
ACTA ARITHMETICA

131.4 (2008)

On covers of abelian groups by cosets

by

Günter Lettl (Graz) and Zhi-Wei Sun (Nanjing)

1. Introduction. As in any textbook on group theory, for a subgroup
H of a group G with the index [G : H] finite, G can be partitioned into
k = [G : H] left cosets of H in G, i.e., all the k left cosets of H form a
disjoint cover of G.

In 1954 B. H. Neumann [N1, N2] discovered the following basic result on
covers of groups.

Theorem 1.1 (Neumann). Let {asGs}
k
s=1 be a cover of a group G by

(finitely many) left cosets of subgroups G1, . . . , Gk. Then G is the union of
those asGs with [G : Gs] <∞. In other words, if {asGs}s 6=t is not a cover
of G then [G : Gt] <∞.

In 1966 J. Mycielski (cf. [MS]) posed an interesting conjecture on disjoint
covers of abelian groups. Before stating the conjecture we give a definition.

Definition 1.1. The Mycielski function f : Z+= {1, 2, . . .}→{0, 1, . . .}
is given by

(1.1) f(n) =
∑

p∈P (n)

ordp(n)(p− 1),

where P (n) denotes the set of prime divisors of n and ordp(n) represents
the largest nonnegative integer α such that pα |n.

Remark 1.1. Since p≤ 2p−1 for any prime p, (1.1) implies that n≤ 2f(n)

(i.e., f(n) ≥ log2 n).
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Mycielski’s conjecture. Let G be an abelian group, and {asGs}
k
s=1

be a disjoint cover of G by left cosets of subgroups. Then k ≥ 1+f([G : Gt])
for each t = 1, . . . , k.

When G is the additive group Z of integers, Mycielski’s conjecture says
that for any disjoint cover {as(ns)}

k
s=1 of Z by residue classes (where as ∈ Z,

ns ∈ Z+ and as(ns) = as+nsZ) we have k ≥ 1+f(nt) for every t = 1, . . . , k.
This was first confirmed by Š. Znám [Z66]. For problems and results on
covers of Z, the reader is referred to [G04], [PS], [S03] and [S05].

Definition 1.2. For a subnormal subgroup H of a group G with finite
index, we define

(1.2) d(G,H) =
n∑

i=1

([Hi : Hi−1]− 1),

where H0 = H ⊂ H1 ⊂ · · · ⊂ Hn = G is any composition series from H
to G.

By [S90, Theorem 6] and [S01, Theorem 3.1], for any subnormal subgroup
H of a group G with [G : H] < ∞, we have d(G,H) ≥ f([G : H]), and
equality holds if and only if G/HG is solvable, where HG =

⋂
g∈G gHg

−1 is
the core of H in G (i.e., the largest normal subgroup of G contained in H).
The following result is stronger than Mycielski’s conjecture.

Theorem 1.2 (I. Korec, Z. W. Sun). Let a1G1, . . . , akGk be left cosets
of subnormal subgroups G1, . . . , Gk of a group G. If A = {asGs}

k
s=1 forms

an exact m-cover of G, i.e., A covers each element of G exactly m times,
then [G :

⋂k
s=1Gs] <∞ and

k ≥ m+ d
(
G,

k⋂

s=1

Gs

)
≥ m+ f

([
G :

k⋂

s=1

Gs

])
,

where the lower bound m+ d(G,
⋂k
s=1Gs) is best possible.

In the case m = 1 and G = Z, Theorem 1.2 was first conjectured by
Znám [Z69]. Whenm = 1 and G1, . . . , Gk are normal in G, Theorem 1.2 was
obtained by Korec [K74] in 1974. In 1990 Sun [S90] deduced Theorem 1.2 in
the casem = 1 by a method different from that of Korec. The current version
of Theorem 1.2 was established by Sun [S01] in 2001; the proof depends
heavily on the condition thatA covers all the elements of G the same number
of times. Under the conditions of Theorem 1.2, Sun [S04] also showed that
the indices [G : Gs] (1 ≤ s ≤ k) cannot be distinct providing k > 1.
Call a coset in an abelian group not containing the identity element

a proper coset . In 2003 W. D. Gao and A. Geroldinger [GG] proved the
following conjecture for any elementary abelian p-group G (they did not
explicitly state this conjecture in [GG]).
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Gao–Geroldinger conjecture. Let G be a finite abelian group with
identity e. If G \ {e} is a union of k proper cosets a1G1, . . . , akGk then
k ≥ f(|G|).

