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The structure of the tame kernels
of quadratic number fields (II)

by
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and QUNSHENG ZHU (Nanjing)

1. Introduction. Let F' be a quadratic number field and Op the ring
of its integers. Some methods of determining the structure of the 2-Sylow
subgroup of the tame kernel K2Op have been established. The results of
[13-15] give the 4-rank and the 8-rank of K2Op. We refer to [8] for the
results on relative quadratic extensions. When the discriminant has at most
three divisors, the 4-rank of K2Op has been given explicitly in [13] and [14].

Recently, the second author [16] introduced sign matrices via Legendre
symbols to determine the 4-rank of KoOp. In the relative quadratic exten-
sion case, the sign matrices defined via local Hilbert symbols to compute
the 4-rank of the tame kernel appeared earlier in [8]. In [16], the second
author defined the type of a square-free integer d (see Section 4 below) and
determined a lower bound for the 4-rank of K2Op (where F = Q(v/d)) for
each type of quadratic number field F'. To be more precise, he found all
types of real quadratic fields for which always r4(K20F) > 1, and for any
other type he showed that there is a set of d of positive density for which
r4(K20F) = 0 and a set of positive density for which r4(K20p) > 1. For
imaginary quadratic fields, he also established similar results.

In this paper, we use the method developed in [16] to determine all
possible values of r4(K20F) for each type of real quadratic number field F.
In particular, for each type of real quadratic field we determine the maximum
possible value of r4(K20p) and we show that each integer between the lower
and upper bounds occurs as a value of the 4-rank of KsOp for infinitely
many F.
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2. Preliminaries. We introduce the following notations:

e = Q(\/d) with d € N square-free.

e O is the ring of integers of F'.

o K50 is the tame kernel of F.

o V2 ={a € Ky0r | a = 3% for some 8 € K20p}.

o QKQOF = {a: S KQOF | 372 = 1}.

e S(d) ={£1,+2}.

e r4(K20F) or 14 for short denotes the 4-rank of K20p.

e Given integers a and b with b # 0, (%) denotes the Jacobi symbol. In

particular, (%) is the Legendre symbol if b is an odd prime.

It follows from J. Browkin and A. Schinzel [3] that s K2Op (F = Q(+/d))
is generated by {—1,m}, m|d, together with {—1,u; + Vd} if {—1,+£2} N
NF # (), where u; € Z is such that d = uf — ciw? for some w; € Z and
¢i € {—1,£2} N NF'. Suppose that m|d and m > 0, and assume that m =1
(mod4) if d =1 (mod8). Then from [15] we know that there exists a prime
p = 1 (mod4) such that dpmZ? = X2 + dY? is solvable for § = 1 or 2.
If 2 € NF, then d = u? — 2w?, where u,w € Z. Assume that v > 0 and
u+w =1 (mod4); if d = 1 (mod8), then from [15] we know that there
is a prime p = 1 (mod4) such that pm(u + w)Z? = X? + dY? is solvable.
On the other hand, it is proved in [16] that: (i) {—1,m} € V? if and only if
epZ? = X? — dY? is solvable for ¢ € S(d), where p = 1 (mod4) is a prime
such that npmZ? = X2 + dY? is solvable for n = 1 or 2; (ii) if 2 € NF,
then {—1,m(u+v/d)} € V? if and only if epZ? = X2 — dY? is solvable for
e € S(d), where p = 1 (mod 4) is a prime such that pm(u+w)Z? = X2+dY?
is solvable. So, to determine the 4-rank of K5O, we need only consider the
solvability of the above indefinite equations epZ? = X2 — dY2.

Let d = 2915 - - - 1, be the prime factorization, where 0 = 0 or 1. Consider
the vector v(p,e) = (d1,...,0n), where 6; = (%) with e € S(d) for 1 <i<n.
Then by Legendre’s Theorem on the Diophantine equation aX? + bY?
+¢Z% =0 (see [10]) we have

LEMMA 2.1 ([16]). With the notation as above, we have {—1,m} € V? or
{—1,m(u+Vd)} € V? if and only if v(p,e) = (1,...,1) for some e € S(d).

Let n; | d for 1 < i < t. Suppose 1;p;n; Z%= X2 4+dY? (or nipin; (u+w)Z>
= X2 + dY?) are solvable for primes p; = 1 (mod4) and 7; = 1 or 2
(1 <i<t). We have

LEMMA 2.2 ([16]). {=1,n1---n} € V2 if and only if

u(p,€) = ((%) li[lal <i> E[lan> —(1,...,1)

for some € € S(d).
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Recall from [16] that a set S = {mq,...,my} is called a system of /-
representatives of F if {—1,m1},...,{—1,my} generate o K20r N (K2 F)?
and m; (mod (F*2U2F*2)),...,my, (mod (F*2U2F*?)) are multiplicatively
independent. For the exact value of k£ and a system of \/-representatives of
real quadratic number fields F', we have the following

LEMMA 2.3. Let F = @(\/E), d € N square-free, be a real quadratic field
and d = 291 - - -1, the prime factorization, where 0 = 0 or 1. Then we can
choose a system of \/-representatives as follows:

() {l1,... ln_1,u +/d} if either (a) I; = 1 (mod8) (1 <i < n) and
u+w =1 (mod4) or (b) d# 1 (mod8) and 2 € NF,

(ii) {l1,...,ln—1} if either (a) d Z1 (mod8) and 2 ¢ NF or (b) d=1
(mod8), 2 € NF and l; =1 (mod4) (1 <i<mn)or(c)d=1
(mod8), 2 € NF and u+ w =3 (mod4);

(i) {llz, lalz, - liloms bng1s - -y ln1,u+VdY if d=1 (mod8),2 € NF
with u+w = 1 (mod4) and l; = 3 (mod4) (1 <i<m),l; =1
(mod4) (m+1<j<n);

(iv) {lilo, lalz, - Il b1 -y b1, I (e + V)Y if d = 1 (mod8),

2 € NF with u+ w = 3 (mod4) and [; = 3 (mod4) (1 <i < m),
[;=1 (mod4) (m+1<j<n);

(V) {lile, Lils,y oo Ul g1y« oy ln—1} if d = 1 (mod8), 2 € NF and
li=3 (mod4) (1<i<m), ;=1 (mod4) (m+1<j<n).

Proof. The proof of this lemma can be found in [14] and [16]. =

For the convenience of the reader, we recall some notations from [16].

Suppose that S = {m1,...,my} is a system of \/-representatives of F' =
Q(v/d), where d € N is square-free and d = 2711 ---1,, (¢ € {0,1}) is the
prime factorization. Assume that the equations 7;p;m;Z? = X2 + dY? (or
nipimi(u + w)Z? = X2 + dY?) are solvable for primes p; = 1 (mod4) and
N € {1,2} (1 <1 < k‘) Let £ = (61, - ,Ek) S S(d)k Put 51'7j = (%) for
1 <i<kand1l < j<n.Wecall the matrix M(d, S, E) = (6 j)kxn the sign
matriz with respect to S = {my,...,mp} and E = (1,...,ex) € S(d)*. As
a particular case, taking F' = (1,...,1), we obtain the sign matrix

- [(22)]

) () (5572) e

which we call the sign matrix with respect to the set S of \/-representatives.

where
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Sometimes we simply write M (d) for M (d, S, E) or M(d, S) if we do not
need to emphasize S and F.

