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1. Introduction. Let G be an additive group and A be a subset of G.
We denote by

∑

(A) the collection of subset sums of A:
∑

(A) =
{

∑

x∈B

x
∣

∣

∣
B ⊂ A, |B| < ∞

}

.

The following two questions are among the most popular questions in
additive combinatorics:

Question 1.1. When 0 ∈ ∑

(A)?

Question 1.2. When
∑

(A) = G?

If
∑

(A) does not contain the zero element, we say that A is zero-sum-

free. If
∑

(A) = G (
∑

(A) 6= G), then we say that A is complete (incomplete).
In this paper, we focus on the case G = Zp, the cyclic group of order p,

where p is a large prime. The asymptotic notation will be used under the
assumption that p → ∞. For x ∈ Zp, ‖x‖ (the norm of x) is the distance
from x to 0. (For example, the norm of p − 1 is 1.) All logarithms have
natural base and [a, b] denotes the set of integers between a and b.

1.3. A sharp bound on the maximum cardinality of a zero-sum-free set.

How big can a zero-sum-free set be? This question was raised by Erdős and
Heilbronn [4] in 1964. In [8], Szemerédi proved the following.

Theorem 1.4. There is a positive constant c such that if A ⊂ Zp and

|A| ≥ cp1/2, then 0 ∈ ∑

(A).

A result of Olson [7] implies that one can set c = 2. More than a quarter
of century later, Hamidoune and Zémor [5] showed that one can set c =√

2 + o(1), which is asymptotically tight.
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Theorem 1.5. If A ⊂ Zp and |A| ≥ (2p)1/2 + 5 log p, then 0 ∈ ∑

(A).

Our first result removes the logarithmic term in Theorem 1.5, giving the
best possible bound (for all sufficiently large p). Let n(p) denote the largest

integer such that
∑n−1

i=1 i < p.

Theorem 1.6. There is a constant C such that the following holds for

all prime p ≥ C.

• If p 6= n(p)(n(p) + 1)/2 − 1, and A is a subset of Zp with n(p) ele-

ments, then 0 ∈
∑

(A).
• If p = n(p)(n(p) + 1)/2 − 1, and A is a subset of Zp with n(p) + 1

elements, then 0 ∈ ∑

(A). Furthermore, up to a dilation, the only

zero-sum-free set with n(p) elements is {−2, 1, 3, 4, . . . , n(p)}.

To see that the bound in the first case is sharp, consider A =
{1, . . . , n(p) − 1}.

1.7. The structure of zero-sum-free sets with cardinality close to maxi-

mum. Theorem 1.6 does not provide information about zero-sum-free sets of
size slightly smaller than n(p). The archetypical example for a zero-sum-free
set is a set whose sum of elements (as positive integers between 1 and p−1)
is less than p. The general phenomenon we would like to support here is
that a zero-sum-free set with sufficiently large cardinality should be close to
such a set. In [1], Deshouillers showed the following.

Theorem 1.8. Let A be a zero-sum-free subset of Zp of size at least p1/2.

Then there is some non-zero element b ∈ Zp such that
∑

a∈bA, a<p/2

‖a‖ ≤ p + O(p3/4 log p)

and
∑

a∈bA, a>p/2

‖a‖ = O(p3/4 log p).

The main issue here is the magnitude of the error term. In the same
paper, there is a construction of a zero-sum-free set with cp1/2 elements
(c > 1) where

∑

a∈bA, a<p/2

‖a‖ = p + Ω(p1/2),
∑

a∈bA, a>p/2

‖a‖ = Ω(p1/2).

It is conjectured [1] that p1/2 is the right order of magnitude of the error
term. Here we confirm this conjecture, assuming that |A| is sufficiently close
to the upper bound.
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Theorem 1.9. Let A be a zero-sum-free subset of Zp of size at

least .99n(p). Then there is some non-zero element b ∈ Zp such that
∑

a∈bA, a<p/2

‖a‖ ≤ p + O(p1/2),
∑

a∈bA, a>p/2

‖a‖ = O(p1/2).

