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Subset sums modulo a prime
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Hor H. NGUYEN, ENDRE SZEMEREDI and VAN H. VU (Piscataway, NJ)

1. Introduction. Let G be an additive group and A be a subset of G.
We denote by > (A) the collection of subset sums of A:

E(A):{Zx‘BCA, yB\<oo}.
z€EB

The following two questions are among the most popular questions in
additive combinatorics:

QUESTION 1.1. When 0 € ) (A)?
QUESTION 1.2. When > (A) = G?

If > 7(A) does not contain the zero element, we say that A is zero-sum-
free. It Y (A) = G (D_(A) # G), then we say that A is complete (incomplete).

In this paper, we focus on the case G = Z,, the cyclic group of order p,
where p is a large prime. The asymptotic notation will be used under the
assumption that p — oo. For « € Zj, ||z|| (the norm of z) is the distance
from z to 0. (For example, the norm of p — 1 is 1.) All logarithms have
natural base and [a, b] denotes the set of integers between a and b.

1.3. A sharp bound on the mazimum cardinality of a zero-sum-free set.
How big can a zero-sum-free set be? This question was raised by Erdos and
Heilbronn [4] in 1964. In [8], Szemerédi proved the following.

THEOREM 1.4. There is a positive constant c such that if A C Z, and
|A| > cp'/?, then 0 € S (A).

A result of Olson [7] implies that one can set ¢ = 2. More than a quarter
of century later, Hamidoune and Zémor [5] showed that one can set ¢ =
V2 + o(1), which is asymptotically tight.
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THEOREM 1.5. If A C Z, and |A| > (2p)'/% + 5logp, then 0 € 3 (A).

Our first result removes the logarithmic term in Theorem 1.5, giving the
best possible bound (for all sufficiently large p). Let n(p) denote the largest
integer such that Z?:_lli <p.

THEOREM 1.6. There is a constant C such that the following holds for
all prime p > C.

o If p# n(p)(n(p)+1)/2—1, and A is a subset of 7Z, with n(p) ele-
ments, then 0 € Y (A).

o If p=n(p)(n(p)+1)/2 -1, and A is a subset of Z, with n(p) + 1
elements, then 0 € > (A). Furthermore, up to a dilation, the only
zero-sum-free set with n(p) elements is {—2,1,3,4,...,n(p)}.

To see that the bound in the first case is sharp, consider A =
{1,...,n(p) — 1}.

1.7. The structure of zero-sum-free sets with cardinality close to maxi-
mum. Theorem 1.6 does not provide information about zero-sum-free sets of
size slightly smaller than n(p). The archetypical example for a zero-sum-free
set is a set whose sum of elements (as positive integers between 1 and p—1)
is less than p. The general phenomenon we would like to support here is
that a zero-sum-free set with sufficiently large cardinality should be close to
such a set. In [1], Deshouillers showed the following.

THEOREM 1.8. Let A be a zero-sum-free subset of 7, of size at least p/2.
Then there is some non-zero element b € Z, such that

> lall <p+ 0¥ *logp)
a€bA,a<p/2

and

Y llall = 0" logp).

a€bA,a>p/2

The main issue here is the magnitude of the error term. In the same
paper, there is a construction of a zero-sum-free set with cp!/? elements
(¢ > 1) where

> lal =p+ 20", > all = Q@'
a€bA, a<p/2 a€bA,a>p/2

It is conjectured [1] that p'/? is the right order of magnitude of the error
term. Here we confirm this conjecture, assuming that | A| is sufficiently close
to the upper bound.
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THEOREM 1.9. Let A be a zero-sum-free subset of 7Z, of size at
least .99n(p). Then there is some non-zero element b € Z,, such that

> lall <p+0p7?), > llall=0@"?).
a€bA,a<p/2 a€bA,a>p/2

The constant .99 is ad hoc and can be improved. However, we do not
elaborate on this point.