Now we list some properties of sign matrices. It follows from [14] and [16,
Lemmas 2.3 and 2.9] that

LEMMA 2.4. Let S be a system of <7-representatives of F = Q(v/d),
d € N square-free, m € S. Let P be the product of all entries in the row
corresponding to m in each sign matriz with respect to S and E = (1,...,1).
If m|d, then
1 if either d=1 (mod2) and d # 5 (mod 8);
ord=1 (mod2) and m # 3 (mod4);
ord=0 (mod2), m =3 (mod8) and d/2 =1 (mod4);
ord=0 (mod2), m =7 (mod8) and d/2 =3 (mod4);
or d=0 (mod2), m =1 (mod8);
\ —1 otherwise.

If m=u++dand d=1 (mod?2), then the product of all entries in the
row corresponding to w4+ Vd is 1.

Let A and B be sign matrices. A is said to be equivalent to B (denoted
by A = B) if some of the following operations, which are called elementary
operations, applied to A yield B:

(I) Multiplying row i of A by row j. (This corresponds to replacing m;
by mim; in the set of \/-representatives of F'.)

(IT) Interchanging the ith and jth rows. (This corresponds to interchang-
ing m; and m;.)

(IT') Interchanging the ith and jth columns. (This corresponds to inter-

changing l; and [;.)

(III) Multiplying the ith row by a vector (ei,...,&,), where g; = (%)

with e € S(d) and [y, ...,[, are all the odd prime divisors of d with
l; corresponding to the ith column. (This corresponds to changing
the éth entry in the set £ = (e1,...,¢€x).)

Elementary operations (II') are often used to fix the places of columns of a
sign matrix. When applying elementary operations (II'), one must remember
the congruences of [; and [; (mod8) since it is possible that (%) # (%) in
an elementary operation (III) if I; # I; (mod8).

Note that, for a real quadratic field F = Q(v/d), if d has exactly n
odd prime divisors {1, ...,l,, then we have only finitely many different sign
matrices with respect to a system of \/-representatives of F', any two of
which are equivalent. Suppose that M (d) is a sign matrix with respect to
a system of \/-representatives of F. It is easy to see that there exists an
element {—1,m} € 2K20p such that {—1,m} € V? if and only if there
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exists a totally 1 row (i.e. its entries are all 1) by applying some elementary
row operations on M (d) if necessary.

LEMMA 2.5 ([16]). Let F = Q(\/d) be a real quadratic field, where d
square-free has n odd prime divisors. Assume that a sign matriz is of size
kxn. We view any sign matriz as one over Z/27. Then r4(K20F) coincides
with the maximum of k — r, where r runs through the ranks of all sign
matrices of F.

LEMMA 2.6 ([16]). Let n > 2 be an integer. Assume that for 1 < i <
j<n,1<k<n we are given ¢;; € {1} and odd integers t,. Then there
are infinitely many integers d such that d has exactly n odd prime divisors
l1,..., 1, with (ll—;) =¢;j and lp =t (mod8) where 1 <i<j<n,1<k<n.

3. Matrices over Fo. Let M and N be matrices over Fo. We write
M ~ N if N can be obtained from M by some elementary transformations.

For a matrix A = (a;j) over Fa, we use AT for its transpose, r(A) for the
rank of A, and 1+ A for the matrix (1 + a;;). In case A is of size n x n, we
call A skew symmetric if a;; +aj; =1for 1 <i# j <n.

LEMMA 3.1. Let M = (J;;) be an n x n skew symmetric matriz over Fs.
If n is even, then r(M) > n/2. If n is odd, then r(M) > (n — 1)/2.
Moreover, if n is odd and there exists a totally 1 row which can be expressed
as a linear combination of some rows of M, then r(M) > (n+1)/2.

Proof. Let P=M + MT =(p;;). Then p;; =0 if i=j; and p;; =1 if i#j.

(1) n is even. We have r(P) = n, hence r(M) > n/2.

(2) n is odd. It is easy to see that r(P) = n—1. Hence r(M) > (n—1)/2.
It is enough to prove that r(M) > (n + 1)/2 when a totally 1 row can be
expressed as a linear combination of some rows of M. We may assume that

h+-+o=(1,...,1),
where §; = (0;1,...,0in),i=1,...,t.
When t is odd, adding rows 2 to t to the first row and doing the same

for columns, and then adding the first (new) row to rows 2 to ¢, we can
partition the equivalent form of M into

S T I T |




222 X. B. Yin et al.

51,j :L ]:Lana

0i1=0, 1 =2,...,n,
where the blocks A, B and C are of sizes (t —1) x (t—1),(t —1) x (n — 1)
and (n —t) x (n — t), respectively. It is easy to see that both A and C are
skew symmetric. The above discussion implies that r( BAT g) > (n—1)/2
since t — 1 and n — t are even. Thus (M) > (n+1)/2.

Suppose that t is even. First we add rows 2 to t to the first row, and then

do the same with columns. Next we add the last column to columns ¢ + 1
to n — 1, and then do the same row transformations. Now we have

o1 --- --- - 110 -+« «ov «.. 01
A B *
M~ | o
BT c
1 % o0 oo o K[k cee e e * %

1, t=1land j=2,...,t,n;
orit=nand j=1;
0, i=land j=t+2,...,n—1;

ort=1,...,n—1and j =n,

0ij =

where the blocks A, B and C are skew symmetric of sizes (t — 1) x (t — 1),
(t—1)x(n—t—1)and (n—t—1) x (n—t— 1), respectively. By using the
same argument as in the case of ¢ odd, we obtain

01 --- 110 --- 0
: A B
0
r 0 >(n—-1)/2,
. BT C
0

hence r(M) > (n+1)/2. m

LEMMA 3.2. Suppose that M = (6; ;) is an n X n skew symmetric matriz
over Fy. Let t be the number of rows of M with the sum of all entries 1.
Assume that t > 1.

(i) If n is odd, then r(M) > (n+1)/2.
(ii) If n is even and the totally 1 row can be expressed as a linear com-
bination of some rows of M, then r(M) >n/2+ 1.
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Proof. Applying some elementary transformations if necessary, we may
assume that the sum of all entries is 1 in each of the first ¢ rows, and 0 in
others.

(i) First suppose that t is odd. Add rows 1 to n — 1 to the last row, and
next do the same with columns. Then the matrix M can be partitioned into
the following equivalent form:

1
M, Mo
1
M ~ 01,
1+ Mmf M3 :
0
1 10 --- 01

where the submatrices M7 and M3 are skew symmetric of sizes ¢ X t and
(n—1t—1)x (n—1t—1) respectively. Note that

1
1+ M, Mo
1
M ~ 0
1+ Mmf M3 :
0
0O - 00 ---01

By Lemma 3.1 we have r(M) > (n—1)/2+1=(n+1)/2.

