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1. INTRODUCTION

Let ω(n) denote the number of distinct prime factors of a positive inte-
ger n. A natural question to consider is how the function ω(n) behaves as
n varies. In 1917, Hardy and Ramanujan [HaRa] answered this by showing
that ω(n) has normal order log log n, meaning that for every ε > 0,

(1) #{n ≤ x : |ω(n) − log log n| > ε log log n} = o(x)

as x → ∞. A simpler proof of this result was given by Turán in 1934 [Tu],
who showed that

(2)
∑

n≤x

(ω(n) − log log n)2 ≪ x log log x.

A precise asymptotic formula for the second moment of ω(n) was obtained
by Saidak [Sa]:

∑

n≤x

(ω(n) − log log n)2 = x log log x + cx + O

(
x log log x

log x

)
.

In 1940, thanks to the development of probabilistic ideas, Erdős and Kac
[ErKa] obtained a remarkable refinement of (1) by showing that

ω(n) − log log n√
log log n

is distributed normally, that is, for every α < β,
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(3) #

{
n ≤ x : α ≤ ω(n) − log log n√

log log n
≤ β

}
∼ Φ(α, β)x,

where

Φ(α, β) :=
1√
2π

β\
α

e−t2/2 dt.

In the 1950s and 1960s, further generalizations of (3) were developed by
Kubilius and Shapiro to the wider class of strongly additive functions, lead-
ing to what is now known as probabilistic number theory (see [El] and the
references therein).

For example, a simple variation of the problem of studying ω(n) is that
of studying ω(p − 1), where p denotes a rational prime. Erdős [Er] proved
that

(4)
∑

p≤x

(ω(p − 1) − log log x)2 ≪ π(x) log log x,

where π(x) denotes the number of rational primes up to x. As with Turán’s
result, (4) implies that the normal order of ω(p − 1) is log log p. In 1955,
Halberstam [Hal] considered a prime analogue of (3); namely, he showed
that for every α < β,

(5) #

{
p ≤ x : α ≤ ω(p − 1) − log log p√

log log p
≤ β

}
∼ Φ(α, β)π(x).

In the early 1980s, K. Murty and R. Murty [MuMu] explored higher-
dimensional analogues of the results of Erdős and Halberstam by replacing
the sequence (p − 1)p≤x with the sequence (ap)p≤x of Fourier coefficients of
eigenforms. More recently, A. Miri and K. Murty [MiMu] and the author [Co]
explored analogues of (4) for the sequence (p+1−ap)p≤x arising by looking
at the reductions modulo p of an elliptic curve over Q. All these variations
may be viewed as non-abelian generalizations of the Erdős and Halberstam
theorems, since their proofs involve the use of certain non-abelian extensions
of Q, containing cyclotomic fields, while the proofs of (4) and (5) involve
the use of cyclotomic fields (which are abelian extensions of Q).

The purpose of this paper is to explore higher-dimensional analogues of
the Erdős and Halberstam theorems in the context of function fields. This
was already started by Liu [Li2], who studied the behaviour of

ω(f) := #{L ∈ Fq[T ] : L monic, irreducible, L | f}
for polynomials f ∈ Fq[T ], where q denotes an odd prime power and Fq

denotes the finite field with q elements. More precisely, she showed that

(6)
∑

P∈Fq [T ]
deg P≤n

(ω(P − f) − log n)2 ≪ π(n) log n
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and, for every α < β,

(7) #

{
P ∈ Fq[T ] : deg P ≤ n, α ≤ ω(P − f) − log deg P√

log deg P
≤ β

}

∼ Φ(α, β)π(n)

as n → ∞, where P ∈ Fq[T ] denotes monic, irreducible polynomials of
degree deg P , f ∈ Fq[T ] is fixed, and

π(n) := #{P ∈ Fq[T ] : deg P ≤ n}.
As in the rational case, it is of interest to explore if analogues of (6)

and (7) hold in higher dimensions. As such, one needs to understand what
“higher dimensions” might mean. We propose to answer this by looking at
analogues of the results of [MuMu], [MiMu] and [Co] for Drinfeld modules,
as explained in what follows.

Let A := Fq[T ] and F := Fq(T ). This is a particular case of F being a
function field over Fq and A being the ring of fractions regular away from
a fixed place of F , denoted ∞, and called the place at infinity. This place
corresponds to the valuation v∞(f) = −deg f on F , and so |f|∞ = qdeg f for
0 6= f ∈ F and |0|∞ = 0. Our main results are:

Theorem 1. Let φ be a Drinfeld A-module over F , of rank r ≥ 1.
Assume that φ has trivial endomorphism ring. For a prime P ∈ A of good

reduction for φ, let PP,φ(X) ∈ A[X] be the characteristic polynomial of the

Frobenius automorphism at P and let aP (φ) be the trace of the Frobenius

automorphism at P (see Section 2 for more explanations). If r ≥ 3, assume

the validity of the Mumford–Tate conjecture for φ (again, see Section 2).
Then:

(i)
∑

P∈A
deg P≤n

(ω(PP,φ(1)) − log n)2 ≪φ π(n) log n,

(ii)
∑

P∈A
deg P≤n

(ω(aP (φ)) − log n)2 ≪φ π(n) log n,

as n → ∞. The implied ≪φ-constants depend on φ.

Corollary 2. We keep the setting and assumptions of Theorem 1. Let

(gn)n be a sequence of real numbers with limn→∞ gn = ∞. Then

#

{
P ∈ A : deg P ≤ n,

∣∣∣∣
ω(PP,φ(1)) − log deg P√

log deg P

∣∣∣∣ > gn

}
= o(π(n)),

#

{
P ∈ A : deg P ≤ n,

∣∣∣∣
ω(aP (φ)) − log deg P√

log deg P

∣∣∣∣ > gn

}
= o(π(n)).
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In particular , for any ε > 0 we have

#{P ∈ A : deg P ≤ n, |ω(PP,φ(1)) − log deg P | > ε log deg P} = o(π(n)),

#{P ∈ A : deg P ≤ n, |ω(aP (φ)) − log deg P | > ε log deg P} = o(π(n)).

Thus the sequences ω(PP,φ(1)) and ω(aP (φ)) have normal order log deg P .