The constant .99 is ad hoc and can be improved. However, we do not
elaborate on this point.

1.10. Complete sets. All questions concerning zero-sum-free sets are also
natural for incomplete sets. Here is a well-known result of Olson [7].

Theorem 1.11. Let A be a subset of Zp of more than (4p − 3)1/2 ele-

ments. Then A is complete.

Olson’s bound is essentially sharp. To see this, observe that if the sum
of the norms of the elements of A is less than p, then A is incomplete. Let
m(p) be the largest cardinality of a small set. One can easily verify that
m(p) = 2p1/2 + O(1). We now want to study the structure of incomplete

sets of size close to 2p1/2. Deshouillers and Freiman [3] proved the following.

Theorem 1.12. Let A be an incomplete subset of Zp of size at

least (2p)1/2. Then there is some non-zero element b ∈ Zp such that
∑

a∈bA

‖a‖ ≤ p + O(p3/4 log p).

Similarly to the situation with Theorem 1.8, it is conjectured that the
right error term has order p1/2 (see [2] for a construction that matches this
bound from below). We establish this conjecture for sufficiently large A.

Theorem 1.13. Let A be an incomplete subset of Zp of size at

least 1.99p1/2. Then there is some non-zero element b ∈ Zp such that
∑

a∈bA

‖a‖ ≤ p + O(p1/2).

Added in proof. While this paper was written, Deshouillers informed
us that he and Prakash have obtained a result similar to Theorem 1.6.

2. Main lemmas. The main tools in our proofs are the following results
from [9].

Theorem 2.1. Let A be a zero-free-sum subset of Zp. Then we can

partition A into two disjoint sets A′ and A′′ where

• A′ has negligible cardinality : |A′| = O(p1/2/log2 p).
• The sum of the elements of (a dilate of ) A′′ is small : There is a

non-zero element b ∈ Zp such that the elements of bA′′ belong to the

interval [1, (p − 1)/2] and their sum is less than p.
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Theorem 2.2. Let A be an incomplete subset of Zp. Then we can par-

tition A into two disjoint sets A′ and A′′ where

• A′ has negligible cardinality : |A′| = O(p1/2/log2 p).
• The norm sum of the elements of (a dilate of ) A′′ is small : There

is a non-zero element b ∈ Zp such that the sum of the norms of the

elements of bA′′ is less than p.

The above two theorems were proved (without being formally stated)
in [9]. A stronger version of these theorems will appear in a forthcoming
paper [6]. We also need the following simple lemmas.

Lemma 2.3. Let T ′ ⊂ T be sets of integers with the following property.

There are integers a ≤ b such that [a, b] ⊂
∑

(T ′) and the non-negative

(resp. non-positive) elements of T \T ′ are less than b−a (resp. greater than

a − b). Then, respectively ,
[

a, b +
∑

x∈T\T ′, x≥0

x
]

⊂ ∑

(T )

or
[

a +
∑

x∈T\T ′, x≤0

x, b
]

⊂
∑

(T ).

The (almost trivial) proof is left as an exercise.

Lemma 2.4. Let K = {k1, . . . , kl} be a subset of Zp, where the ki are

positive integers and
∑l

i=1 ki ≤ p. Then |
∑

(K)| ≥ l(l + 1)/2.

To verify this lemma, notice that the numbers

k1, . . . , kl, k1 + kl, k2 + kl, . . . , kl−1 + kl,

k1 + kl−1 + kl, . . . , kl−2 + kl−1 + kl, . . . , k1 + · · · + kl

are different and all belong to
∑

(K).

3. Proof of Theorem 1.6. Let A be a zero-free-sum subset of Zp with
size n(p). In fact, as there is no danger for misunderstanding, we will write
n instead of n(p). We start with few simple observations.

Consider the partition A = A′ ∪ A′′ provided by Theorem 2.1. Without
loss of generality, we can assume that the element b equals 1. Thus A′′ ⊂
[1, (p − 1)/2] and the sum of its elements is less than p. We first show
that most of the elements of A′′ belong to the set of the first n positive
integers [1, n].