Now assume that ¢ is even. If 617 = 0, with the same procedure as above
and applying some elementary transformations if necessary, we see that there
exist integers 1 < k <t and 1 <[ <n —t such that

00 01 111 10 --- 01
1
M, Mo M3 My
1
0
14+ ME Ms Mg My
M~ 10 1],
0
1+ M§ 1+ MF Mg My
0
1
1+ MmF 1+ MF 1+ MmF My
11 11 110 00 --- 00

where the submatrices My, My, Mg and My are skew symmetric of sizes
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(k—1)x(k=1),t—k)x(t—k),Ixland (n—t—1—1)x (n—t—1—-1),
respectively. Add the last column to the ith (i = k+1,...,k +1), and do
the same with rows. Then

00 00 0lo 00 --- 01
1
My 1+ Mo 1+ Msj My
1
1
mE M; 1+ Mg Mz
M~ |1 1
1
: MT MmE Mg My
1
1
1+ Mm] 1+ MF 1+ Mg My
11 - 11 0O - 00 --- 00

1
It follows from Lemma 3.1 that r(M) > (n—1)/2+ 1= (n+1)/2. When
611 = 1, the proof is similar.
(i) Attaching to M an additional totally 1 row and an additional totally O
(i.e. its entries are all 0) column, we obtain an (n + 1) x (n 4 1) matrix
0

M=| M

110

Clearly, we have 7'(]\/4\) =r(M) and (i) implies that 7(M) >n/2+ 1. =
LEMMA 3.3. Let M = (d;;) be a (t+n) x (t+n+1) matriz over Fy with

0ij+0j; =1 for1 <i#j<t+4+n and assumet > 1. Suppose that the sum

of all entries in any of the first t rows is 1, and in any of the last n rows

15 0. '

+n
—

(i) If t + n is even and the two rows (1,...,1,0) =: (1" 0) and
(1-1,0-"*1) can be expressed as linear combinations of some rows in
M, then r(M) > (t+n)/2 + 1.

(ii) If t +n is odd and the two rows (1-"1) and (1+%,0-"T1) can be
expressed as linear combinations of some rows in M, then r(M) >
(t+n+1)/2+1.

Mi;  Ms o1

Proof. We partition M into (1+M2T Ma

and M3 are skew symmetric of sizes ¢ X t and n x n respectively, and (g;)
is a column vector.

), where the submatrices M;
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1 0
(i) If (a1) # () or (ag) # (f), then by Lemma 3.2(i) we have

1 0

1 0
r(M) > (t+n)/2+ 1. Now we assume that (a;) = () and (ag) = ()
Consider the following (t +n+1) x (t+n+1) matrbl(: "
My Mo a
M= 1+M; Mz o |,
o 1+al o«

where * is the sum of all entries in the last column of M. It follows from the
hypothesis that
My Mo [e%}

—

M ~ 1+ M My a

1+ a{ 1+ ag *
By Lemma 3.2(ii) we have 7(M) = r(M) > (t+n-+1+1)/2 = (t+n)/2+1.
(ii) As above, we can obtain a (¢t +n + 1) x (t + n + 1) matrix
My Mo o1

]\/4—\ = 1+ Mg M3 a3
1 —|—oz%r ag *
By hypothesis, we have
My Mo 5]
]/\Z ~ 1+ M2T M3 ag
1+ a? 1+ a{ 1+ %
By Lemma 3.2(i), the result follows. =
LEMMA 3.4. Let M = (6;5) be a (t+n+s+m—1)x(t+n+s+m) matriz
over Fy with 6;j +6;; = 1 for 1 < i # j < t+n. Assume that t, n and s
are positive integers. Suppose that M satisfies the following conditions:
(a) 65 =6j; whent+n+1<i#j<t+n+s+m—1;
(b) t+n =1 (mod?2);
(c) s+m >2;
(d) either (11,015 0-™) or (0t 175 0~"™) can be expressed as
a linear combination of some rows in M.

Thenr(M)> (t+n+1)/2.
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Proof. By Lemma 3.1, we may assume that each of the last s+m—1 rows
of M can be expressed as a linear combination of some of the first t+n rows.
Thus it suffices to consider the submatrix A formed by the first ¢t +n + 1
rows and the first ¢ +n+ 1 columns of M. As in the proof of Lemma 3.2(ii),
we can show that there exist integers 1 < k <t and 1 <! <n —t such that
A can be partitioned as:

1
Al AQ A3 A4
1
0
T
1+A2 A5 A6 A7
AN 1 )

14+ AY 14+ AL Ag Ag -
1
0
14+ AT 1+ AT 14+ AL Ay
0
1 -~ 10 --- 01 -+ 10 ---0 %

where A, As, Ag and App are skew symmetric of sizes k x k, (t —k) x (t—k),
Ixland (n—t—1)x (n—t—1), respectively, and * = Sfn41t4nt1-

Suppose that (1,0, 1%, 0~™) is a linear combination of some rows
of M. Then we can attach an extra row to the above equivalent form of A
to get a (t+mn+2) X (t+n+ 1) matrix:

1

A Ay As Ay

1

0

1+ A7 As Ag A7

0

-~ 1

A=

1+ A7 1+ A7 Ag Ag

1

0

1+ A7 14 AF 1+ AY Ay -

0

1 10 0/1 10 0 x

1 10 S 01
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Note that
0
1+ A Ag 1+ A3 Ay
0
0
T .
14 A As Ag A :
0
A~ 0 if x=1;
AT 1+ AY 1+ Ag Ag -
0
0
14+ A7 14 AT 14 A7 A
0
1 10 0|1 10 01
1 10 01
and
0
Ay 1+ Ay 1+ Az Ay
0
0
AT As 1+ Ag Ar
0
A~ 0 if x =0.
AT AT Ag Ag
0
0
1+ AT 1+ AT 1+ AY Ay
0
1 10 01 10 --- 00

By Lemma 3.1 we have r(4) = r(A) > (t +n —1)/2 + 1 and the result
follows.

When (0%, 175 0-"™) is a linear combination of some rows of M, the
proof is the same as above. u

LEMMA 3.5. Let M = (6;5) bea (t+n+s+m—1)x (t+n+s+m)
matriz over Fo with 0; j + 6, = 1 for 1 < i # j <t+mn, wheret, n and s
are positive integers. Suppose that M satisfies the following conditions:

(a) 0;j =0j; whent+n+1<i#j<t+n+s+m-—1;

(b) the sum of all entries is 1 in any of the first t + n rows, and is 0 in

any of the last s +m — 1 rows;
(¢) t=n=s (mod?2);
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(d) both (1,0, 1+5,0-™) and (0, 1775 0-™) can be expressed as
linear combinations of some rows in M.

Thenr(M)> (t+n)/2+ 2.
Proof. We divide the proof into two cases.