Theorem 3. We keep the setting and assumptions of Theorem 1. Then

for every α < β we have

#

{
P ∈ A : deg P ≤ n, α ≤ ω(PP,φ(1)) − log deg P√

log deg P
≤ β

}
∼ Φ(α, β)π(n),

#

{
P ∈ A : deg P ≤ n, α ≤ ω(aP (φ)) − log deg P√

log deg P
≤ β

}
∼ Φ(α, β)π(n),

as n → ∞.

2. DRINFELD MODULES

2.1. Generalities. In this section we shall record basic facts about
Drinfeld modules needed in our proofs. For proofs or more results on Drinfeld
modules, the reader is referred to [Dr1], [Dr2], [Ge1], [Ge2], [Go], or [Hay].
We keep the notation A, F introduced in Section 1, and we let F and F sep

denote an algebraic closure and a separable closure of F . Also, we let τ : x 7→
xq denote the qth power Frobenius automorphism, and F{τ} the twisted
polynomial ring in τ , where the multiplication law is αqτ = τα for every
α ∈ F .

We recall that a Drinfeld A-module over F, of rank r, is a ring homo-
morphism

φ : A → F{τ}, a 7→ φa :=

r deg a∑

i=0

aiτ
i,

such that a0 = a. Clearly, φ is completely determined by

φT = T + c1(φ)τ + · · · + cr−1(φ)τ r−1 + ∆(φ)τ r ∈ F{τ},
where ∆(φ) is called the discriminant of φ.

Drinfeld modules may be viewed as function field analogues of elliptic
curves. This analogy is not visible from the above definition, but from the
(equivalent) definition based on the complex theory of F . Even without
much digression in that direction, we can still see the similarity with elliptic
curves by looking at the Galois representations associated to φ, as follows.

For each prime L ∈ A and positive integer n, let

φ[Ln] := {λ ∈ F : φLn(λ) = 0}
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be the Ln-torsion points of φ. It is known that φ[Ln] ≃ (A/LnA)r, and that
Gal(F sep/F ) acts continuously on φ[Ln], giving rise to a Galois representa-
tion

̺Ln : Gal(F sep/F ) → AutA/LnA φ [Ln] ≃ GLr(A/LnA).

Moreover, by taking

φ[L∞] := lim−→n φ [Ln]

and

TL(φ) := HomAL
(FL/AL, φ[L∞]) ≃ Ar

L,

where AL and FL are the L-completions of A and F , we obtain the L-adic
Galois representation

̺L∞ : Gal(F sep/F ) → Aut(TL(φ)) ≃ GLr(AL).

Also, if L1, . . . ,Lu ∈ A are distinct primes, we can talk about the L1 . . .Lu-
torsion points of φ,

φ[L1 . . .Lu] := {λ ∈ F : φL1...Lu
(λ) = 0},

and the associated Galois representation

̺L1...Lu
: Gal(F sep/F ) → AutA/L1...LuA φ[L1 . . .Lu] ≃ GLr(A/L1 . . .LuA).

From results of Drinfeld and Gekeler we know that the (̺L∞)L form a
strictly compatible system of representations in the sense that for all primes
P ∤ ∆(φ)L of A, ̺L∞ is unramified at P and the characteristic polynomial
at P ,

PP,φ(X) := det(X − ̺L∞(FrobP )) ∈ FL[X],

of the Artin symbol FrobP at P does not depend on L and has coefficients
in A. Thus we can write

(8) PP,φ(X) = Xr − aP (φ)Xr−1 + a2X
r−2 + · · · + ar−1X + µP P ∈ A[X]

for some µP ∈ F∗
q .

If we let πP (φ) be one of the roots of PP,φ(X) in F , we also know that

|πP (φ)|∞ = |P |1/r
∞ .

Therefore

|aP (φ)|∞ ≤ |P |1/r
∞ ,

a result which reminds us of Hasse’s bound for elliptic curves.
As in the case of elliptic curves, there is a notion of isogenies between

Drinfeld modules, thus we can talk about the endomorphism ring EndF (φ)
of φ. If the rank r of φ is 1, then EndF (φ) ≃ A. If r = 2, then EndF (φ) is
isomorphic either to A or to an order in an imaginary quadratic extension
of F . If r ≥ 3, then EndF (φ) may be isomorphic to A or several other rings;
in general, it is a projective A-module of rank ≤ r2. In this paper we shall
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consider only the case when EndF (φ) ≃ A, and relegate the other cases to
future research.

2.2. Connection with the Erdős and Halberstam theorems. Be-
fore moving on, let us recall that our ultimate goal in this paper is to study
higher-dimensional versions of the Erdős and Halberstam theorems in the
context of function fields. A first simple observation which we can make is
that if φ has rank 1, then the study of ω(PP,φ(1)), as P ∈ A varies over
primes, provides us with the first instance of (4) and (5) for function fields,
and is nothing else but what was obtained in [Li2]. Indeed, when r = 1,

PP,φ(X) = X + µP P ∈ A[X],

and so

ω(PP,φ(1)) = ω(1 + µP P ).

This coincidence is not at all surprising, since Drinfeld modules of rank 1
(introduced by Carlitz in 1938) lead to the function field analogue of cyclo-
tomic fields, and the latter are precisely the fields playing the key role in
the proofs of (4) and (5).

A second observation which we can make concerns the case when r ≥ 2.
If r = 2, say, then the primes L |PP,φ(1) enumerated by ω(PP,φ(1)) are the
ones for which

L |πP (φ) − 1 or L |πP (φ) − 1 in F (πP (φ)),

where πP (φ) denotes the conjugate of πP (φ) in F sep. In other words, we are
concerned with primes L enumerated by ω(πP (φ) − 1) or ω(πP (φ) − 1) in
F (πP (φ)). Since πP (φ) and πP (φ) are primes in F (πP (φ)), we see that the
study of ω(PP,φ(1)) is indeed a natural generalization of that of ω(P − 1).

The study of the sequence ω(aP (φ)) does not generalize that of ω(P −1);
however, it is the direct analogue of the study made in [MuMu], hence worth
considering.

2.3. Division fields of Drinfeld modules. With these observations
in mind, we may now move on and discuss the objects which will play a
fundamental role in the proofs of our main results; these are the division
fields of a Drinfeld module, defined as follows. For a prime L ∈ A, we define
the L-division field of a Drinfeld module φ as the field obtained by adjoining
to F the L-torsion points of φ:

F [L] := F (φ[L]).