With the notations of the Gao–Geroldinger conjecture, if we set a0 = e
and G0 = {e} then {asGs}ks=0 forms a cover of G with a0G0 ∩ asGs = ∅ for
all s = 1, . . . , k. Thus, by the result of [Z69], the Gao–Geroldinger conjecture
holds when G is cyclic.
In this paper we aim to generalize Mycielski’s conjecture in a new direc-

tion and prove an extended version of the Gao–Geroldinger conjecture.

Definition 1.3. Let G be a group and let A = {asGs}
k
s=1 be a finite

system of left cosets of subgroups G1, . . . , Gk. The covering function of A is
given by

(1.3) wA(x) = |{1 ≤ s ≤ k : x ∈ asGs}| (x ∈ G).

Let m be a positive integer. We call A an m-cover of G if wA(x) ≥ m for
all x ∈ G. If A forms an m-cover of G but none of its proper subsystems
does, then A is said to be a minimal m-cover of G.

Now we state our main result, which (in the special case m = 1) implies
the Gao–Geroldinger conjecture for arbitrary finite abelian groups.

Theorem 1.3. Let A = {asGs}
k
s=1 be an m-cover of an abelian group

G by left cosets. Then, for any a ∈ G with wA(a) = m, we have

(1.4) Na =
[
G :

⋂

1≤s≤k
a∈asGs

Gs

]
≤ 2k−m and furthermore k ≥ m+ f(Na).

In particular , if {asGs}s 6=t fails to be an m-cover of G, then we have the
inequalities

(1.5) [G : Gt] ≤ 2
k−m and k ≥ m+ f([G : Gt]),

the bounds of which are best possible.

Remark 1.2. When G = Z, Theorem 1.3 was proved by Znám [Z75] in
the case m = 1, and we can say something stronger in Section 2. Also, in
the second inequality of (1.4), Na cannot be replaced by [G :

⋂k
s=1Gs] as

illustrated by the following example.

Example 1.1. Let G be the abelian group Cp × Cp where p is a prime
and Cp is the cyclic group of order p. Then any element a 6= e of G has
order p. Let G1, . . . , Gk be all the distinct subgroups of G with order p. If
1 ≤ i < j ≤ k, then Gi ∩Gj = {e}. Thus {Gs}

k
s=1 forms a minimal 1-cover

of G with
⋂k
s=1Gs = {e}. Since 1 + k(p − 1) = |

⋃k
s=1Gs| = |G| = p2, we

have
k = p+ 1 ≥ 1 + f([G : Gs]) = 1 + f(p) = p.
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However,

k = p+ 1 ≤ 2p− 1 = 1 + f([G : {e}]) = 1 + d
(
G,

k⋂

s=1

Gs

)
,

and the last inequality becomes strict when p > 2.

Example 1.1 also shows that we do not have an analogue of [S01, The-
orem 2.1] for minimal m-covers of the abelian group Cp × Cp (where p is a
prime), thus we cannot prove our Theorem 1.3 by the method in [S01]. To
obtain Theorem 1.3 we employ some tools from algebraic number theory as
well as characters of abelian groups.

Corollary 1.1. Let A = {asGs}
k
s=1 be an m-cover of a group G by

left cosets. Provided that a ∈ G and wA(a) = m, for any abelian subgroup
K of G we have

k −m ≥ |{1 ≤ s ≤ k : a 6∈ asGs and K 6⊆ Gs}|(1.6)

≥ f
([
K : K ∩

k⋂

s=1
a∈asGs

Gs

])
.

In particular , if {asGs}s 6=t fails to be an m-cover of G, then for any abelian
subgroup K of G not contained in Gt we have

(1.7) |{1 ≤ s ≤ k : K 6⊆ Gs}| ≥ 1 + f([K : Gt ∩K]).