Lemma 3.1. |A′′ ∩ [1, n]| ≥ n − O(n/log n).
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Proof. By the definition of n and the property of A′′,
n

∑

i=1

i ≥ p >
∑

a∈A′′

a.

Assume that A′′ has l elements in [1, n] and k elements outside. Then

∑

a∈A′′

a ≥
l

∑

i=1

i +
k

∑

j=1

(n + j).

It follows that
n

∑

i=1

i >

l
∑

i=1

i +

k
∑

j=1

(n + j),

which, after a routine simplification, yields

(l + n + 1)(n − l) > (2n + k)k.

On the other hand, n ≥ k + l = |A′′| ≥ n − O(n/log2 n), thus n − l =
k + O(n/log2 n) and n + l + 1 ≤ 2n − k + 1. So there is a constant c such
that

(2n − k + 1)(k + cn/log2 n) > (2n + k)k,

or equivalently
cn

k log2 n
>

k + 1

2n − k + 1
.

Since 2n − k + 1 ≤ 2n + 1, a routine consideration shows that k2 log2 n =
O(n2) and thus k = O(n/log n), completing the proof.

The above lemma shows that most of the elements of A′′ (and A) belong
to [1, n]. Let A1 = A ∩ [1, n]. It is trivial that

|A1| ≥ |A′′ ∩ [1, n]| = n − O(n/log n).

Let A2 = A \ A1. We have

t := |[1, n] \ A1| = |A2| = |A| − |A1| = O(n/log n).

Next we show that
∑

(A1) contains a very long interval. Set I := [2t + 3,
(n+1)(⌊n/2⌋−t−1)]. The length of I is (1−o(1))p; thus I almost covers Zp.

Lemma 3.2. I ⊂
∑

(A1).

Proof. We need to show that every element x in this interval can be
written as a sum of distinct elements of A1. There are two cases:

Case 1: 2t + 3 ≤ x ≤ n. In this case A1 contains at least x − 1 − t ≥
(x + 1)/2 elements in the interval [1, x − 1]. This guarantees that there are
two distinct elements of A1 adding up to x.
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Case 2: x = k(n + 1) + r for some 1 ≤ k ≤ ⌊n/2⌋ − t − 2 and 0 ≤ r ≤
n + 1. First, notice that since |A1| is very close to n (in fact it is enough to
have |A1| slightly larger than 2n/3 here), one can find three distinct elements
a, b, c ∈ A1 such that a+b+c = n+1+r. Consider the set A′

1 = A1\{a, b, c}.
We will represent x−(n+1+r) = (k−1)(n+1) as a sum of distinct elements
of A′

1. Notice that there are exactly ⌊n/2⌋ ways to write n + 1 as a sum of
two different positive integers. We discard a pair if (at least) one of its two
elements is not in A′

1. Since |A′
1| = n− t− 3, we discard at most t + 3 pairs.

So there are at least ⌊n/2⌋ − t − 3 different pairs (ai, bi) where ai, bi ∈ A′
1

and ai + bi = n+1. Thus, (k− 1)(n+1) can be written as a sum of distinct
pairs. Finally, x can be written as a sum of a, b, c with these pairs.

Now we investigate the set A2 = A\A1. This is the collection of elements
of A outside the interval [1, n]. Since A is zero-sum-free, 0 /∈ A2 + I thanks
to Lemma 3.2. It follows that

A2 ⊂ Zp \ ([1, n] ∪ (−I) ∪ {0}) ⊂ J1 ∪ J2,

where J1 := [−2t−2,−1] and J2 := [n+1, p−(n+1)(⌊n/2⌋−t)] = [n+1, q].
We set B := A2 ∩ J1 and C := A2 ∩ J2.

Lemma 3.3.
∑

(B) ⊂ J1.