It is a finite Galois extension of F such that Ker ̺L = Gal(Q/F [L]). Thus
we have an injective representation

̺L : Gal(F [L]/F ) → GLr(A/LA),
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and so

[F [L] : F ] ≤ |GLr(A/LA)| =
r−1∏

i=0

(ℓr − ℓi) ≪ ℓr2

,

where ℓ := |L|∞.
If φ has rank 1, then the above map is, in fact, an isomorphism. Fur-

thermore, thanks to important work of Gardeyn and Pink, this also holds
if φ has rank 2 and trivial endomorphism ring, for all but finitely many
primes L. In the case of higher rank, such a statement is conjectured to be
true, though it has not yet been proven, and is part of the Mumford–Tate
conjecture for Drinfeld modules. We record all these statements below:

Theorem 4.

(i) (Carlitz). Let φ be a rank 1 Drinfeld A-module over F . Then

Gal(F [L]/F ) ≃ (A/LA)∗

for all primes L ∈ A.

(ii) (Gardeyn and Pink). Let φ be a rank 2 Drinfeld A-module over F ,

with EndF (φ) ≃ A. Let Â be the ring of adeles of A. Then the action

of Gal(F sep/F ) on the set of all torsion points of φ has open image

in GL2(Â). In particular ,

Gal(F [L]/F ) ≃ GL2(A/LA)

for all but finitely many primes L ∈ A.

Proof. For (i), see [Ro, p. 206]. (ii) is a consequence of the results in [Ga1]
and [Pi] (see [CoDa, Thm. 11], for example, for more precise references).

Conjecture 5 (The Mumford–Tate conjecture for Drinfeld modules).
Let φ be a rank r Drinfeld A-module over F , with EndF (φ) ≃ A. As

above, let Â be the ring of adeles of A. Then the action of the Galois group

Gal(F sep/F ) on the set of all torsion points of φ has open image in GLr(Â).
In particular ,

Gal(F [L]/F ) ≃ GLr(A/LA)

for all but finitely many primes L ∈ A.

Important results towards this general conjecture were obtained by Pink
[Pi], however the conjecture is still open at the moment. We record Pink’s
main result below:

Theorem 6 (Pink [Pi, Thm. 0.1]). Let φ be a rank r Drinfeld A-module

over F , with EndF (φ) ≃ A. Then for any finite set Λ of primes L 6= ∞
of A, the image of the representation

(̺L∞)L∈Λ : Gal(F sep/F ) →
∏

L∈Λ

GLr(AL)

is open.
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The division fields of φ have the following additional properties:

Proposition 7. Let φ be a rank r Drinfeld A-module over F . Let L,L1,
. . . ,Lu denote mutually distinct primes in A. Let K, Ku be the algebraic clo-

sures of Fq in F [L] and F [L1 . . .Lu], respectively , and let NL := [KF : F ]
and NL1...Lu

:= [KuF : F ]. Let gL and D(F [L]/F) be the genus of F [L] and

the different of the extension F [L]/F , respectively. Similarly, let gL1...Lu

and D(F [L1 . . .Lu]/F ) be the genus of F [L1 . . .Lu] and the different of

F [L1 . . .Lu]/F , respectively.

(i) Assume that EndF (φ) ≃ A. Then, for all but finitely many primes

L,L1, . . . ,Lu ∈ A, F [L] and F [L1 . . .Lu] are geometric extensions

of F , i.e. NL = NL1...Lu
= 1.

(ii) We have

gL ≪φ r|GLr(A/LA)| degL ≪φ rℓr2

degL
and

gL1...Lu
≪φ r|GLr(A/L1 . . .LuA)| deg(L1 . . .Lu)

≪φ rℓr2

1 . . . ℓr2

u deg(L1 . . .Lu),

where ℓ := |L|∞, ℓ1 := |L1|∞, . . . , ℓu := |Lu|∞. The implied ≪φ-con-

stants depend on φ.

Proof. From Theorem 6 it follows that the fields F [L] are disjoint. Now
we recall from [Da, Lem. 3.2, p. 335] that the degree of the algebraic closure
of Fq in the extension of F obtained by adding all the torsion points of φ is
finite. The assertion of (i) now follows. For (ii), see [Ga2, p. 246].

3. THE PRIME NUMBER THEOREM

AND THE CHEBOTAREV DENSITY THEOREM

Of interest to us are applications of the prime number theorem and the
Chebotarev density theorem (over function fields) to the division fields of a
Drinfeld module. We recall these results below.

Theorem 8. Let A := Fq[T ], as before. Let n be a positive integer and

let π(n) be the number of primes L ∈ A with degL = n. Then

π(n) =
qn

n
+ O

(
qn/2

n

)
.

For a proof, see [Ro, Thm. 2.2, p. 14].

Theorem 9. Let F := Fq(T ), as before, and let F ⊆ E be a finite Galois

extension, of genus gE and Galois group G. Let K be an algebraic closure of

Fq in E, and let NE := [KF : F ]. Let τ : x 7→ xq be the qth power Frobenius

automorphism. For an unramified prime P in E/F , let FrobP be the Artin



The Erdős and Halberstam theorems 325

symbol in E/F . Let C ⊆ G be a union of conjugacy classes in G, and for a

positive integer n, let

Sn(E/F, C) := {P : deg P = n, FrobP ⊆ C}.
Let aC be a positive integer such that

ResK σ = ResK τaC ∀σ ∈ C.

(i) If n 6≡ aC (mod NE), then Sn(E/F, C) = ∅.
(ii) If n ≡ aC (mod NE), then

|Sn(E/F, C)| = NE
|C|
|G| ·

qn

n
+ O

(
|C|qn/2 + NE

|C|
|G| ·

qn/2

n
gE

)
,

where the implied O-constant is absolute.

For a proof, see [FrJa, Prop. 5.16].

An immediate consequence of this theorem, combined with Proposi-
tion 7, is:

Corollary 10. Let A, F be as in Section 1. Let φ be a rank r Drinfeld

A-module over F . Assume that EndF (φ) ≃ A. Let L,L1, . . . ,Lu ∈ A be

mutually distinct primes and let k be a positive integer. Let C, Cu be unions

of conjugacy classes in Gal(F [L]/F ) and Gal(F [L1 . . .Lu]/F ), respectively.