Proof. We define J = {1 ≤ s ≤ k : asGs ∩ aK 6= ∅}. For each s ∈ J ,
a−1asGs ∩K is a coset of Gs ∩K in K. Observe that {a−1asGs ∩K}s∈J is
an m-cover of K with |{s ∈ J : e ∈ a−1asGs ∩K}| = |Ia| = m where

Ia = {1 ≤ s ≤ k : a ∈ asGs}.

Applying Theorem 1.3 to the abelian groupK we get the inequality |J |−m ≥
f([K :

⋂
s∈Ia

Gs ∩K]). If s ∈ J and K ⊆ Gs, then a
−1asGs ∩K = K and

hence s ∈ Ia. Thus

|J | −m = |{s ∈ J : e 6∈ a−1asGs ∩K}|

≤ |{1 ≤ s ≤ k : a 6∈ asGs and K 6⊆ Gs}| ≤ k −m

and hence (1.6) follows.

Now suppose that {asGs}s 6=t is not an m-cover of G and K is an abelian
subgroup of G with K 6⊆ Gt. Then wA(x) = m for some x ∈ atGt. In light
of the above,

|{1 ≤ s ≤ k : s 6= t and K 6⊆ Gs}| ≥ |{1 ≤ s ≤ k : x 6∈ asGs and K 6⊆ Gs}|

≥ f([K : K ∩Gt]).

This proves (1.7) and we are done.
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Corollary 1.2. Let R be any ring. Let a1, . . . , ak be elements of R and
I1, . . . , Ik ideals of R. If {as + Is}

k
s=1 is an m-cover of R with the coset

at + It irredundant , then for the quotient ring R/It we have |R/It| ≤ 2
k−m

and furthermore k ≥ m+ f(|R/It|).

Proof. Since R is an additive abelian group, this follows from Theo-
rem 1.3 immediately.

In the next section we will present a new approach to Mycielski’s problem
on covers of Z. In Section 3 we are going to work with covers of abelian
groups and extend some ideas from Section 2; this will lead to our proof of
Theorem 1.3.

2. A new approach to Mycielski’s problem. Let Q denote the
algebraic closure of the rational fieldQ and Z the ring of all algebraic integers
in Q.

Lemma 2.1. For s = 1, . . . , k let ζs ∈ Z be a root of unity with order
ns > 1. Then n ∈ Z+ divides

∏k
s=1(1− ζs) in Z if and only if

(2.1)

k∑

s=1
P (ns)={p}

1

ϕ(ns)
≥ ordp(n) for any prime p,

where ϕ is the well-known Euler function.

Proof. For each prime p, let vp : Q → Q denote any extension of the
p-adic valuation ordp(·) to Q, normed by vp(p) = 1. It is well known (cf.
[W, Chap. 2]) that

vp(1− ζs) =

{
1/ϕ(ns) if ns is a power of p,

0 otherwise.

Now n divides
∏k
s=1(1− ζs) in Z if and only if for each valuation v : Q→ Q

one has v(n) ≤
∑k
s=1 v(1−ζs). Since any valuation v of Q is (equivalent to)

an extension of ordp(·) for some prime p, we immediately obtain the desired
result.

Corollary 2.1. Let n > 1 be an integer. Then f(n) is the smallest
positive integer k such that there are roots of unity ζ1, . . . , ζk different from 1
for which

∏k
s=1(1− ζs) ∈ nZ. Furthermore, this holds with k = f(n) if and

only if for any prime divisor p of n there are exactly ordp(n)(p − 1) of
ζ1, . . . , ζk having order p.
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Proof. For s = 1, . . . , k let ζs be a root of unity with order ns > 1. By
Lemma 2.1, n divides

∏k
s=1(1− ζs) in Z if and only if (2.1) holds. Clearly

k∑

s=1
P (ns)={p}

1

ϕ(ns)
≤
|{1 ≤ s ≤ k : P (ns) = {p}}|

p− 1
for every prime p.

If (2.1) is valid, then

k ≥
∑

p∈P (n)

|{1 ≤ s ≤ k : P (ns) = {p}}| ≥
∑

p∈P (n)

ordp(n)(p− 1) = f(n).