CasE 1: t =n=s =1 (mod2). We construct a (t+mn+s+m —1) x
(t +n+ 1) matrix M= (M, &), where the submatrix M is formed by the
first t + n columns of M, and the column vector « is the sum of the last
s+ m columns of M. As done in Lemma 3.4, we part1t1on the submatrix A
of M which is formed by the first t + n rows of M into

1
Ay Ay As Ay
1
0
. .
1+A7 4 As  Ar
0
A~ e
1+AY 1447 | A Ay
1
0
1+A7 1447 |1+ A8 Ay
0

where the submatrices A;, As, Ag and Ajg are skew symmetric of sizes
Exk, (t—k)x(t—k),Ixland (n—t—1)x (n—t—1), respectively, and
1<k<t, 1<1I<n.Consider the following (t+n+3) x (t+n+1) matrix A
which is formed by attaching three additional rows to the above equivalent
form of A:

1

Ay As As Ay

1

0

T :

14 As As Ag Ay :

0

;1\ 1
N 1+ AT 1+ A7 Ag Ay
1

0

14 A7 14+A7 | 1447 A

0

1 10 0f1 10 -0 %

1 1{0 - 01

0 0[1 S11
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Note that the (t + n + 1)th row is the sum of all row vectors of the above

-~

equivalent form of A. We have r(M) > r(A) and

0

Ay 1+ As 1+ Az Ay

0

0

AF As 1+ Ag A;

0
A ’ if % = 1
~ . if x=1:
AF AF 1+ Asg Ag ’

0

0

14 A7 14 AT 14 A7 A

0

1 11 1)1 11--10

0 01 1]0 01 -~ 11

and

0

Ay A 1+ Az Ay

0

0

1+ AT 1+ As 1+ Ag A;

0
h S T
~ . if * =0.

AT AY As Ay

0

0

14 A7 14 AT 14 A7 A

0

1 11 1)1 11--10

0 01 10 01 --10

-~

By Lemma 3.2(ii) we have 7(A) > (t+n+141)/2+1 and the result follows.

CASE 2:t =n=s =0 (mod2). We construct a (t+n+s+m—1) x
(t + n + 2) matrix M = (Mi, e, 3), where the submatrix M; is formed by
the first ¢ + n columns of M, the column vector « is just the (¢t +n + 1)th
column of M and the column vector § is the sum of the last s + m — 1
columns of M. We partition the submatrix A of size (t+n+1) X (t +n+2)
and formed by the first t +n + 1 rows of M into
A1 Az an B

A= 1+Ag Az az B2 ,

Oé{ Oég * *l
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where the blocks A7 and Az are skew symmetric of sizes ¢t X t and n X n
respectively, * = ¢ ynt14nt+1 and ¥ = ZH’HHm d;,j. Attaching to A two

j=t+n+2
additional rows, we obtain a (¢t +n + 3) x (t + n + 2) matrix
Ay Az a1 B
~ 1+ A7 Az a2 B2
A=
of ol ¥
With the same procedure as in the first case, we have
Ay Ay 04
- L+ (A" Ay 06
A ~
of od x

If (gi) is a totally 1 column, then by Lemmas 3.1 and 3.2(i),

AL 14T
r Al Al > (t+n)/2+1.
GO
If (gi) is not a totally 1 column, then by Lemma 3.3(ii),
Al Ay 0

r 1+ (Ap)T Ay 0 | >(t+n)/2+1.

1 11-.---10

So r(M) > r(A) > (t+n)/2+ 2 and the lemma is proved. =

Similarly, we can prove

LEMMA 3.6. Let M = (0;;) be a (t+n+s+m—1)x (t+n+s+m)
matriz over Fo with 6;; +6;, =1 for 1 <i # j <t+n, wheret, n and s
are positive integers. Suppose that M satisfies the following conditions:

(a) (51'7]' :5j,z' whent+n+1 SZ#] §t+n+s+m—1;

tntstm 1, +=1,...,t;t4+n+1,...,t+n+ s;
() Y Giy=1K0, i=t+1..t4+nit+nts+1,...,
j=1 t+n+s+m—1;

(c) both (1,07, 15 0~™) and (0~ 1-"F 0-™) can be expressed as
linear combinations of some rows in M.
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Q) r(M)>(t+n)/2+2if t=n=s (mod2);
(i) r(M)>(t+n)/24+14if t=n#% s (mod?2);
(i) r(M) > (t+n+1)/2+1if t Zn (mod2).

4. All values of r4(K20p). Let F = Q(\/E), where d € N is square-
free and has at least three odd prime divisors. In this section, we recall the
notion of type of a quadratic number field and for each type of real quadratic
number field F' we give all possible values of 4 := r4(K20F).

Notation. Let d have prime factorization

d=2l1 - lmp1-Pnq1---qsT1- T,
where 0 € {0,1}, Iy = 1 (mod8), pp = 3 (mod8), ¢; = 5 (mod8) and
r; = 7 (mod8) are different odd primes (0 <k <m,0<h<n,0<j<s
and 0 <14 < t). We say that d has type 27(m,n, s,t). We also say that the
quadratic field F = Q(v/d) has type 27 (m,n, s,t).

For any given type T, let d(T') denote the set of all positive integers of
type T, i.e., d(T) = {d | d € N of type T'}. We keep the above notations
throughout this section. Clearly we have

LEMMA 4.1. Let d have type 2°(m,n,s,t), where o € {0,1} and n,s,t
are positive integers. In a sign matriz M (d), arrange the first t +n columns
to correspond to r1,...,T4,P1,--.,Pn and the last m columns to ly, ..., 1l,.
Then it is impossible to make any of the following rows of M(d) to be a

totally 1 row by applying elementary operations (II1) only :
(a) (_1...t’ 1...n+s+m); (b) (1...157 _1...n’ 1...s+m);
(C) (1...t7 _1...n’ 1...s+m); (d) (_1...t+n+s7 1m)7

(e) (1, Ethnts, —17™), g, €{£l},i=1,....t +n+s.
We need the following

ASSUMPTION. Notations as above. Let n > 2 be an integer. For 1 < k
<n, 1<i<j<n, weare given e, g5 € {£1}. For any integer 0 <t <mn,
there exist infinitely many d € N with prime factorization d = 2°py - - - pn,
where 0 = 0 or 1, and primes p; = 1 (mod8) (1 < i < t) and p; = —1
(mod8) (t+1 < j <mn) such that (?—kw) =¢p for1 <k <n and (%) = €45
for1 <i<j<n.

We conjecture that the above Assumption always holds.