Then

|Sn(F [L]/F, C)| =
|C|

[F [L] : F ]
· qn

n
+ Oφ

(
|C|qn/2 + |C| qn/2

n
r degL

)

and

|Sn(F [L1 . . .Lu]/F, Cu)| =
|Cu|

[F [L1 . . .Lu] : F ]
· qn

n

+ Oφ

(
|Cu|qn/2 + |Cu|

qn/2

n
r(degL1 . . .Lu)

)
,

where the implied Oφ-constants depend on φ.

4. PROOF OF THEOREM 1

The proof of Theorem 1 is based on a very simple method due to Paul
Turán, which we follow closely.

We first make the observation that for any 0 < δ < 1 and any f ∈ A of
degree n, we have

(9) ω(f) = ωδ(f) + O

(
1

δ

)
,
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where

ωδ(f) :=
∑

L|f
degL≤δn

1.

Here and throughout the paper, L denotes a prime in A, that is, a monic
irreducible polynomial.

Using (9) and the prime number theorem (Thm. 8), we see that

∑

deg P=n

ω(PP,φ(1)) =
∑

deg P=n

ωδ(PP,φ(1)) + O

(
qn

n

)
(10)

and

(11)
∑

deg P=n

ω2(PP,φ(1))

=
∑

deg P=n

ω2
δ (PP,φ(1)) + O

(
1

δ

∑

deg P=n

ωδ(PP,φ(1))

)
+ O

(
qn

n

)
.

Similarly,

∑

deg P=n

′
ω(aP (φ)) =

∑

deg P=n

′
ωδ(aP (φ)) + O

(
qn

n

)
(12)

and

(13)
∑

deg P=n

′
ω2(aP (φ))

=
∑

deg P=n

′
ω2

δ (aP (φ)) + O

(
1

δ

∑

deg P=n

′
ωδ(aP (φ))

)
+ O

(
qn

n

)
,

where
∑′ means that we are summing over primes P ∈ A with aP (φ) 6= 0.

Let us introduce the notation:

Πchar
φ (n,L) := #{P ∈ A : deg P = n, P ∤ ∆(φ), L |PP,φ(1)},(14)

Πchar
φ (n,L1L2) := #{P ∈ A : deg P = n, P ∤ ∆(φ), L1L2 |PP,φ(1)},(15)

Πtr
φ (n,L) := #{P ∈ A : deg P = n, aP (φ) 6= 0,(16)

P ∤ ∆(φ), L | aP (φ)},
Πtr

φ (n,L1L2) := #{P ∈ A : deg P = n, aP (φ) 6= 0,(17)

P ∤ ∆(φ), L1L2 | aP (φ)}.
We note that the primes P enumerated above are distinct from the primes
L,L1,L2, since deg P = n and degL, degL1, degL2 ≤ δn with δ < 1. This
observation will be necessary later.
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By writing ωδ(·) as a sum and interchanging summations, the identities
(10)–(13) become:

∑

deg P=n

ω(PP,φ(1)) =
∑

degL≤δn

Πchar
φ (n,L) + O

(
qn

n

)
,(18)

∑

deg P=n

ω2(PP,φ(1)) =
∑

L1 6=L2

degL1,degL2≤δn

Πchar
φ (n,L1L2)(19)

+ O
( ∑

degL≤δn

Πchar
φ (n,L)

)
+ O

(
qn

n

)
,

and similarly,

∑

deg P=n

′
ω(aP (φ)) =

∑

degL≤δn

Πtr
φ (n,L) + O

(
qn

n

)
,(20)

∑

deg P=n

′
ω2(aP (φ)) =

∑

L1 6=L2

degL1,degL2≤δn

Πtr
φ (n,L1L2)(21)

+ O
( ∑

degL≤δn

Πtr
φ (n,L)

)
+ O

(
qn

n

)
.

In order to finish the proof of Theorem 1, it remains to estimate the
quantities described in (14)–(17). This is where the core of the proof lies and,
as we shall see, using the L-adic representations associated to φ, the whole
problem translates into applications of the Chebotarev density theorem.

Let us note that so far we have not used the structure of EndF (φ); thus
the above analysis holds in general.

4.1. Drinfeld modules of rank 1. If r = 1, then it only makes sense to
discuss ω(PP,φ(1)) (as P varies). As pointed out in Section 2.2, the situation
reduces to the one already investigated in [Li2], and relies on estimates for
primes P in arithmetic progressions, i.e. nothing else but Corollary 10 for
the division fields F [L] and F [L1L2], with C = 1.

4.2. Drinfeld modules of rank 2. Let us consider the case when φ
is a Drinfeld module of rank 2, with trivial endomorphism ring. Important
consequences of these assumptions are the surjectivity of the mod L and
mod L1L2 Galois representations associated to φ, and the geometricity of
the associated division fields, for all but finitely many primes L,L1,L2 ∈ A
(see part (ii) of Theorem 4 and part (i) of Proposition 7).

Now let us remark that, thanks to property (8) of the characteristic
polynomial PP,φ(X), we have



328 A. C. Cojocaru

L |PP,φ(1) ⇔ ̺L(FrobP ) ⊆ Cchar
L ,

L1L2 |PP,φ(1) ⇔ ̺L1L2
(FrobP ) ⊆ Cchar

L1L2
,

where
Cchar
L := {g ∈ Im ̺L : det g + 1 − tr g = 0},

Cchar
L1L2

:= {g ∈ Im ̺L1L2
: det g + 1 − tr g = 0}.

Similarly,

L | aP (φ) ⇔ ̺L(FrobP ) ⊆ Ctr
L , L1L2 | aP (φ) ⇔ ̺L1L2

(FrobP ) ⊆ Ctr
L1L2

,

where

Ctr
L := {g ∈ Im ̺L : tr g = 0}, Ctr

L1L2
:= {g ∈ Im ̺L1L2

: tr g = 0}.
Here is where we are using the fact that the primes P are different from the
primes L,L1,L2.