Now assume that k = f(n). When (2.1) is valid, equality holds in the
last three inequalities and hence

|{1 ≤ s ≤ k : ns = p}| = |{1 ≤ s ≤ k : P (ns) = {p}}| = ordp(n)(p− 1)

for any prime p. Conversely, (2.1) holds if |{1 ≤ s ≤ k : ns = p}| =
ordp(n)(p− 1) for all p ∈ P (n).
Combining the above we have completed the proof.

Lemma 2.2. Suppose that A = {as(ns)}
k
s=1 is an m-cover of Z by

residue classes and a ∈ Z is covered by A exactly m times. Let Na be
the least common multiple of those ns with a ∈ as(ns), and let ms ∈ Z for
s ∈ J where J = {1 ≤ s ≤ k : a 6∈ as(ns)}. Then for any 0 ≤ α < 1 we have

(2.2) C0(α) = C1(α) = · · · = CNa−1(α),

where

(2.3) Cr(α) =
∑

I⊆J
{
∑
s∈I ms/ns}=(α+r)/Na

(−1)|I|e2πi
∑
s∈I(as−a)ms/ns

for every r = 0, 1, . . . , Na − 1, and we use {θ} to denote the fractional part
of a real number θ.

Proof. This follows from [S99, Lemma 2].

Theorem 2.1. Let A = {as(ns)}
k
s=1 be an m-cover of Z, and suppose

that a is an integer with wA(a) = m. Then k ≥ m+ f(Na) where Na is the
least common multiple of those ns with a ∈ as(ns). Furthermore, for any
prime p we have

(2.4) |I(p)| ≥
∑

s∈I(p)

1

pordp(ns)−ordp(as−a)−1
≥ ordp(Na)(p− 1),

where

(2.5) I(p) =

{
1 ≤ s ≤ k :

ns
pordp(ns)

| as − a but ns ∤ as − a

}
.
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Proof. Let J = {1 ≤ s ≤ k : a 6∈ as(ns)}. For each s ∈ J , let ms be an
integer not divisible by ns/(ns, as − a) > 1. Then ζs = e

2πi(as−a)ms/ns is a
primitive dsth root of unity where ds = ns/(ns, (as − a)ms) > 1.
Set

S =

{{
Na
∑

s∈I

ms

ns

}
: I ⊆ J

}
.

Then ∏

s∈J

(1− ζs) =
∑

I⊆J

(−1)|I|e2πi
∑
s∈I
(as−a)ms/ns

=
∑

α∈S

∑

I⊆J
{Na

∑
s∈I

ms/ns}=α

(−1)|I|e2πi
∑
s∈I
(as−a)ms/ns

=
∑

α∈S

Na−1∑

r=0

Cr(α) = Na
∑

α∈S

C0(α),

where Cr(α) (0 ≤ r < Na) are given by (2.3). So Na divides
∏
s∈J(1 − ζs)

in the ring Z. By Corollary 2.1, we have k −m = |J | ≥ f(Na). In view of
Lemma 2.1,

∑

s∈J
P (ds)={p}

1

ϕ(ds)
≥ ordp(Na) for each prime p.

Now we simply let ms = 1 for all s ∈ J . By the above, for any prime p
we have ∑

s∈I(p)

1

ϕ(ns/(ns, as − a))
≥ ordp(Na),

which is equivalent to (2.4). This concludes the proof.

3. Working with abelian groups. We first recall some well-known
facts from the theory of characters of finite abelian groups (see, e.g.,
[W, pp. 22–23]).

For a finite abelian group G, let Ĝ denote the group of all complex-valued

characters of G. One has Ĝ ∼= G. For any subgroup H of G let H⊥ denote
the group of those characters χ ∈ Ĝ with ker(χ) = {x ∈ G : χ(x) = 1}

containing H. Then we get a canonical isomorphism H⊥ ∼= Ĝ/H by putting
χ(aH) = χ(a) for any a ∈ G and any χ ∈ H⊥. Furthermore, for each
a ∈ G \H there exists some χ ∈ H⊥ with χ(a) 6= 1.