1.10. Complete sets. All questions concerning zero-sum-free sets are also
natural for incomplete sets. Here is a well-known result of Olson [7].

THEOREM 1.11. Let A be a subset of Z, of more than (4p — 3)V/2 ele-
ments. Then A is complete.

Olson’s bound is essentially sharp. To see this, observe that if the sum
of the norms of the elements of A is less than p, then A is incomplete. Let
m(p) be the largest cardinality of a small set. One can easily verify that
m(p) = 2p'/? + O(1). We now want to study the structure of incomplete
sets of size close to 2p'/2. Deshouillers and Freiman [3] proved the following.

THEOREM 1.12. Let A be an incomplete subset of 7Z, of size at
least (2p)'/2. Then there is some non-zero element b € Z,, such that
> lall < p+ O@p**logp).
acbA

Similarly to the situation with Theorem 1.8, it is conjectured that the
right error term has order p'/2 (see [2] for a construction that matches this
bound from below). We establish this conjecture for sufficiently large A.

THEOREM 1.13. Let A be an incomplete subset of 7Z, of size at
least 1.99p /2. Then there is some non-zero element b € Zy, such that
> llal < p+0@"?).
a€bA

Added in proof. While this paper was written, Deshouillers informed
us that he and Prakash have obtained a result similar to Theorem 1.6.

2. Main lemmas. The main tools in our proofs are the following results
from [9].

THEOREM 2.1. Let A be a zero-free-sum subset of Z,. Then we can
partition A into two disjoint sets A" and A” where

o A’ has negligible cardinality: |A'| = O(p'/? /log? p).

e The sum of the elements of (a dilate of) A" is small: There is a

non-zero element b € Z, such that the elements of bA” belong to the
interval [1, (p — 1)/2] and their sum is less than p.
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THEOREM 2.2. Let A be an incomplete subset of Z,. Then we can par-
tition A into two disjoint sets A’ and A" where

o A’ has negligible cardinality: |A'| = O(p'/?/log? p).

e The norm sum of the elements of (a dilate of) A" is small: There
is a non-zero element b € Z, such that the sum of the norms of the
elements of bA” is less than p.

The above two theorems were proved (without being formally stated)
in [9]. A stronger version of these theorems will appear in a forthcoming
paper [6]. We also need the following simple lemmas.

LEMMA 2.3. Let T' C T be sets of integers with the following property.
There are integers a < b such that [a,b] C > (T") and the non-negative
(resp. non-positive) elements of T\T' are less than b—a (resp. greater than
a —b). Then, respectively,

[a,b+ 3 x]CZ(T)
z€T\T’,z>0
or

[a+ Z x,b} Y (D).

zeT\T’,z<0
The (almost trivial) proof is left as an exercise.

LeEMMA 2.4. Let K = {ki,...,ki} be a subset of Z,, where the k; are
positive integers and Y '_ ki < p. Then | SJ(K)| > 1(1+1)/2.

To verify this lemma, notice that the numbers
kiy... ki ki+ ki ke + koo ki + K,
ki+ki1+k,.. o ki otk 1+ kL. ki ++ Ky
are different and all belong to ) (K).

3. Proof of Theorem 1.6. Let A be a zero-free-sum subset of Z, with
size n(p). In fact, as there is no danger for misunderstanding, we will write
n instead of n(p). We start with few simple observations.

Consider the partition A = A’ U A” provided by Theorem 2.1. Without
loss of generality, we can assume that the element b equals 1. Thus A” C
[1,(p — 1)/2] and the sum of its elements is less than p. We first show
that most of the elements of A” belong to the set of the first n positive
integers [1,n].