THEOREM 4.2. Under the above Assumption for types 2°(m,0,0,0) and
29(m,0,0,t), where o = 0 or 1, for real quadratic fields F, we have the
following tables of possible values of r4 (with all congruences mod 2):
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Table I
Type min r4 max 74
(m,0,s,0) s=0 1 s+m—1
s=1 0 s+m—1
(m,n,0,0) n=0 0 n/2+m-—1
n=1 0 (n—1)/2+m
(m,0,0,t) t=0 1 t/24+m
t=1 1 t+1)/2+m
(m,n,s,0) n=0 s=0 1 n/2+s+m-—1
s=1 1 n/2+s+m
n=1 1 (n—1)/2+s+m
(m,0,s,t) t=0 s=0 1 t/2+s+m—1
s=1 1 t/24+s+m
t=1 1 t—1)/24+s+m
(m,n,0,t) t+n=0 1 (t+n)/24+m
trn=1 1 G+n+D/2+m
(m,n,s,t) | t+n=0|t=s 1 (t+n)/24+s+m—1
t£s 1 (t+n)/2+s+m
t+n=1 1 (t+n—-1)/24+s+m
(m,0,0,0) 0 m
Table II
Type min 74 max 74
2(m,0,s,0) s=0 0 s+m—2
5= 0 s+m—1
2(m,n,0,0) n= 1 n/2+m
n= 0 (n—1)/2+m
2(m, 0,0, ¢) t=0 1 t/2+m
t=1 1 t+1)/24+m
2(m,mn, s,0) n=0 0 1 n/2+s+m-—1
s=1 1 n/2+s+m
n=1 1 (n—1)/24+s+m
2(m, 0, s,t) t=0 s=0 1 t/24+s+m—1
s=1 1 t/24+s+m
t=1 1 t-1)/2+s+m
2(m,n,0,t) t+n=0 1 (t+n)/2+m
t+n=1 1 (t+n+1)/2+m
2(m,n,s,t) | t+n=0|t=s 1 t+n)/24+s+m—1
tZ£s 1 (t+n)/24+s+m
t+n=1 1 t+n—1)/24+s+m
2(m, 0,0,0) 0 m

For each type T and each integer k between the minimum and mazximum
values of r4 for this type, there exist infinitely many real quadratic number
fields of type T with r4 = k.

Proof. Since all the minimums of 74 have been determined in [16], it
suffices to consider the maximums and the value set of r4. For each type T,
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the maximum of r4 is ensured by the results of Section 3. For every integer
k between the minimum and maximum values of r4, we will construct a
sign matrix My (d) such that the maximal number of totally 1 rows of all
equivalent forms of My(d) is exactly k.

As remarked in [16], a totally 1 row (if any) of a sign matrix can be ob-
tained by applying elementary operations (I) and (II), and by at most one
elementary operation (III). So, for each type T we construct a sign matrix
M. (d) with respect to a system of s/-representatives and E = {1,...,1}.
Every equivalent form of M(d) will be obtained by the application of ele-
mentary operations (I) and (II), and by applying an elementary operation
(ITI) at the last step.

We may assume that n, s and ¢ are positive integers, and only m can
be 0. In a sign matrix, the first ¢ columns will correspond to the primes

r1,...,7¢, columns ¢ + 1 to ¢t + n will correspond to the primes p1,...,pn,
columns t+n + 1 to t + n + s will correspond to the primes q1, ..., qs, and
columns t+n+s+1 to t+n+ s+m will correspond to the primes Iy, ..., [p,.

CASE (A): T = (m,0,s,0) with m+ s > 3:

(A1): s is even. First assume that m > 0. Suppose that S ={q1,...,qs,
li,...,lm—1} is a system of s/-representatives. It follows from Lemma 2.6
and the law of quadratic reciprocity that we may choose d € d(T') such that

-1 -1

0ii =0istm=—-1, k+1<i<s+m-—1;
0ij =1, otherwise,

where 1 < k < s+ m — 1. According to Lemma 2.4 and the definition of
sign matrix, the above matrices are sign matrices with respect to S and
E ={1,...,1}. It is easy to see that the number of totally 1 rows in My(d)
is no less than k. This implies that r4 > k for the real quadratic number
fields as above. If we view My(d) as a matrix over Z/2Z, then the rank of
My.(d) is s+m — 1 — k. Thus if we apply elementary operations (I) and (II)
to My (d) only, then we see easily that the rank of every equivalent form
of My(d) is also s + m — 1 — k. Therefore we must apply an elementary
operation (III) to M (d) if we want to obtain an extra totally 1 row. Since
k > 0, when applying elementary operations (I) and (II) only, one cannot
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obtain the following row in any equivalent form of My (d):

Now we see that the rank of My (d) is unchanged under elementary oper-
ations (III). It follows from Lemma 2.5 that r4 = k for Mj(d). Note that if
k = 0 in the above sign matrix, multiplying the first row by rows from 2 to
s and applying an elementary operation (IIT) with e = 2, one can obtain an
equivalent form of My(d) whose first row has entries 1 everywhere. Therefore
r4 can be any integer k with 1 <k <s+m — 1.

Now we suppose that m = 0 and S = {q1,...,¢s—1} is a system of
v-representatives. Choose d such that

-1 -1
{5z‘,i= is=—1, k+1<i<s—1,
di; =1, otherwise,

where 1 < k < s— 1. If £ =0, applying the same elementary operations as
in the case m > 0, we can see that My(d) is equivalent to a matrix whose
first row is totally 1. Hence 1 < r4 < s — 1 for this type.

Observe that, for m = 0 and m > 0, the sign matrices My (d) we described
are essentially the same. So, in the following cases, we only consider m > 0.

(A2): s is odd. We choose S = {q1,..-,Gs,l1,---,lm—1} as a system of
V-representatives. Put

1 1
1 -0 e o 1
-1 -1
{5i,i= iotm=—1, k+1<i<s+m-—1;
dij =1, otherwise,

where 0 < k < s+m—1. Thus r4 can be any integer k for 0 < k < s+m—1.

CASE (B): T = (m,n,0,0) with m +n > 3:
(B1): n is odd. Suppose that S = {p1,...,pn,l1,...,ln—1} is & system
of \7-representatives. Choose d € d(T") such that
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B T T, 1
S T T TR 1
T T P 1
B T T 1
S T SO URY
B (S T E R 1
My ym-1(d) = P T PO G P70
e e s D Rl
_ Sl e (-1)™
1 oeee onn 1
1 1
(6;; = —1, 1<j<2(k—-1)and j+2<i<m
51'73': 1, 2k<i§j§n;
i = (1),  1<i<2k;
Sigp1 = (—1), 1<i<2% -1
i :( 1)’, 1 <14 < 2k;
(517 = (- 1)’, 2k <1 < n;
L 0ij = 1 otherwise,

where 0 < k < (n —1)/2. Applying elementary operations (I), we have the
following equivalent form of Mj,,,—1(d):

-1 -1 1
-1 -1 1
-1 —1 1
-1 -1 1
11 1
Mk+m71(d) o~ -1 -1 1
-1 —1
1 1
1 1
11
ii=—1, 0<i<2k;
zerl_( 1) 0§Z§2k_1a
Siic1 = (1) 0<i<2k;

512252,71—}—771— -1, 2k+1<7<m

)

05 =1, otherwise,
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where 0 < k < (n—1)/2. It is easy to see that the number of totally 1 rows in
the above matrices is k +m — 1. If we let 8, n = 6npm = 1in M1 /2(d),
then the number of totally 1 rows in the above matrix is (n — 1)/2 + m.
Choose d € d(T') such that

-1 -1

Il

My (d)

-1 -1

{51-,1-:5¢7n+m:—1, 1<i<norn+h+1<i<n+m+1;

dij =1, otherwise,

where 0 < h<m—1. Thenry =h,0<h<m-—1.