Proof of Theorem 1.3. Choose a minimal I∗ ⊆ {1, . . . , k} such that the
system {asGs}s∈I∗ forms an m-cover of G. As Ia = {1 ≤ s ≤ k : a ∈ asGs}
has cardinalitym, we see that Ia is contained in I∗. So we can simply assume
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that A is a minimal m-cover of G (i.e., I∗ = {1, . . . , k}). By [S90, Corol-

lary 1], H =
⋂k
s=1Gs is of finite index in G. Instead of the minimal m-cover

A = {asGs}
k
s=1 of G, we may consider the minimal m-cover A = {asGs}

k
s=1

of the finite abelian group G = G/H, where as = asH and Gs = Gs/H
(hence [G : Gs] = [G : Gs]). Therefore, without any loss of generality, we
can assume that G is finite.
Put Ha =

⋂
s∈Ia

Gs; then |H
⊥
a | = [G : Ha] = Na.

Note that J = {1 ≤ j ≤ k : a 6∈ ajGj} has cardinality k − m. For
each j ∈ J we may choose a χj ∈ G

⊥
j with ζj := χj(a

−1aj) 6= 1. For any
x ∈ G \Ha we have ax 6∈

⋂
s∈Ia

aGs =
⋂
s∈Ia

asGs. Since A is an m-cover
of G, there exists some j ∈ J with ax ∈ ajGj , and therefore χj(x) = ζj by
the choice of χj and the definition of ζj .
For x ∈ G we define

Ψ(x) =
∏

j∈J

(χj(x)− ζj).

If χ ∈ H⊥a and χ(x) 6= 1, then x 6∈ Ha and hence Ψ(x) = 0 by the above.
Thus Ψχ = Ψ for all χ ∈ H⊥a .
Observe that

Ψ(x) =
∑

I⊆J

(∏

j∈I

χj(x)
) ∏

j∈J\I

(−ζj) =
∑

ψ∈Ĝ

c(ψ)ψ(x),

where
c(ψ) =

∑

I⊆J∏
j∈I χj=ψ

∏

j∈J\I

(−ζj) ∈ Z.

Let C be the complex field. As the set Ĝ is a basis of the C-vector space

CG = {g : g is a function from G to C}

(cf. [J, p. 291]), for any χ ∈ H⊥a we have c(ψχ) = c(ψ) for all ψ ∈ Ĝ because
Ψχ−1 = Ψ .
Clearly, ∏

j∈J

(1− ζj) = Ψ(e) =
∑

ψ∈Ĝ

c(ψ)ψ(e) =
∑

ψ∈Ĝ

c(ψ).

Let ψ1H
⊥
a ∪ · · · ∪ ψlH

⊥
a be a coset decomposition of Ĝ where l = [Ĝ : H

⊥
a ].

Then
∑

ψ∈Ĝ

c(ψ) =
l∑

r=1

∑

χ∈H⊥a

c(ψrχ) =
l∑

r=1

|H⊥a |c(ψr) = Na

l∑

r=1

c(ψr).

(That c(ψrχ) = c(ψr) for all χ ∈ H
⊥
a is an analogy of Lemma 2.2.) Therefore

Na divides
∏
j∈J (1− ζj) in Z, and Corollary 2.1 gives k−m = |J | ≥ f(Na),

and consequently Na ≤ 2
k−m by Remark 1.1.
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If {asGs}s 6=t is not an m-cover of G, then for some x ∈ atGt we have
wA(x) = m, hence k−m ≥ f(Nx) ≥ f([G : Gt]) and [G : Gt] ≤ Nx ≤ 2

k−m

by the above.

By [S01, Example 1.2], for any subgroup H of G (with [G : H] < ∞)
and an arbitrary element x of G, the coset xH and m − 1 + d(G,H) =
m− 1 + f([G : H]) other cosets of subgroups containing H form an (exact)
m-cover of G with xH irredundant. Also, m−1 copies of 0(1), together with
the k −m+ 1 residue classes

1(2), 2(22), . . . , 2k−m−1(2k−m), 0(2k−m),

clearly form an (exact) m-cover of Z with the residue class 0(2k−m) irre-
dundant. So the inequalities in (1.5) are really best possible and we are
done.
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