. M. Gruber and J. Hammer, Lattice Points, Pitman Monographs Surveys
Pure Appl. Math. 39, Wiley, New York, 1989.

Department of Mathematics
Nanjing Normal University
Nanjing 210097, China
E-mail: ygchen@pine.njnu.edu.cn

Department of Mathematics
China University of Mining and Technology

Xuzhou 221008, China
E-mail: cumtclf@sina.com.cn

Received on 14.11.2001
and in revised form on 26.8.2002 (4145)