Lemma 3.1. |[A"N[1,n]| > n— O(n/logn).
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Proof. By the definition of n and the property of A”,

Assume that A” has [ elements in [1,n] and k elements outside. Then

l k
Yoa=d i+ (n+y).
=1 j=1

aeAlI
It follows that

n l k
D> it (n+)),
i=1 i=1 j=1
which, after a routine simplification, yields

(+n+1)(n—10)>2n+kk

On the other hand, n > k +1 = |A”| > n — O(n/log?n), thus n — [ =
k+O(n/log’?n) and n + 141 < 2n — k + 1. So there is a constant ¢ such
that

(2n — k + 1)(k 4 cn/log?n) > (2n + k)k,
or equivalently
en k+1
klog?n =~ 2n—k+1
Since 2n — k 4+ 1 < 2n + 1, a routine consideration shows that k?log®n =
O(n?) and thus k = O(n/logn), completing the proof. m

The above lemma shows that most of the elements of A” (and A) belong
o [1,n]. Let Ay = AN[1,n]. It is trivial that

|A1] > |A" N [1,n]| =n — O(n/logn).
Let Ay = A\ A;. We have
t:=|[1,n]\ A1 = [As| = |A] = [A1] = O(n/logn).

Next we show that ) (A;) contains a very long interval. Set I := [2¢ + 3,
(n+1)(|n/2] —t—1)]. The length of I is (1—0(1))p; thus I almost covers Z,,.

LEMMA 3.2. T C Y (4).

Proof. We need to show that every element x in this interval can be
written as a sum of distinct elements of A;. There are two cases:

CASE 1: 2t + 3 < z < n. In this case A; contains at least z — 1 —¢ >
(x 4+ 1)/2 elements in the interval [1,z — 1]. This guarantees that there are
two distinct elements of A7 adding up to x.
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CASE 2: x = k(n+1)+rforsome 1 <k < [n/2] —t—2and 0 <r <
n+ 1. First, notice that since |A;| is very close to n (in fact it is enough to
have |A;| slightly larger than 2n/3 here), one can find three distinct elements
a,b,c € Ay such that a+b+c = n+1+r. Consider the set A} = A;\{a, b, c}.
We will represent x — (n+1+7) = (k—1)(n+1) as a sum of distinct elements
of A}. Notice that there are exactly [n/2] ways to write n + 1 as a sum of
two different positive integers. We discard a pair if (at least) one of its two
elements is not in A). Since |A}| = n —t — 3, we discard at most ¢ + 3 pairs.
So there are at least |n/2| —t — 3 different pairs (a;, b;) where a;,b; € A}
and a; +b; = n+1. Thus, (k—1)(n+1) can be written as a sum of distinct
pairs. Finally,  can be written as a sum of a, b, c with these pairs. »

Now we investigate the set A2 = A\ A;. This is the collection of elements
of A outside the interval [1,n]. Since A is zero-sum-free, 0 ¢ Ag + I thanks
to Lemma 3.2. It follows that

Ay C Zp\([l,n] @] (—I) U {0}) C J1 U Jo,

where Jy 1= [-2t—2,—1] and J3 := [n+1,p—(n+1)(|n/2| —t)] = [n+1, q].
We set B := As N J; and C := Ay N Js.

LEmMMA 3.3. Y (B) C Ji.

Proof. Assume otherwise. Then there is a subset B’ of B such that
Y oacp @ < —2t — 3 (here the elements of B are viewed as negative inte-
gers between —1 and —2t — 3). Among such B’, take one where ) _p/ a has
the smallest absolute value. For this B’, —4t — 4 < ZaGB’ a<—-2t—3.0On
the other hand, by Lemma 3.2, the interval [2¢+ 3, 4¢+44] belongs to > (A1).
This implies that 0 € > (A1) + > (B’) C > (A), a contradiction. m

Lemma 3.3 implies that Y _p|a| < 2t + 2, which yields

a€EB
(1) Bl < 2(t+1)"/2

Set s := |C|. We have s >t — 2(t 4+ 1)1/2. Let ¢; < --- < ¢, be the elements
of C'and g1 < --- < g+ be the elements of [1,n] \ A;.