Finally, we prove that 74 < (n —1)/2 4+ m for any choice of M(d): First
suppose that m = 0. Note that the product of all entries in each row of
any M = M(d), where M is obtained from M (d) by applying elementary
operations (I) and (II), is 1. We see that there exist no totally —1 row since
n is odd. By Lemma 3.1 one can check that 4 < (n — 1)/2. Now assume
that m > 0. We view any sign matrix M (d) as a matrix over [Fy. If some row
in the last m — 1 rows cannot be expressed as a linear combination of some
of the first n rows, then r(M(d)) > (n —1)/2. Returning to the sign matrix,
we have r4 < (n —1)/2+ m. So we may assume that each of the last m — 1
rows can be expressed as a linear combination of some of the first n rows
of M(d). We need only consider the submatrix of M (d) formed by the first
n rows and first n columns. By Lemma 3.1, we have ry < (n—1)/24+m+ 1.

So, the value set of r4 is {0,...,(n —1)/2 +m} for this type.

(B2): n is even. Then d = 1 (mod8). By Lemma 2.3 we choose S =
{p1p2, .. 01Pn, 11, lm—1} as a system of s/-representatives. Let (%)

(;}—’1) =1forall2<j<nand1<i:<m— 1. Write the sign matrix

where the submatrix N is of size (n +m —2) X (n+m — 1), as in case (B;).
Dealing with the submatrix N as in case (Bj), we obtain 0 < 7y <
n—=2)/24+m=n/2+m—1
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Now we prove that r4 < n/2 + m: Attaching to the matrix M(d) an

extra row a = (a1, ..., Qp4m), where ag = (dz/)fl), o = (%) for 2 <i <n,

and o = (%) for 1 < k < m, we obtain an (n + m — 1) X (n + m)
matrix M = ( M) ). Notice that [[/7" ; = —1. By Lemma 2.4 the number
of totally 1 rows in every equivalent form of M(d) is the same as in M.
Multiplying the ith row (i = 2,...,n) of M by the first row, by Lemma 3.3
we can easily show that r4 < n/2 4+ m.

Case (C): T = (m,0,0,t) with m+t > 3: We have 2 € NF and d =
u? — 2w? u,w € N. Choose a system of v/-representatives S = {ry,...,7,
Iy b1, u+Vd} if d # 1 (mod8); or {rira, ..., r1re, 1, ooy b1, u+Vd}

if d=1 (mod8). We set
N
= (,, ),

where the submatrix N is of size (t +m — 1) x (¢t + m) and the last row
is arranged to correspond to u + v/d. It follows from Case (B) that the
number of totally 1 rows in N can vary from 0 to t/2 +m — 1 if ¢ is even,
and to (t — 1)/2 4 m if t is odd. We note that {—1,u + V/d} € V? if and
only if there exists ¢ € {£1,42} such that (E(“p%w)) = 1 for every odd
prime p|d (see [13]). By assumption, we may choose the last row such that
1<rs<(t+1)/24miftisodd,or 1 <ry <t/2+miftis even.

Case (D): T = (m,n,s,0) with m+n+s > 3:

(D1): » = 1 (mod2). Suppose that S = {p1,.- -, Pn, @y qns 11, -
cooylm—1} is a system of v/-representatives. By Lemma 3.1 we have ry <
(n—1)/2+ s+ m. As in case (B), we can choose d € d(T) such that

-1 -1 1
-1 -1 1
-1 -1 1
-1 -1
-1 —
Mk‘-l—h(d) = 1 -1
1
1
_1 _

-1 -1
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where 1 <k < (n—1)/2and 0 < h <s+m—1. Then r4 = k+ h. One can
easily check that r4isalso 1if k = h = 0. Hence 1 <ry < (n—1)/2+s+m—1.
When k = (n—1)/2 and h = s+m —1, if we let 0, ,
above matrix, then 74y = (n —1)/2+s+m.So1 <1y < (n—1)/2+s+m

0ii = —1,

diiv1 = (—1)%
Siio1 = (=1)" 1
i

67‘7.] = 17

for this type.

(D2): n =0 (mod2) and s =1 (mod2). Then d =5 (mod8). Suppose

X. B. Yin et al.

0 <1< 2k;

0<i<2k—1;

0<i<2k;

:5i,n+s+m =-1,2k+1<i<n

orn+h+1<i<n+s+m-—1;

otherwise,

= 6n7n+3+m =1 in the

that S = {p1,..-,Pn,q1,-- -, qn,0l1,...,lm—1} is a system of /-representa-
tives. Choose d € d(T') such that My p(d) is
e T T B 11 1
11 1- R 11 1
~1-1-1-1- B 11 1
“1-1 1 1- B 11 1
1 =1 =1 =71 +vv -- -1 -1 B 11 1
1 =1 =1 =71 -vv --- 1 1 --- B 11 1
1 =1 =1 =1 v e 1 B 11 (—1)2k+1
1 =1 =1 =1 -vv --- T S 11 (—1)"
—1 e —1
1 _ Ny (d)
1 e
. 1
(6,5 =—1, 1<j<2k-1)andj+2<i<n
orl<i<nandn+1<j<n+s
orn+1<i<n+sand1l<j<n;
5i,j:_1y 2k <1 <j<my
6ii = (—1)1, 1<i<2k;
Siiv1=(-1)", 1<i<2k—-1;
Siic1 = (1), 1 <1 < 2k;
6i,n+s+m = <_1)i; 2k <i<m
0ij =1, otherwise,
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where 0 < k < n/2 and the submatrices Nj(d) (0 < h < s+ m — 1) are
the same as in case (Ag). Applying elementary operations (I), we obtain the
following equivalent form:

-1 -1 B ~11--- 1
-1 -1 1. 11--- 1
-1 -1 1 1
1 -1 1
1 1 _
Mi+n(d) = -1 1 11 —1
. -1
1 e e . -1 Nh(d)
1 e e
1 1
(61 =—1, 1< < 2k:
biiv1 = (—1)7, 1<i<2k;
biim1 = (—1)"71 1<i<2k;
0ii = Ointsem = —1, 2k +1 <7 <
o =—1, n+1<j<n+s;
dij=—1, n+tl<i<n+sandl<j<mn;
dij =1, otherwise.

Multiplying the first two rows by all rows 2i (i = 2,...,k) and rows 2k + 1
to m, we see that they will be (—1-"%5 1-™) and (—1-",1-5T™), respec-
tively. We can convert them to be totally 1 rows by applying an elemen-
tary operation (III) with ¢ = 2 and ¢ = —2, respectively. So we have
1 <ry <n/2+ s+ m. The fact that r4 < n/2 + s+ m + 1 follows from
Lemmas 3.1 and 3.2(ii).

(D3): n=s=0 (mod2). Sod=1 (mod8). Choose S = {p1p2,-- -, P1Pn,

Qly---3qsy 1,y lm—1} as a system of s/-representatives. As in case (Ba),
we write
1
M(d)=1: n ],
1

where the submatrix N is of size (n+m —2) x (n+m —1), as in case (D).
One can easily check that 1 <ry <n/2+4+s+m — 1.
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As done in case (Bg), we consider the (n+s+m—1) x (n+s+m) matrix

= < Ma) ) ’
where

() () (2 E) ().
) (&)

Multiplying the ith rows (i = 2,...,n) of M by the first row, we obtain a
new equivalent form of M and partition it into
My My o

(MzT Ms o ) ’
where the blocks M; and M3 are of sizes n xn and (s+m—1) X (s+m—1)
respectively, and (z;) is the last column. We view the above equivalent form
of M as a matrix over Fy. Consider the n x (n+1) matrix (M, 3), where the
column vector ( is the sum of all columns of Ms and the column vector ;.
It follows from Lemma 3.3 that r4 < n/2 + s+ m.