Proof. Assume otherwise. Then there is a subset B′ of B such that
∑

a∈B′ a ≤ −2t − 3 (here the elements of B are viewed as negative inte-
gers between −1 and −2t−3). Among such B′, take one where

∑

a∈B′ a has
the smallest absolute value. For this B′, −4t − 4 ≤ ∑

a∈B′ a ≤ −2t − 3. On
the other hand, by Lemma 3.2, the interval [2t+3, 4t+4] belongs to

∑

(A1).
This implies that 0 ∈ ∑

(A1) +
∑

(B′) ⊂ ∑

(A), a contradiction.

Lemma 3.3 implies that
∑

a∈B |a| ≤ 2t + 2, which yields

(1) |B| ≤ 2(t + 1)1/2.

Set s := |C|. We have s ≥ t − 2(t + 1)1/2. Let c1 < · · · < cs be the elements
of C and g1 < · · · < gt be the elements of [1, n] \ A1.

By the definition of n,
∑n

i=1 i > p >
∑n−1

i=1 i. Thus, there is a (unique)
h ∈ [1, n] such that

(2) p = 1 + · · · + (h − 1) + (h + 1) + · · · + n.

A quantity which plays an important role in what follows is

d :=
s

∑

i=1

ci −
t

∑

j=1

gj .
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Notice that if we replace the gj by the ci in (2), we represent p+ d as a sum
of distinct elements of A,

(3) p + d =
∑

a∈X, X⊂A

a.

The leading idea now is to try to cancel d by throwing a few elements from
the right hand side or adding a few negative elements (of A) or both. If this
were always possible, then we would have a representation of p as a sum
of distinct elements in A (in other words 0 ∈ ∑

(A)), a contradiction. To
conclude the proof of Theorem 1.6, we are going to show that the only case
when it is not possible is when p = n(n+1)/2−1 and A = {−2, 1, 3, 4, . . . , n}.
We consider two cases:

Case 1: h ∈ A1. Set A′
1 = A1\{h} and apply Lemma 3.2 to A′

1; we con-
clude that

∑

(A′
1) contains the interval I ′=[2(t+1)+3, (n+1)(⌊n/2⌋− t−2)].

Lemma 3.4. d < 2(t + 1) + 3.

Proof. Assume d ≥ 2(t + 1) + 3. Notice that the largest element in J2

(and thus in C) is less than the length of I ′. So by removing the ci one by

one from d, one can obtain a sum d′ =
∑s′

i=1 ci −
∑t

j=1 gj which belongs

to I ′, for some s′ ≤ s. This implies

s′
∑

i=1

ci =
t

∑

j=1

gj +
∑

a∈X

a

for some subset X of A′
1. Since h /∈ A′

1, the right hand side is a subsum of
the right hand side of (2). Let Y be the collection of the missing elements

(from the right hand side of (2)). Then Y ⊂ A1 and
∑s′

i=1 ci +
∑

a∈Y a = p.
On the other hand, the left hand side belongs to

∑

(A1) +
∑

(A2) ⊂
∑

(A).
It follows that 0 ∈

∑

(A), a contradiction.

Now we take a close look at the inequality d < 2(t + 1) + 3. First, ob-
serve that since A is zero-sum-free, −∑

(B) ⊂ {g1, . . . , gt}. By Lemma 3.3,
∑

a∈B |a| ≤ 2t + 2 < p. As B has t − s elements, by Lemma 2.4,
∑

(B)
has at least (t− s)(t− s + 1)/2 elements, thus {g1, . . . , gt} contains at least
(t − s)(t − s + 1)/2 elements in [1, 2t + 2]. It follows that

t
∑

i=1

gi ≤ (2t + 2)(t − s)(t − s + 1)/2 +

t−(t−s)(t−s+1)/2−1
∑

j=0

(n − j).

On the other hand, as all elements of C are larger than n,
s

∑

i=1

ci ≥
s

∑

i=1

(n + i).



310 H. H. Nguyen et al.

It follows that d is at least
s

∑

i=1

(n + i) − (2t + 2)(t − s)(t − s + 1)/2 −
t−(t−s)(t−s+1)/2−1

∑

j=0

(n − j).