By the definition of n, 3.7 4 > p > Y27 'i. Thus, there is a (unique)
h € [1,n] such that

(2) p=1+-+(h-1)+(h+1)+--+n

A quantity which plays an important role in what follows is

s t
d:= Zci — Zgj.
i=1 j=1
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Notice that if we replace the g; by the ¢; in (2), we represent p+d as a sum
of distinct elements of A,

(3) p+d= Z a.
a€X,XCA

The leading idea now is to try to cancel d by throwing a few elements from
the right hand side or adding a few negative elements (of A) or both. If this
were always possible, then we would have a representation of p as a sum
of distinct elements in A (in other words 0 € ) (A)), a contradiction. To
conclude the proof of Theorem 1.6, we are going to show that the only case
when it is not possible is when p = n(n+1)/2—1and A = {-2,1,3,4,...,n}.
We consider two cases:

CASE 1: h € A;. Set A] = A1\ {h} and apply Lemma 3.2 to A}; we con-
clude that ) (A)) contains the interval I'=[2(¢t +1) +3, (n+1)(|n/2]| —t —2)].

LEMMA 3.4. d <2(t+1)+ 3.

Proof. Assume d > 2(t + 1) + 3. Notice that the largest element in Jo
(and thus in C) is less than the length of I’. So by removing the ¢; one by

8/

one from d, one can obtain a sum d' = )7 ;¢ — Z§:1 gj which belongs
to I’, for some s’ < s. This implies

s
ZOL Zg;—l—Za
=1

aeX
for some subset X of A}. Since h gé A, the right hand side is a subsum of
the right hand side of (2). Let Y be the collection of the missing elements
(from the right hand side of (2)). Then Y C Ay and 5 ¢; + Y0y a = p.
On the other hand, the left hand side belongs to > (A1) + > (A2) C > (A).
It follows that 0 € > (A), a contradiction. m

Now we take a close look at the inequality d < 2(¢ + 1) + 3. First, ob-
serve that since A is zero-sum-free, — > (B) C {g1,...,9:}. By Lemma 3.3,
Y eenplal <2t +2 < p. As B has t — s elements, by Lemma 2.4, ) (B)
has at least (t — s)(t — s+ 1)/2 elements, thus {g1,...,g:} contains at least
(t —s)(t —s+1)/2 elements in [1,2¢ + 2]. It follows that

t—(t—s)(t—s+1)/2—1
Zgl_ 2+ 2)(t—s)(t—s+1)/2+ > (n—j).
j=0

On the other hand, as all elements of C' are larger than n,

S S
docz) (n+i).
i=1 =1
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It follows that d is at least

s t—(t—s)(t—s+1)/2—1
dn+i)—2t+2)(t—s)(t—s+1)/2— > (n —j).
i=1 Jj=0

Ift—s>2thens>t— (t—s)(t—s+1)/2, so we have
d>n(s—(t—(t—s)(t—s+1)/2))— (2t +2)(t —s)(t —s+1)/2.
This yields
d>({t—s)(t—s—1)(n—3(2t+2))/2.

So the last formula has order £2(n) > ¢, thus d > 2(¢t+1)+3, a contradiction.
Therefore, t — s is either 0 or 1.

Ift—s=0,thend= Zle ¢ — 22:1 g; > t2. This is larger than 2t + 5
if t > 4. Thus, we have t = 0,1, 2, 3.

e t =0. In this case A =[1,n] and 0 € > (A).

e t =1. In this case A = [1,n]\{g1} Ueci. If ¢; — g1 # h, then we could
substitute ¢; for g1 + (¢1 — g1) in (2) and have 0 € > (A). This means
that h = ¢; — g1. Furthermore, h < 2t + 5 = 7 so both ¢; and ¢; are
close to n. If h > 3,

h—1 n h—2
p=Yir Y i=Yir Y jta
i=1 j=h+1 i=2 h+1<j<n, j#qn
Similarly, if A =1 or 2 then