Put together and combined with Corollary 10, these remarks give:

Πchar
φ (n,L) =

|Cchar
L |

|GL2(A/LA)| ·
qn

n

+ Oφ

(
|Cchar

L |qn/2 + |Cchar
L | qn/2

n
degL

)
,

Πchar
φ (n,L1L2) =

|Cchar
L1L2

|
|GL2(A/L1L2A)| ·

qn

n

+ Oφ

(
|Cchar

L1L2
|qn/2 + |Cchar

L1L2
| qn/2

n
deg(L1L2)

)
,

Πtr
φ (n,L) =

|Ctr
L |

|GL2(A/LA)| ·
qn

n
+ Oφ

(
|Ctr

L |qn/2 + |Ctr
L | qn/2

n
degL

)
,

Πtr
φ (n,L1L2) =

|Ctr
L1L2

|
|GL2(A/L1L2A)| ·

qn

n

+ Oφ

(
|Ctr

L1L2
|qn/2 + |Ctr

L1L2
| qn/2

n
deg(L1L2)

)
,

for all but finitely many primes L,L1,L2 ∈ A (with L1 6= L2).
We set

ℓ := |L|∞, ℓ1 := |L1|∞, ℓ2 := |L2|∞.

Simple calculations in GL2 show that:

|GL2(A/LA)| = (ℓ2 − 1)(ℓ2 − ℓ),

|GL2(A/L1L2A)| = (ℓ2
1 − 1)(ℓ2

1 − ℓ1)(ℓ
2
2 − 1)(ℓ2

2 − ℓ2),

and
|Cchar

L | = ℓ3 + O(ℓ2), |Ctr
L | = ℓ3 + O(ℓ2),

|Cchar
L1L2

| = ℓ3
1ℓ

3
2 + O(ℓ2

1ℓ
2
2), |Ctr

L1L2
| = ℓ3

1ℓ
3
2 + O(ℓ2

1ℓ
2
2).
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Thus for all but finitely many primes L,L1,L2 ∈ A with L1 6= L2, we have:

Πchar
φ (n,L) =

ℓ2

(ℓ2 − 1) (ℓ − 1)
· qn

n
+ Oφ

(
ℓ3qn/2 + ℓ3 qn/2

n
logq ℓ

)
,(22)

Πchar
φ (n,L1L2) =

ℓ2
1ℓ

2
2

(ℓ2
1 − 1)(ℓ2

2 − 1)(ℓ1 − 1)(ℓ2 − 1)
· qn

n
(23)

+ Oφ

(
ℓ3
1ℓ

3
2q

n/2 + ℓ3
1ℓ

3
2

qn/2

n
logq(ℓ1ℓ2)

)
,

Πtr
φ (n,L) =

ℓ2

(ℓ2 − 1)(ℓ − 1)
· qn

n
+ Oφ

(
ℓ3qn/2 + ℓ3 qn/2

n
logq ℓ

)
,(24)

Πtr
φ (n,L1L2) =

ℓ2
1ℓ

2
2

(ℓ2
1 − 1)(ℓ2

2 − 1)(ℓ1 − 1)(ℓ2 − 1)
· qn

n
(25)

+ Oφ

(
ℓ3
1ℓ

3
2q

n/2 + ℓ3
1ℓ

3
2

qn/2

n
logq(ℓ1ℓ2)

)
.

Now we plug (22)–(25) into (18)–(21), respectively, and obtain

∑

deg P=n

ω(PP,φ(1)) =
∑

degL≤δn

ℓ2

(ℓ2 − 1)(ℓ − 1)
· qn

n

+
∑

degL≤δn

Oφ

(
ℓ3qn/2 + ℓ3 qn/2

n
logq ℓ

)
+ O

(
qn

n

)

=
qn

n

∑

k≤δn

q2k

(q2k − 1)(qk − 1)

∑

degL=k

1

+ Oφ

(
qn/2

∑

k≤δn

q3k
∑

degL=k

1 +
qn/2

n

∑

k≤δn

q3k
∑

degL=k

k

)

+ O

(
qn

n

)

=
qn

n

∑

k≤δn

q2k

(q2k − 1) (qk − 1)

[
qk

k
+ O(qk/2)

]

+ Oφ

(
qn/2

∑

k≤δn

q3k qk

k
+

qn/2

n

∑

k≤δn

q3k qk

k
k

)
+ O

(
qn

n

)

=
qn

n

∑

k≤δn

q3k

k(q2k − 1)(qk − 1)
+ O

(
qn

n

∑

k≤δn

1

qk/2

)

+ Oφ

(
qn/2

∑

k≤δn

q4k

k
+

qn/2

n

∑

k≤δn

q4k

)
+ O

(
qn

n

)
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=
qn

n
log(δn) + O

(
qn

n

∑

k≤δn

1

qk/2

)

+ Oφ(qn/2+4δn(log(δn) + δ)) + O

(
qn

n

)
.

If we choose δ < 1/8, then

(26)
∑

deg P=n

ω(PP,φ(1)) =
qn

n
log n + Oφ

(
qn

n

)
.

Similarly,

(27)
∑

deg P=n

′
ω(aP (φ)) =

qn

n
log n + O

(
qn

n

)
.

Along the same lines, we obtain

∑

deg P=n

ω2(PP,φ(1)) =
qn

n
(log n)2 + Oφ

(
qn log n

n

)
,(28)

∑

deg P=n

′
ω2(aP (φ)) =

qn

n
(log n)2 + Oφ

(
qn log n

n

)
,(29)

this time provided that δ < 1/16. Thus we choose

δ < 1/16

and combine the above estimates to deduce

∑

deg P=n

(ω(PP,φ(1)) − log n)2 ≪φ qn log n

n
,

∑

deg P=n

′
(ω(aP (φ)) − log n)2 ≪φ qn log n

n
.

We recall from [Da, Thm. 1.1, p. 330] that

#{P ∈ A : aP (φ) = 0} ≪φ
qn(1−1/2(r2+r))

n
;

hence
∑

deg P=n

(ω(aP (φ)) − log n)2 ≪φ qn log n

n
.
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Finally, we have
∑

deg P≤n

(ω(PP,φ(1)) − log n)2

=
∑

k≤n

∑

deg P=k

(ω(PP,φ(1)) − log k + log k − log n)2

≪
∑

k≤n

∑

deg P=k

(ω(PP,φ(1)) − log k)2 +
∑

k≤n

∑

deg P=k

(log k − log n)2

≪φ

∑

k≤n

qk log k

k
+

∑

1≤k≤n/2

∑

deg P=k

(log n)2 +
∑

n/2<k≤n

∑

deg P=k

(log k − log n)2

≪φ π(n) log n + (log n)2π(n/2) + π(n) ≪φ π(n) log n,

where we used, once again, the prime number theorem (Thm. 8). Similarly,
∑

deg P≤n

(ω(aP (φ)) − log n)2 ≪φ π(n) log n.