So, for this type, we have 1 <ry <n/2+s+m — 1.

CastE (E): T = (m,0,s,t) with m + s+t > 3: Everything here is the

same as in Case (D). With similar constructions of sign matrices M (d), we
have

t/24+s+m—1 ift=0 (mod2) and s =0 (mod?2);
1<ry<<t/24+s+m if t =0 (mod2) and s =1 (mod 2);
(t—1)/24s+m if t=1 (mod?2).
Case (F): T = (m,n,0,t) with m+n+1t > 3:
(F1):t+n =1 (mod2). Let S ={ri,...,7,p1,-- s Pn,l1,...,lm—1} be a

system of s/-representatives. First we assume that ¢ is even. As in case (By),
we have 1 <7y < (t+n—1)/2+ m. Choose d € d(T') such that

-1 -1 1
-1 -1 1

-1 -1 1

M(d) = -1 -1 1
1 1

1 1
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5ii = —1, 1<i<t+n-—1;
Siiv1 = (1), 1<i<t+n-—1;
Siic1= (1)L 1<i<t4+n-1;
dij =1, otherwise.

Multiplying both rows t — 1 and ¢t by all rows 2i +1 (i =0,...,t/2 —2), we
obtain a new equivalent form of M (d), in which both row ¢t — 1 and row ¢
are (_1...t 1...n+m)

They will be totally 1 rows if one applies an elementary operation (IIT) with
e = —2. Then rq = (t + n+ 1)/2 4+ m. It follows from Lemmas 2.4 and 3.1
that 74 < (t +n + 1)/2 4+ m + 1. The proof for the case t = 1 (mod?2) is
similar.

So, for this type, we have 1 <ry < (t+n+1)/2+ m.

(F2): t = n = 1 (mod2). Then d = 5 (mod8). Suppose that S =
{ri,- . ,76,P1, s Pns b1y oo Im—1} is a system of 7-representatives. By a
discussion similar to case (C1) (see below), one can easily see that 4 can be
any k for 1 <k < (t+mn)/2+m — 1. That r4 be (t +n)/2 + m follows by
putting

-1 -1 1
-1 -1 1
-1 -1 1
-1 -1 1
—1 1
-1 -1 1
M(d) = -1 -1 1
1 -1 1
-1 -1 1
1 1
1 1
11
( .
6;i = —1, 1<i<t—-1

ort+1<:1<t+n-—1,;
(-1, 1<i<t-—1;
(-1 2<i<t;
Siip1 = ()" t4+1<i<t+n-1;
(-1 t+1<i<t+mn;

[ dij =1, otherwise.
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On the other hand, Lemma 3.2(ii) implies that r4 < (t+mn)/2+m + 1. So
we have 1 <71y < (t+n)/2+m.

(F3):t=n=0 (mod2). Then d =1 (mod8). Choose S = {rire,rirs,...,
T1Tt, T1D1s -« P1Pny U1y - - lm—1} as a system of $/-representatives. As in
case (B2), by Lemma 3.2(i) one can easily show that r4 < (t+n)/2+m. As
in cases (B2) and (F1), r4 can be any integer k with 1 <k < (t+n)/2+m.

CASE (G): T = (m,n,s,t) withm+n+s+t>3:
(G1):t=n# s (mod2). Then d =5 (mod8). Let S = {r1,re,...,r,p1,
cosDns Qs -5 Gsy U1y ooy lm—1} be asystem of 5/-representatives. With a sim-
ilar choice of the entries of M (d) as in case (C;), we see that r4 can be any
integer k with 1 < k < (t+n)/2+ s+ m — 1. When s is even, we choose
d € d(T) such that

-1 -1 1 - 111 L1 .
-1-1 11 11 L1 ]
-1-1 1
-1 -1 1] : o . :
-yt -1 o =11 -1
—1 cee e e e =1 =1 =1 -1 -~ =11 1
1]=1 =1 1 11 1
M(d) = L
-1 -1 :

! ! L1 11 1
- B ~1] 1 11 1
- B 1)1 11 -

1 a1
11
(51',1'__17 1§Z§t+n_1’
i1 = (1), 1<i<t—1
S = (-0 1<i<- 1
Oiji+1 = (- t+1<i<t+n-—1;
51',1'*1:(_1)1'7 t+1§z§t+n_1,
%=L trntl<i<itntsandl<j<t+n
O = —1, thn+l1<j<t+n+s
Ory15 = —1, 1<j<tort4+n+1<j<t+n+s;

0ij =1, otherwise.
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It is easy to check that r4 = (¢t + n)/2 4+ s + m for the above choice. When
s is odd, choose d € d(T') such that

-1 -1 -1 --- =11 |
1 -1 1. 1] 1 1
-1 -1 : oo :
1 -1 1.+ 111 1
-1 -1 1 .- 111 T
-1 -1 1--- 1|1 o1
M(d) = :
-1 -1 1- 1] 1 1
-1 -1 1 - 1] 1 1
-1 B T —1| 1 1] 1 1
-1 B T —1| 1 1] 1 1
1 B |
11
0ii = —1, 1< <t+m
zz+1—( 1)7 1<i<t+n'
11 1= ( 1)Z ! 1<Z<t+n
0 =—1, t+n+1<j<t+n+s;
0ij = —1, t+n+1<i<t4+n+sand1<j<t+n;

0i; =1, otherwise.

Multiplying both rows t +n — 1 and t + n by all rows 2i +1 (i = 0,...,
(t+mn)/2—2), we obtain a new equivalent form of M (d), in which both row
t+n—1and row t +n are

(_1...t—|—n7 1...s+m).

Applying an elementary operation (III) with ¢ = —1, we see that all —1
entries in this row are transformed into 1. Next, multiplying the first row
by all rows 2i (i = 2,...,t/2), we see that it will become

(_]‘...t7 177,’ _1...57 1m)
Applying an elementary operation (III) with e = —2, we see that it becomes
a totally 1 row. Thus r4 = (t +n)/2 + s + m for the above choice.

By Lemmas 3.2(ii) and 4.1, one can easily prove that r4 < (t +n)/2 +
s+ m + 1. So, for this type, 1 <ry < (t+mn)/2+ s+ m.
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(Go):t=n=s(mod2). Wehaved =1 (mod8). Choose S = {rire,...,
TITty T1D1s -« s T1Pny Qs - 5 Qss L1y -y Im—1} as a system of s/-representa-
tives. As in case (Bg), by Lemmas 3.5 and 4.1, one can prove that r4 <
(t+n)/2 + s+ m. With similar choices of entries of M (d) to those in case
(By), we have 1 <7y < (t+n)/24+s+m— 1.