h
p= Zz + Z J+er.
i=1 h+2<j<n, j#q
et >1 Sinced < 2t+5, g1,...,g¢ are all larger than n — 2t — 4. As
p is sufficiently large, we can assume n > 4t 4+ 10, which implies that
[1,2t + 5] C Aj. If h # 1, then it is easy to see that [3,2t + 5] C
S(A;\ {h}). As t > 1, d > t* > 4 and can be represented as a
sum of elements in A; \ {h}. Omitting these elements from (3), we
obtain a representation of p as a sum of elements of A. The only case
left is h = 1 and d = 4. But d can equal 4 if and only if ¢t = 2,
ci=n+1,co=n+2,9g1 =n—1, g3 = n. In this case, we have
n+2

n
p=) i=2+3+) i
=2 1=5

Now we turn to the case t —s = 1. In this case B has exactly one element
in the interval [~2t — 2, —1] (modulo p) and d is at least s — (2t + 2) =
(t —1)% — (2t +2). Since d < 2t + 5, we conclude that ¢ is at most 6. Let —b
be the element in B (where b is a positive integer). We have b < 2t+2 < 14.
Aj misses exactly ¢t elements from [1,n]; one of them is b and all other are
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close to n (at least n — (2t 4+ 4)). Using this information, we can reduce the
bound on b further. Notice that the whole interval [1,b — 1] belongs to A;.
So if b > 3, then there are two elements x, y of A; such that x+y = b. Then
z 4y + (=b) = 0, meaning 0 € > (A). It thus remains to consider b = 1
or 2. Now we consider a few cases depending on the value of d. Notice that
d> s> —0b> —2. In fact, if s > 2 then d > 2. Furthermore, if s = 0, then
t=1and d=—g; = —b.

e d > 5. Since A; misses at most one element in [1,d]| (the possible
missing element is b), there are two elements of A; adding up to d.
Omitting these elements from (3), we obtain a representation of p as
a sum of distinct elements of A.

ed=41Ifb=1 writep =} cx sma+ (=b). If b =2, then p =
> aexX,az1,3 0 (Here and later X is the set in (3).)

e d=3. Write p=73_ cx ,z3 pa+ (=)

ed=2 Ifb=1thenp=3 x spna lfb=2thenp=3" yva+(-2).

ed=1 Ifb=1thenp=>3 yva+(-1).1fb=2thenp=>3_ v, a

e d = 0. In this case (3) already provides a representation of p.

e d = —1. Inthiscase s < 2. But since h # b, s cannot be 0. If s = 1 then
b=2and ¢c; =n+1, g1 =n. By (2), we have p = Z?:_lli—l-Z?:th

and so
p+(h—1)= > i
1<i<n+1,i¢{2n}
where the right hand side consists of elements of A only. If h —1 € A
then we simply omit it from the sum. If h—1 ¢ A, then h—1 = 2 and
h = 3. In this case, we can write

p= > i+ (—2).
1<i<n+1,i¢{2,n}

e d = —2. This could only occur if s = 0 and b = 2. In this case
A={-21,3,....,n}.If h=1,thenp=>",=n(n+1)/2—1 and
we end up with the only exceptional set. If A > 3, then p+ (h — 2) =
2199%#2 i. If h # 4, then we can omit h — 2 from the right hand
side to obtain a representation of p. If h = 4, then we can write

p= > it+(-2).
1<i<n,i#2

CASE 2: h ¢ A. In this case we can consider A; instead of A}. The

consideration is similar and actually simpler. Since h ¢ A, we only need to
consider d := Y7, ¢; — Zlgjgt,gﬁ&h gj. Furthermore, as h ¢ A, if s = 0 we
should have h = b and this forbids us to have any exceptional structure in
the case d = —2. The details are left as an exercise.
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4. Proof of Theorem 1.9. We follow the same terminology used in the
previous section. Assume that A is zero-sum-free and |A| = An = \(2p)!/?
with some 1 > A > .99. Furthermore, assume that the element b in Theo-
rem 2.1 is 1. We will use the notation of the previous proof. Let the core of
A be the collection of a € A such that n +1 —a € A. Theorem 1.9 follows
directly from the following two lemmas.