If t − s ≥ 2 then s > t − (t − s)(t − s + 1)/2, so we have

d ≥ n(s − (t − (t − s)(t − s + 1)/2)) − (2t + 2)(t − s)(t − s + 1)/2.

This yields
d ≥ (t − s)(t − s − 1)(n − 3(2t + 2))/2.

So the last formula has order Ω(n) ≫ t, thus d ≫ 2(t+1)+3, a contradiction.
Therefore, t − s is either 0 or 1.

If t − s = 0, then d =
∑t

i=1 ci −
∑t

i=1 gi ≥ t2. This is larger than 2t + 5
if t ≥ 4. Thus, we have t = 0, 1, 2, 3.

• t = 0. In this case A = [1, n] and 0 ∈ ∑

(A).
• t = 1. In this case A = [1, n] \ {g1} ∪ c1. If c1 − g1 6= h, then we could

substitute c1 for g1 + (c1 − g1) in (2) and have 0 ∈
∑

(A). This means
that h = c1 − g1. Furthermore, h < 2t + 5 = 7 so both c1 and g1 are
close to n. If h ≥ 3,

p =

h−1
∑

i=1

i +

n
∑

j=h+1

j =

h−2
∑

i=2

i +
∑

h+1≤j≤n, j 6=g1

j + c1.

Similarly, if h = 1 or 2 then

p =
h

∑

i=1

i +
∑

h+2≤j≤n, j 6=g1

j + c1.

• t > 1. Since d < 2t + 5, g1, . . . , gt are all larger than n − 2t − 4. As
p is sufficiently large, we can assume n ≥ 4t + 10, which implies that
[1, 2t + 5] ⊂ A1. If h 6= 1, then it is easy to see that [3, 2t + 5] ⊂
∑

(A1 \ {h}). As t > 1, d ≥ t2 ≥ 4 and can be represented as a
sum of elements in A1 \ {h}. Omitting these elements from (3), we
obtain a representation of p as a sum of elements of A. The only case
left is h = 1 and d = 4. But d can equal 4 if and only if t = 2,
c1 = n + 1, c2 = n + 2, g1 = n − 1, g2 = n. In this case, we have

p =
n

∑

i=2

i = 2 + 3 +
n+2
∑

i=5

i.

Now we turn to the case t−s = 1. In this case B has exactly one element
in the interval [−2t − 2,−1] (modulo p) and d is at least s2 − (2t + 2) =
(t− 1)2 − (2t + 2). Since d < 2t + 5, we conclude that t is at most 6. Let −b
be the element in B (where b is a positive integer). We have b ≤ 2t+2 ≤ 14.
A1 misses exactly t elements from [1, n]; one of them is b and all other are
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close to n (at least n− (2t + 4)). Using this information, we can reduce the
bound on b further. Notice that the whole interval [1, b − 1] belongs to A1.
So if b ≥ 3, then there are two elements x, y of A1 such that x+y = b. Then
x + y + (−b) = 0, meaning 0 ∈ ∑

(A). It thus remains to consider b = 1
or 2. Now we consider a few cases depending on the value of d. Notice that
d ≥ s2 − b ≥ −2. In fact, if s ≥ 2 then d ≥ 2. Furthermore, if s = 0, then
t = 1 and d = −g1 = −b.

• d ≥ 5. Since A1 misses at most one element in [1, d] (the possible
missing element is b), there are two elements of A1 adding up to d.
Omitting these elements from (3), we obtain a representation of p as
a sum of distinct elements of A.

• d = 4. If b = 1, write p =
∑

a∈X, a 6=2 a + (−b). If b = 2, then p =
∑

a∈X, a 6=1,3 a. (Here and later X is the set in (3).)

• d = 3. Write p =
∑

a∈X, a 6=3−b a + (−b).

• d = 2. If b = 1, then p =
∑

a∈X, a6=2 a. If b = 2, then p =
∑

a∈X a+(−2).

• d = 1. If b = 1, then p =
∑

a∈X a+(−1). If b = 2, then p =
∑

a∈X, a 6=1 a.