This completes the proof of Theorem 1 for rank 2 Drinfeld modules.

4.3. Drinfeld modules of rank ≥ 3. Let us consider the case when
φ is a Drinfeld module of rank ≥ 3, with trivial endomorphism ring. This
time we also assume the validity of the Mumford–Tate conjecture for φ.

As in the rank 2 case, we can use property (8) to reinterpret the divisi-
bility conditions

L |PP,φ(1), L1L2 |PP,φ(1), L | aP (φ), L1L2 | aP (φ)

as Chebotarev conditions. We introduce the notation

Cchar
L := {g ∈ Im ̺L : Charg(1) = 0},

Cchar
L1L2

:= {g ∈ Im ̺L1L2
: Charg(1) = 0},

where Charg(X) is the characteristic polynomial of g, and

Ctr
L := {g ∈ Im ̺L : tr g = 0}, Ctr

L1L2
:= {g ∈ Im ̺L1L2

: tr g = 0}.
Then:

Πchar
φ (n,L) =

|Cchar
L |

|Im ̺L|
· qn

n
+ Oφ

(
|Cchar

L |qn/2 + |Cchar
L | qn/2

n
degL

)
,(30)

Πchar
φ (n,L1L2) =

|Cchar
L1L2

|
|Im ̺L1L2

| ·
qn

n
(31)

+ Oφ

(
|Cchar

L1L2
|qn/2 + |Cchar

L1L2
| qn/2

n
deg(L1L2)

)
,
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Πtr
φ (n,L) =

|Ctr
L |

|Im ̺L|
· qn

n
+ Oφ

(
|Ctr

L |qn/2 + |Ctr
L | qn/2

n
degL

)
,(32)

Πtr
φ (n,L1L2) =

|Ctr
L1L2

|
|Im ̺L1L2

| ·
qn

n
(33)

+ Oφ

(
|Ctr

L1L2
|qn/2 + |Ctr

L1L2
| qn/2

n
deg(L1L2)

)
.

Now we need precise formulae for the quantities

|Cchar
L |

|Im ̺L|
,

|Cchar
L1L2

|
|Im ̺L1L2

| ,
|Ctr

L |
|Im ̺L|

,
|Ctr

L1L2
|

|Im ̺L1L2
| .

We have (see Appendix for proofs of more precise formulae):

|Cchar
L |

|Im ̺L|
=

1

ℓ
+ O

(
1

ℓ2

)
,

Ctr
L

|Im ̺L|
=

1

ℓ
+ O

(
1

ℓ2

)
,

|Cchar
L1L2

|
|Im ̺L1L2

| =
1

ℓ1ℓ2
+ O

(
1

ℓ2
1ℓ

2
2

)
,

|Ctr
L1L2

|
|Im ̺L1L2

| =
1

ℓ1ℓ2
+ O

(
1

ℓ2
1ℓ

2
2

)
,

with absolute O-constants. Therefore

Πchar
φ (n,L) =

1

ℓ
· qn

n
+ O

(
1

ℓ2
· qn

n

)

+ Oφ

(
ℓr2−1qn/2 + ℓr2−1 qn/2

n
logq ℓ

)
,

Πchar
φ (n,L1L2) =

1

ℓ1ℓ2
· qn

n
+ O

(
1

ℓ2
1ℓ

2
2

· qn

n

)

+ Oφ

(
ℓr2−1
1 ℓr2−1

2 qn/2 + ℓr2−1
1 ℓr2−1

2

qn/2

n
logq(ℓ1ℓ2)

)
,

Πtr
φ (n,L) =

1

ℓ
· qn

n
+ O

(
1

ℓ2
· qn

n

)

+ Oφ

(
ℓr2−1qn/2 + ℓr2−1 qn/2

n
logq ℓ

)
,

Πtr
φ (n,L1L2) =

1

ℓ1ℓ2
· qn

n
+ O

(
1

ℓ2
1ℓ

2
2

· qn

n

)

+ Oφ

(
ℓr2−1
1 ℓr2−1

2 qn/2 + ℓr2−1
1 ℓr2−1

2

qn/2

n
logq(ℓ1ℓ2)

)
.

Proceeding as in Section 4.2, we obtain

∑

deg P=n

ω(PP,φ(1)) =
qn

n
log n + Oφ

(
qn

n

)
,
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∑

deg P=n

′
ω(aP (φ)) =

qn

n
log n + Oφ

(
qn

n

)
,

∑

deg P=n

ω2(PP,φ(1)) =
qn

n
(log n)2 + Oφ

(
qn log n

n

)
,

∑

deg P=n

′
ω2(aP (φ)) =

qn

n
(log n)2 + Oφ

(
qn log n

n

)
,

provided that

δ <
1

4r2

and under the assumption that the Mumford–Tate conjecture holds for φ.
Again as in Section 4.2, the above estimates lead to

∑

deg P≤n

(ω(PP,φ(1)) − log n)2 ≪φ qn log n

n
,

∑

deg P≤n

(ω(aP (φ)) − log n)2 ≪φ qn log n

n
.

This completes the proof of Theorem 1.

Remark 11. The Mumford–Tate conjecture is too strong an assumption
for what is needed in our proof. Instead, we could only assume the average
estimates

∑

degL≤δn

|Cchar
L |

|Im ̺L|
=

qn

n
log n + O

(
qn

n

)
,

∑

L1 6=L2

degL1,degL2≤δn

|Cchar
L1L2

|
|Im ̺L1L2

| =
qn

n
(log n)2 + O

(
qn log n

n

)

and their analogues for the trace problem, where δ < 1/4r2.