LEMMA 4.1. The core of A has size at least .6n.

LEMMA 4.2. Let A be a zero-sum-free set whose core has size at least
(1/2 4+ e)n (for some positive constant €). Then

S a<piomrn, Y lal</e+1n

a€A,a<p/2 a€A,a>p/2

Proof of Lemma 4.1. Following the proof of Lemma 3.1, with | =
|A" N [1,n]| and k = |A" \ [1,n]|, we have

(l+n+1)(n—1)>2n+k)k.

On the other hand, n > k +1 = |A"| = |A] — O(n/log?n), thus n — | =
k+n—|A|4+0(n/log?n) = (1-A+o(1))n+k and n+1 < (1+A\)n—k. Putting
all these together with the fact that A is quite close to 1, we can conclude that
k < .1n. It follows (rather generously) that | = An —k — O(n/log?n) > .8n.
The above shows that most of the elements of A belong to [1,n], as

|A1| = |[AN[1,n]| > |A"N[L,n]| > .8n.

Split A; into two sets, A} and A} := A;\ A}, where A contains all elements
a of Ay such that n + 1 — a also belongs to A;. Recall that A; has at least
|n/2| —t pairs (a;,b;) satisfying a; + b; = n + 1. This guarantees that
|A1] > 2(|n/2] —t) > .6n. On the other hand, A} is a subset of the core
of A. The proof is complete. m

Proof of Lemma 4.2. Abusing the notation slightly, we use A} to denote
the core of A. We have |A]| > (1/2 + ¢)n.

LEMMA 4.3. Any l € [n(1/e+1),n(1/e+1)+n] can be written as a sum
of 2(1/e + 1) distinct elements of Al.

Proof. First notice that for any m € I, = [(1—¢)n, (1+¢)n], the number
of pairs (a,b) € AP satisfying a < b and a+b = m is at least en/2. Next, ob-
serve that any k € [0, n] is a sum of 1/e+1 integers (not necessarily distinct)
from [0, en]. Consider [ from [n(1/e + 1),n(1/e + 1) + n]; we can represent
I—=n(1/e+1) asasum a+---+aj /41 where 0 < ay,...,a1/.41 < en. Thus
[ can be written as a sum of 1/¢+1 elements (not necessarily distinct) of I,
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asl = (n+ai)+- -+ (n+ay41). Now we represent each summand in the
above representation of [ by two elements of A}. By the first observation,
the numbers of pairs are much larger than the number of summands, hence
we can arrange so that all elements of pairs are different. m

Recall that A} consists of pairs (a},b;) where a} + b, =n+ 1, so

(R

> d = (n+1)A7]/2.

a'€ A}
LEMMA 4.4. T':=[n(1/e + 1), X wea, a —(n+1)/e] C > (A).

Proof. Lemma 4.3 implies that for each z € [n(1/e +1),n(1/e + 1) + n]

there exist distinct elements af, . . . € Al such that z = Zigl/ e+l) al.

7a/2(1/5+1)
We discard all @] and (n + 1) — @) from A). Thus there remain exactly
|A}]/2 — 2(1/e + 1) different pairs (af,b]) where a + b = n + 1. The
sums of these pairs represent all numbers of the form k(n + 1) for any
0 < k < JA}|/2 — 2(1/e + 1). We have thus obtained a representation
of x + k(n + 1) as a sum of different elements of A}, in other words,
z+k(n+1) € Y(A]). As x varies in [n(1/e + 1),n(1/e + 1) + n| and
k varies in [0, |A}]/2 — 2(1/e + 1)], the proof is completed. m

Let Ay = A\ A; and set A} := AN [0, (p—1)/2] and Af = Az \ A). We
are going to view AJ as a subset of [—(p —1)/2,—1].