• d = 0. In this case (3) already provides a representation of p.
• d = −1. In this case s < 2. But since h 6= b, s cannot be 0. If s = 1 then

b = 2 and c1 = n + 1, g1 = n. By (2), we have p =
∑h−1

i=1 i +
∑n

j=h+1 j
and so

p + (h − 1) =
∑

1≤i≤n+1, i/∈{2,n}

i

where the right hand side consists of elements of A only. If h − 1 ∈ A
then we simply omit it from the sum. If h− 1 /∈ A, then h− 1 = 2 and
h = 3. In this case, we can write

p =
∑

1≤i≤n+1, i/∈{2,n}

i + (−2).

• d = −2. This could only occur if s = 0 and b = 2. In this case
A = {−2, 1, 3, . . . , n}. If h = 1, then p =

∑n
i=2 = n(n + 1)/2 − 1 and

we end up with the only exceptional set. If h ≥ 3, then p + (h − 2) =
∑

1≤i≤n, i6=2 i. If h 6= 4, then we can omit h − 2 from the right hand
side to obtain a representation of p. If h = 4, then we can write

p =
∑

1≤i≤n, i6=2

i + (−2).

Case 2: h /∈ A. In this case we can consider A1 instead of A′
1. The

consideration is similar and actually simpler. Since h /∈ A, we only need to
consider d :=

∑s
i=1 ci −

∑

1≤j≤t, gj 6=h gj . Furthermore, as h /∈ A, if s = 0 we

should have h = b and this forbids us to have any exceptional structure in
the case d = −2. The details are left as an exercise.
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4. Proof of Theorem 1.9. We follow the same terminology used in the
previous section. Assume that A is zero-sum-free and |A| = λn = λ(2p)1/2

with some 1 ≥ λ ≥ .99. Furthermore, assume that the element b in Theo-
rem 2.1 is 1. We will use the notation of the previous proof. Let the core of
A be the collection of a ∈ A such that n + 1 − a ∈ A. Theorem 1.9 follows
directly from the following two lemmas.

Lemma 4.1. The core of A has size at least .6n.

Lemma 4.2. Let A be a zero-sum-free set whose core has size at least

(1/2 + ε)n (for some positive constant ε). Then

∑

a∈A, a<p/2

a ≤ p +
1

ε
(n + 1),

∑

a∈A, a>p/2

‖a‖ ≤ (1/ε + 1)n.

Proof of Lemma 4.1. Following the proof of Lemma 3.1, with l =
|A′′ ∩ [1, n]| and k = |A′′ \ [1, n]|, we have

(l + n + 1)(n − l) > (2n + k)k.

On the other hand, n ≥ k + l = |A′′| = |A| − O(n/log2 n), thus n − l =
k+n−|A|+O(n/log2 n) = (1−λ+o(1))n+k and n+l ≤ (1+λ)n−k. Putting
all these together with the fact that λ is quite close to 1, we can conclude that
k < .1n. It follows (rather generously) that l = λn− k −O(n/log2 n) > .8n.

The above shows that most of the elements of A belong to [1, n], as

|A1| = |A ∩ [1, n]| ≥ |A′′ ∩ [1, n]| > .8n.

Split A1 into two sets, A′
1 and A′′

1 := A1 \A′
1, where A′

1 contains all elements
a of A1 such that n + 1 − a also belongs to A1. Recall that A1 has at least
⌊n/2⌋ − t pairs (ai, bi) satisfying ai + bi = n + 1. This guarantees that
|A′

1| ≥ 2(⌊n/2⌋ − t) ≥ .6n. On the other hand, A′
1 is a subset of the core

of A. The proof is complete.

Proof of Lemma 4.2. Abusing the notation slightly, we use A′
1 to denote

the core of A. We have |A′
1| ≥ (1/2 + ε)n.

Lemma 4.3. Any l ∈ [n(1/ε+1), n(1/ε+1)+n] can be written as a sum

of 2(1/ε + 1) distinct elements of A′
1.