5. PROOF OF THEOREM 3

The proof of Theorem 3 is a consequence of a general result due to Liu
and of the applications of the Chebotarev density theorem to the division
fields of the Drinfeld module φ. We recall Liu’s general result below:

Theorem 12 (Liu [Li2, Thm. 3, p. 328]). Let A = Fq[T ], F = Fq(T ),
as before. Let S ⊆ F be a subset such that , for any positive integer n,

#{f ∈ S : deg f ≤ n/2} = o(#{f ∈ S : deg f ≤ n}).
Let h : S → A be a map and let L,L1, . . . ,Lu ∈ A denote mutually distinct
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monic irreducible polynomials. For a positive integer n, write

#{f ∈ S : deg f ≤ n, h(f) ≡ 0 (mod L)}
#{f ∈ S : deg f ≤ n} = λL + eL(n),

#{f ∈ S : deg f ≤ n, h(f) ≡ 0 (mod L1 . . .Lu)}
#{f ∈ S : deg f ≤ n} = λL1...Lu

+ eL1...Lu
(n)

for some λL, λL1...Lu
and eL(n), eL1...Lu

(n). Assume that for every positive

integer n there exist a constant 0 < β ≤ 1 and a positive integer m < nβ
such that the following conditions hold :

(i) for all f ∈ S with deg f ≤ n,

#{L ∈ A : degL > nβ, h(f) ≡ 0 (mod L)} = O(1);

(ii)
∑

L∈A
m<degL≤nβ

λL = o((log log qn)1/2);

(iii)
∑

L∈A
m<degL≤nβ

|eL(n)| = o((log log qn)1/2);

(iv)
∑

L∈A
degL≤m

λL = log log qn + o((log log qn)1/2);

(v)
∑

L∈A
degL≤m

λ2
L = o((log log qn)1/2);

(vi) for any positive integer R,
∑

L1,...,Lu∈A
degL1≤m,...,degLu≤m

|eL1...Lu
(n)| = o((log log qn)−R/2),

where the sum runs over all u-tuples (L1, . . . ,Lu) with u = 1, . . . , R.

Then, for α < β, we have

#

{
f ∈ S : deg f ≤ n, α ≤ ω(h(f)) − log log |f|∞√

log log |f|∞
≤ β

}

∼ Φ(α, β)#{f ∈ S : deg f ≤ n}
as n → ∞.

Now let φ be a rank r Drinfeld A-module over F , with EndF (φ) ≃ A.
If r ≥ 3, assume the Mumford–Tate conjecture for φ. We apply the above
general result to the set S consisting of monic irreducible polynomials P ∈ A
and the maps

hchar : S → A, hchar(P ) = PP,φ(1), htr : S → A, htr(P ) = aP (φ).
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From Corollary 10 and calculations similar to those made in Section 4.3,
we see that

λchar
L =

1

ℓ
, λchar

L1...Lu
=

1

ℓ1 . . . ℓu
,

echar
L (n) = O

(
1

ℓ2

)
+ Oφ

(
ℓr2−1 n

qn/2
+ ℓr2−1 1

qn/2
logq ℓ

)
,

echar
L1...Lu

(n) = O

(
1

ℓ2
1 . . . ℓ2

u

)

+ Oφ

(
ℓr2−1
1 . . . ℓr2−1

u

n

qn/2
+ ℓr2−1

1 . . . ℓr2−1
u

1

qn/2
logq(ℓ1. . . ℓu)

)
,

and similarly,

λtr
L =

1

ℓ
, λtr

L1...Lu
=

1

ℓ1 . . . ℓu
,

etr
L(n) = O

(
1

ℓ2

)
+ Oφ

(
ℓr2−1 n

qn/2
+ ℓr2−1 1

qn/2
logq ℓ

)
,

etr
L1...Lu

(n) = O

(
1

ℓ2
1 . . . ℓ2

u

)

+ Oφ

(
ℓr2−1
1 . . . ℓr2−1

u

n

qn/2
+ ℓr2−1

1 . . . ℓr2−1
u

1

qn/2
logq(ℓ1 . . . ℓu)

)
,

where ℓ := |L|∞, ℓ1 := |L1|∞, . . . , ℓu := |Lu|∞.

What remains to be done is the verification of the hypotheses of Theo-
rem 12 in these two settings. We will only do it for hchar, as the situation
for htr is the same.

By the prime number theorem (Thm. 8), the condition on the set S is
satisfied. To verify conditions (i)–(vi), let n be a fixed positive integer and
let

β <
1

2r2
and m :=

n

log log qn
.

Condition (i) is an immediate consequence of the remark that if P ∈ A
satisfies deg P ≤ n, then deg hchar(P ) ≤ n/r, where we are using the import-

ant result that the roots of PP,φ have absolute value |P |1/r
∞ .

To verify conditions (ii), (iv) and (v) we make use of the estimates

∑

L∈A
degL≤n

1

ℓ
= log log qn + O(1),

∑

L∈A
degL≤n

1

ℓ2
= O(1),

obtained in [Li1, Lem. 1, 2, p. 575].
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To verify condition (iii) we make use of the above and of our choice of β:
∑

L∈A
m<degL≤nβ

|echar
L (n)| ≪φ

n

qn/2

∑

m<k≤nβ

∑

L∈A
degL=k

qk(r2−1)

+
1

qn/2

∑

m<k≤nβ

∑

L∈A
degL=k

kqk(r2−1)

≪φ
n

qn/2
qr2nβ log

nβ

m
+

1

qn/2
qr2nβnβ

= o((log log qn)1/2).

To verify condition (vi) we proceed as above and make use of our choice
of m. This completes the proof of Theorem 3.

6. CONCLUDING REMARKS

As already clear from [MuMu], the higher-dimensional analogues of the
Erdős and Halberstam theorems, in both the rational and function field
cases, may be interpreted as results about compatible systems of Galois
representations. As such, one could prove similar results for abelian vari-
eties (under suitable hypotheses, such as the generalized Riemann hypoth-
esis and an open image conjecture, for the cases when this is not known)
[nb. Drinfeld modules are function field analogues only of elliptic curves, not
also of higher-dimensional abelian varieties]. As illustrated in [MuMu, Sec-
tion 6], one could then use these results to obtain non-trivial lower bounds
for PP,φ(1), aP (φ) and their other analogues. We relegate this work to future
projects.