We will now invoke Lemma 2.3 several times to deduce Lemma 4.2.
First, it is trivial that the length of I’ is much larger than n, whilst ele-

ments of A1 are positive integers bounded by n. Thus, Lemma 2.3 implies
that

— [n(1/g+ 1,) a-(n+ 1)/8] C > (A1)

a€A;

Note that the length of I” is greater than (p — 1)/2. Indeed, n ~ (2p)'/?
and

|I"| = Za— (n+1)/e —n(l/e+1)> Za—

a€A; acAl
> (1/2+¢e)n(n+1)/2—=0(n) > (p—1)/2.
Again, Lemma 2.3 (applied to I") yields
(n(/z+1), > a-(n+1)/e] © (AU 4p),

aEAlLJA/Q

[ Soatn(t/e+1),Y a- (n—i—l)/a] C (AU AY).

aEAg acAq
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The union of these two long intervals is contained in ) (A),
[ S atn/fe+1), S a-(n+ 1)/5} c T(A).
ac Ay a€A1UA)
On the other hand, 0 ¢ > (A) implies
Y a+n(l/e+1)>0, Y a—(n+1)/e<p.
acAj a€A1UA)

The proof of Lemma 4.2 is complete. =

5. Sketch of the proof of Theorem 1.13. Assume that A is in-
complete and |A] = Ap'/? with some 2 > A > 1.99. Furthermore, as-
sume that the element b in Theorem 2.2 is 1. We are going to view Z,

as [-(p—1)/2,(p—1)/2].
To simplify the writing, we set n = |p'/?] and

Ay = AN[—n,n], 1 :=AnN[0,n], T:=An[-n,-1],
p=ANh+1(p-1)/2], A3:=An[-(p—1)/2,-(n+1)],
th= 1AL, =AY, t = A =t ]

Notice that |A”| (in Theorem 2.2) is sufficiently close to the upper bound.
The following holds.

LEMMA 5.1. Most of the elements of A” belong to [—n,n], in particular:

e both t| and t are larger than (1/2 + €)n,
e t1 is larger than (2'/2 + ¢)n,

with some positive constant €.

Consequently, both Y (AN[—n, —1]) and Y (AN[1,n]) contain long inter-
vals thanks to the lemma below, which is a direct application of Lemma 4.3
and the argument provided in Lemma 3.2.

LEMMA 5.2. If X is a subset of [1,n] with size at least (1/2+¢)n, then
[(n+1)(1/e+1),(n+1)(n/2 =t —c.)] € 3(X)
where t =n — | X| and c. depends only on €.

Now we can invoke Lemma 2.3 several times to deduce Theorem 1.13.
Lemma 5.2 implies

I'i=[(n+D(1/e+ 1), (n+1)(n/2 = 11 — )] € 32(AY),
I":=[~(n+1)(n/2 —t] —c.), —(n+1)(1/e + 1)] € S(A7).
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Lemma 2.3 (applied to I" and AY, respectively I” and A)) yields

| > al DA/ 1), (n+ 1) (n/2 — 6 — )] € S(Aw),
areAy
[~ D/t =), Y = (n+ 1)(1/e+1)] € (A,
al €A}
which gives
1;:[ S a4t )(t/e+1), Y ag—(n+1)(1/5+1)} C S(Ay).
afeAY aj€A)
Note that the length of I is greater than (p — 1)/2. Again, Lemma 2.3
(applied to I and A}, respectively I and A%) implies

Yo d (/1) Y a’l—(n+1)(1/6+1)] c T(4),

a”’ € A{UAY a1 €A]
[ S ot )(1/et+1), Y a’—(n+1)(1/5+1)] C (A,
afeAY a’ € AJUA,

The union of these two intervals is in ) (A),

Yo d (1), > a'_(n+1)(1/5+1)}cz(A).

a" € AVUAY @’ €AJUAY
On the other hand, ) (A) # Z, implies

Z a — Z a’"=2(n+1)(1/e +1) < p.

a’€AJUA) a”’ € AYUAY
In other words,

> llall < p+O@').

acA
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