Proof. First notice that for any m ∈ Iε = [(1−ε)n, (1+ε)n], the number
of pairs (a, b) ∈ A′2

1 satisfying a < b and a+b = m is at least εn/2. Next, ob-
serve that any k ∈ [0, n] is a sum of 1/ε+1 integers (not necessarily distinct)
from [0, εn]. Consider l from [n(1/ε + 1), n(1/ε + 1) + n]; we can represent
l−n(1/ε+1) as a sum a1 + · · ·+a1/ε+1 where 0 ≤ a1, . . . , a1/ε+1 ≤ εn. Thus
l can be written as a sum of 1/ε+1 elements (not necessarily distinct) of Iε,
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as l = (n + a1) + · · ·+ (n + a1/ε+1). Now we represent each summand in the
above representation of l by two elements of A′

1. By the first observation,
the numbers of pairs are much larger than the number of summands, hence
we can arrange so that all elements of pairs are different.

Recall that A′
1 consists of pairs (a′i, b

′
i) where a′i + b′i = n + 1, so

∑

a′∈A′

1

a′ = (n + 1)|A′
1|/2.

Lemma 4.4. I ′ := [n(1/ε + 1),
∑

a′∈A′

1

a′ − (n + 1)/ε] ⊂ ∑

(A′
1).

Proof. Lemma 4.3 implies that for each x ∈ [n(1/ε + 1), n(1/ε + 1) + n]

there exist distinct elements a′1, . . . , a
′
2(1/ε+1)∈A′

1 such that x =
∑2(1/ε+1)

i=1 a′i.

We discard all a′i and (n + 1) − a′i from A′
1. Thus there remain exactly

|A′
1|/2 − 2(1/ε + 1) different pairs (a′′i , b

′′
i ) where a′′i + b′′i = n + 1. The

sums of these pairs represent all numbers of the form k(n + 1) for any
0 ≤ k ≤ |A′

1|/2 − 2(1/ε + 1). We have thus obtained a representation
of x + k(n + 1) as a sum of different elements of A′

1, in other words,
x + k(n + 1) ∈ ∑

(A′
1). As x varies in [n(1/ε + 1), n(1/ε + 1) + n] and

k varies in [0, |A′
1|/2 − 2(1/ε + 1)], the proof is completed.

Let A2 = A \A1 and set A′
2 := A2 ∩ [0, (p− 1)/2] and A′′

2 = A2 \A′
2. We

are going to view A′′
2 as a subset of [−(p − 1)/2,−1].

We will now invoke Lemma 2.3 several times to deduce Lemma 4.2.
First, it is trivial that the length of I ′ is much larger than n, whilst ele-
ments of A1 are positive integers bounded by n. Thus, Lemma 2.3 implies
that

I ′′ :=
[

n(1/ε + 1),
∑

a∈A1

a − (n + 1)/ε
]

⊂
∑

(A1).

Note that the length of I ′′ is greater than (p − 1)/2. Indeed, n ≈ (2p)1/2

and

|I ′′| =
∑

a∈A1

a − (n + 1)/ε − n(1/ε + 1) ≥
∑

a∈A′

1

a − O(n)

≥ (1/2 + ε)n(n + 1)/2 − O(n) > (p − 1)/2.

Again, Lemma 2.3 (applied to I ′′) yields
[

n(1/ε + 1),
∑

a∈A1∪A′

2

a − (n + 1)/ε
]

⊂ ∑

(A1 ∪ A′
2),

[

∑

a∈A′′

2

a + n(1/ε + 1),
∑

a∈A1

a − (n + 1)/ε
]

⊂
∑

(A1 ∪ A′′
2).
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The union of these two long intervals is contained in
∑

(A),
[

∑

a∈A′′

2

a + n(1/ε + 1),
∑

a∈A1∪A′

2

a − (n + 1)/ε
]

⊂
∑

(A).

On the other hand, 0 /∈
∑

(A) implies
∑

a∈A′′

2

a + n(1/ε + 1) > 0,
∑

a∈A1∪A′

2

a − (n + 1)/ε < p.