7. APPENDIX: ENUMERATION OF MATRICES

by Hugh Thomas

Fix a prime power q and a positive integer n. We consider the problems
of counting matrices A ∈ GLn(Fq) such that CharA(1) = 0, where CharA is
the characteristic polynomial of A, and of counting matrices A ∈ GLn(Fq)
with trA = 0.

We will write gn for |GLn(Fq)|. We recall the well-known formula

gn = (qn − 1)(qn − q) · · · (qn − qn−1).

The terms in the product count the number of ways of selecting a first
non-zero column, a second non-zero column linearly independent from the
first, etc.



The Erdős and Halberstam theorems 337

7.1. The CharA(1) = 0 condition

Proposition 13. The number of invertible n × n matrices A over Fq

satisfying CharA(1) = 0 is
(

1

q − 1
− 1

(q2 − 1)(q − 1)
+

1

(q3 − 1)(q2 − 1)(q − 1)

+ · · · + (−1)n−1

(qn − 1) · · · (q − 1)

)
gn.

Proof. The condition that CharA(1) = 0 is equivalent to requiring that
A has an eigenvector with eigenvalue 1. We will perform our counting of
such matrices by means of an inclusion-exclusion argument. Let us write PA

for the 1-eigenspace of A.
Consider the number of ways to choose A ∈ GLn(Fq) together with

a specified 1-dimensional 1-eigenspace. We can count this by choosing an
eigenvector v in qn − 1 ways, and forgetting the scalar multiple by dividing
by q − 1. Now, with respect to some fixed basis y1, . . . , yn−1 that does not
include v, the matrix consists of an invertible (n − 1) × (n − 1) matrix (on
the yi) together with n − 1 matrix entries which are free, representing the
component of v in Ayi.

Thus, the number of choices is

(qn − 1)qn−1

q − 1
gn−1 =

gn

q − 1
.

However, this has overcounted matrices A with dimFq
PA > 1.

Let us correct our count to consider properly those matrices for which
dimFq

PA = 2. The number of such matrices is given by choosing a 2-
dimensional subspace (the eigenspace), and then filling in the rest of the
matrix. By an argument like the previous one, the number of such matri-
ces is

(qn − 1)(qn − q)

(q2 − 1)(q2 − q)
q2(n−2)gn−2.

Here the fraction counts the 2-dimensional subspaces (which we count by
choosing a basis and then forgetting which basis we chose).

How many times was such a matrix counted in our original counting?
Once for each linear subspace in the 2-dimensional subspace. We want to
count it only once. Thus the correction factor is

1 − q2 − 1

q − 1
= −q.

Thus the correction to the sum is

(qn − 1)(qn − q)

(q2 − 1)(q2 − q)
q2(n−2)gn−2

(
1 − q2 − 1

q − 1

)
=

−gn

(q2 − 1)(q − 1)
.
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Now we will make an induction argument as to how many times we will
have over- or under-counted the invertible matrices A with dimFq

PA = k,
after we have correctly counted the matrices with dimFq

PA < k. Our induc-
tion claim is that we should add in the matrices A satisfying dimFq

PA = k

with multiplicity (−1)k−1q(
k

2
).

As we have already seen, this is correct for k = 1 and k = 2. Assume it
is true up to k − 1, and let A be an invertible matrix with dimFq

PA = k.
How many times has it been counted? At the dimension 1 stage, it was
counted (qk − 1)/(q − 1) times. At the dimension 2 stage, it was subtracted
off q(qk − 1)(qk−1 − 1)/(q2 − 1)(q− 1) times (not forgetting the fact that we
counted each occurrence with multiplicity q). In total, the multiplicity with
which we have counted A is

qk − 1

q − 1
− q

(qk − 1)(qk−1 − 1)

(q2 − 1)(q − 1)
+ · · · + (−1)k−1q(

k−1

2
) (qk − 1) · · · (q2 − 1)

(qk−1 − 1) · · · (q − 1)
.

We want to count A exactly once; the correction term is then (−1)k−1q(
k

2
).

This follows from substituting z = 1 into [GoJa, Identity 2.6.12(1)]:

k−1∏

i=0

(z − qi) =
k∑

i=0

(−1)i (qk − 1)(qk−1 − 1) · · · (qk−i+1 − 1)

(qi − 1)(qi−1 − 1) · · · (q − 1)
q(

i

2
)zk−i.

This proves the proposition.

7.2. The tr A = 0 condition. Let fn be the number of matrices in
GLn(Fq) which have trace zero. We prove that:

Proposition 14. The numbers fn satisfy the following recursion for

n ≥ 2:
fn = qn−1(qn − q) · · · (qn − qn−1) − qn−1fn−1.

Plugging the upper bound on fn−1 provided by the proposition back into
the proposition, we obtain the following approximation for fn:

Corollary 15.

fn = qn−1(qn − q) · · · (qn − qn−1) + O(qn2−n−1).

Proof. We are going to count invertible matrices A = (aij) satisfying
the trace condition. Start by choosing the first n − 1 columns of A. We
distinguish two cases. The first case is the very special case in which the last
entry of each of these columns is zero; otherwise, we are in the second case.

In the first case, choosing the first n − 1 columns of A really amounted
to choosing an invertible (n− 1)× (n− 1) matrix, so there are gn−1 ways to
do this. Now consider the final column. The invertibility condition precisely
amounts to the condition that ann 6= 0. The trace condition determines
ann. It will be possible to satisfy both conditions precisely if the trace of
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the principal (n − 1) × (n − 1) minor is non-zero. The number of invertible
(n− 1)× (n− 1) matrices with non-zero trace is gn−1 − fn−1. We now fill in
the rest of the final column, which is arbitrary, and can therefore be done
in qn−1 ways. Thus, the first case contributes qn−1(gn−1 − fn−1).

In the second case, the number of ways to choose the first n− 1 columns
is (qn−1) · · · (qn−qn−2)−gn−1. Here, the invertibility condition requires pre-
cisely that the final column does not lie in some hyperplane H (that spanned
by the other columns), and this hyperplane is not parallel to the hyperplane
ann = −∑n−1

i=1 aii. Thus, the locus satisfying both the trace condition and
the invertibility condition consists of the points on a hyperplane in (Fq)

n

avoiding a hyperplane within that hyperplane. There are qn−2(q − 1) such
points. The proposition follows by adding together the contributions from
the two cases.
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