The proof of Lemma 4.2 is complete.

5. Sketch of the proof of Theorem 1.13. Assume that A is in-
complete and |A| = λp1/2 with some 2 ≥ λ ≥ 1.99. Furthermore, as-
sume that the element b in Theorem 2.2 is 1. We are going to view Zp

as [−(p − 1)/2, (p − 1)/2].
To simplify the writing, we set n = ⌊p1/2⌋ and

A1 := A ∩ [−n, n], A′
1 := A ∩ [0, n], A′′

1 := A ∩ [−n,−1],

A′
2 := A ∩ [n + 1, (p − 1)/2], A′′

2 := A ∩ [−(p − 1)/2,−(n + 1)],

t′1 := |A′
1|, t′′1 := |A′′

1|, t1 := |A1| = t′1 + t′′1.

Notice that |A′′| (in Theorem 2.2) is sufficiently close to the upper bound.
The following holds.

Lemma 5.1. Most of the elements of A′′ belong to [−n, n], in particular :

• both t′1 and t′′1 are larger than (1/2 + ε)n,

• t1 is larger than (21/2 + ε)n,

with some positive constant ε.

Consequently, both
∑

(A∩[−n,−1]) and
∑

(A∩[1, n]) contain long inter-
vals thanks to the lemma below, which is a direct application of Lemma 4.3
and the argument provided in Lemma 3.2.

Lemma 5.2. If X is a subset of [1, n] with size at least (1/2+ ε)n, then

[(n + 1)(1/ε + 1), (n + 1)(n/2 − t − cε)] ⊂
∑

(X)

where t = n − |X| and cε depends only on ε.

Now we can invoke Lemma 2.3 several times to deduce Theorem 1.13.
Lemma 5.2 implies

I ′ := [(n + 1)(1/ε + 1), (n + 1)(n/2 − t′1 − cε)] ⊂
∑

(A′
1),

I ′′ := [−(n + 1)(n/2 − t′′1 − cε),−(n + 1)(1/ε + 1)] ⊂
∑

(A′′
1).
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Lemma 2.3 (applied to I ′ and A′′
1, respectively I ′′ and A′

1) yields
[

∑

a′′

1
∈A′′

1

a′′1 + (n + 1)(1/ε + 1), (n + 1)(n/2 − t′1 − cε)
]

⊂ ∑

(A1),

[

−(n + 1)(n/2 − t′′1 − cε),
∑

a′

1
∈A′

1

a′1 − (n + 1)(1/ε + 1)
]

⊂ ∑

(A1),

which gives

I :=
[

∑

a′′

1
∈A′′

1

a′′1 + (n + 1)(1/ε + 1),
∑

a′

1
∈A′

1

a′1 − (n + 1)(1/ε + 1)
]

⊂ ∑

(A1).

Note that the length of I is greater than (p − 1)/2. Again, Lemma 2.3
(applied to I and A′

2, respectively I and A′′
2) implies

[

∑

a′′∈A′′

1
∪A′′

2

a′′ + (n + 1)(1/ε + 1),
∑

a′

1
∈A′

1

a′1 − (n + 1)(1/ε + 1)
]

⊂
∑

(A),

[

∑

a′′

1
∈A′′

1

a′′1 + (n + 1)(1/ε + 1),
∑

a′∈A′

1
∪A′

2

a′ − (n + 1)(1/ε + 1)
]

⊂ ∑

(A).

The union of these two intervals is in
∑

(A),
[

∑

a′′∈A′′

1
∪A′′

2

a′′ + (n + 1)(1/ε + 1),
∑

a′∈A′

1
∪A′

2

a′ − (n + 1)(1/ε + 1)
]

⊂ ∑

(A).

On the other hand,
∑

(A) 6= Zp implies
∑

a′∈A′

1
∪A′

2

a′ −
∑

a′′∈A′′

1
∪A′′

2

a′′ − 2(n + 1)(1/ε + 1) < p.

In other words,
∑

a∈A

‖a‖ ≤ p + O(p1/2).
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