(G3): t+mn = 1 (mod2). Suppose that S = {ri,r2,...,7,P1,--,Dn,
Gly---yGQsy 1y lm—1} 1s a system of \/-representatives. By similar construc-
tions of M(d) to that in case (D), we have 1 <7y < (t+n—1)/24+ s+ m.
The maximums of r4 are ensured by Lemmas 3.3, 3.4 and 4.1.

CASE (H): T = (m,0,0,0) with m > 3: Wehave 2 € NF and d = u>—2w?,
u,w € Z. Choose a system of v/-representatives S = {l1,...,lm_1,u + Vd}
ifu+w=1(mod4), or S ={l1,...,lm-1} if u+w =3 (mod4). Choose
d € d(T) such that

1 1
1
My(d) = -1 -
11
* . * %

0ii =O0intm=—1,k+1<i<m-1,0<k<m—1;
dij =1, otherwise,
where the last row is arranged to correspond to u + vd if u + w = 1

(mod4), and it will disappear if v +w = 3 (mod4). It is easy to check
that 0 <7y < m.

CASE (A): T = 2(m, 0, s,0) with m+s > 3: Suppose that S = {q1,...,qs,
li,...,lm—1} is a system of /-representatives.
(A1): s =0 (mod2). We choose d € d(T') such that

1 -1

Miym—1(d) =
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5i,s+m = _17 0<:i< k;
(Si’i:—l, k+1<1<s;
dij =1, otherwise,

where 1 <k <s. Thenry =k—1+m—1, 1 <k < s. Choose d € d(T)
such that

1 -1
1 1
My(d) =
1
1 _
11
dii = —1, 2<i<s—1;
5i=i:5i75+m:_17 S+h+1 SZSS—i—m—l’
0,s+m = —1;
dij =1, otherwise,

where 0 < h < m — 1. Thus r4 can be any integer h for 0 < h < m — 1.
Since the product of all entries in any of the first s rows is —1 and s is even,
ry <s+m—2. Hence 0 <ry <s+m — 2.

(A2): s =1 (mod2). With the above constructions, we have 0 < 4 <
s +m — 2. It is sufficient to show that r4 = s +m — 1 for some M(d). In
fact, if we choose d € d(T') such that

11
0i;j=—1,1<i<sand1<j<s;
0;; =1, otherwise
and apply an elementary operation (III) with ¢ = 2, then M (d) is equivalent
to a matrix with all entries 1. So r4y = s +m — 1.

CaAseE (B): T' = 2(m,n,0,0) with m +n > 3: We have d # 1 (mod38)
and 2 ¢ NF. Suppose that S = {p1,...,pn,l1,...,lm—1} is a system of
\/-representatives.
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(B1): n = 0 (mod2). Then d/2 = 1 (mod4). Choose d € d(T) such
that

-1 -1
-1 -1
-1 -1
-1 -1
-1 —1
MkJre(d) = 1 7i
1 1
1 1
-1 —1
-1 -1
5ii = —1, 0<i< 2k
biip1 = (—1)", 0 <i < 2k;

Siic1= (1)L 0<i<2k;

(51'71‘ = 5i,n+m = —1, 2k +1 < ) <n
ornt+e+1<i<n+m-—1;

di; =1, otherwise,

\

where 0 <k <n/2and 0 <e <m — 1. When k < n/2 — 1, multiplying the
nth row by all rows 2j (j =1,...,k) and rows 2k + 1 to n — 1, we see that
it will be

(_17’1,’ 1m).

When k£ = n/2, multiplying both rows n — 1 and n by all rows 2j5 (j =
1,...,k—1), one can see that they will be

(_17’1,’ 1m).

Applying an elementary operation (III) with e = 2, we see that the above
rows will become totally 1. It follows that ry = k+e+1,ie. 1 < ry <
n/2+ m.

Finally, by Lemma 3.1 one can easily prove that r4 < n/2 4+ m + 1 for
any choice of M(d).

(B3): n =1 (mod2). Then d/2 =3 (mod4). Choose d € d(T) such that
Mk+e(d) is
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T P I 1
1 1 =1 —1 cev ven oo e e e =11 - 1
1 1 =1 —1 cev ven e e e e =11 - 1
1 1 1 1 =1 oo vve vee e e =11 - 1
B ~11- 1
1 1 =1 «+v --- -11 - 1
S ~11- 1
1 .. —-11- (—1)2k+1
~11 - (_1)7L+1
1- 1
1 1
-1 -1
-1 -1
(6ii = (1), 1 <1 <2k
5z',j:_1, 1<i<y<ny
51'71':—1, 2k+1§z§n,
Simim = (1)1 2k+1<i<m
0ii = 0imtm=—1,n+e+1<i<n+m-—1;
dij =1, otherwise,

where 0 < k < (n—1)/2 and 0 < e < m—1. Applying elementary operations
(I) and (II), we have the following equivalent form:

-1 -1 1
-1 -1 1

Moo (d) =2 4 -

-1 -1
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Sii=—1, 1<i<2k;

Siiv1 = (=1)%, 1 <i < 2k;

(51'71‘_1 = (—1)i_1, 1< < Qk;

5i,i:5i,n+m:_1a 2k +1 §z’§n—1
orn+e+1<i<n+m-—1;

5n,n = _1;

L 0ij = 1, otherwise,

where 0 < k < (n—1)/2,0 < e < m—1. Multiplying row n by all rows 2[ —1

(l=1,...,k) and rows 2k+1 to n—1, we see that it will be (—1-",1-"™). It

will become a totally 1 row after an elementary operation (III) with e = —2.
Sory=k+e+1,ie,1<ry <(n—1)/2+m. Note that if we put d,, , = 1,
On,n+m = —1 in the above matrix when k = e = 0, then r4 = 0.

When m > 1, the fact that r4 < (n—1)/24+m+1 follows from Lemma 3.1.
When m = 0, consider the n x n matrix M= (Mo(éd)), where the row vector

a is the sum of all rows of M(d). By Lemma 3.2 we have ry < (n—1)/2+1.
Hence, for this type, 0 <74 < (n—1)/2 +m.
Case (C): T = 2(m,0,0,t) with m +t > 3: We have d = 1 (mod38)
and d = u? — 2w, u,w € Z. Let S = {r1,..., 70,11, ..., lm_1,u+Vd} be a
system of s/-representatives. We write

_( N@
(N0 ),
where the submatrix N(d) is of size (t +m — 1) X (t +m), and the last row
is arranged to correspond to u + v/d.

(C1): t = 0 (mod2). Then d/2 = 1 (mod4). By Lemma 3.3, we have
ry <t/24 m. Choose d € d(T') such that Nii4(d) is

B L P [ RO |
S T R [N TP, |
S T T S [ TR |
T 1 1 1 =1 cev oo e e e 1T oo e e e e 1
-1 =1 --- - 11 -- —1

1 1 =1 - 11 - -1

-1 e 211 -- e 1

1. =11-- S (—1)%F

1 (,1)75

1 1

1 1

-1 -1
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(6, = (—1)F, 1<i<2k;
51”':—1, 1§i<j§t;
(51'72':—1, 2k +1 <14 <t
Oit+m = —1, 1 <i<2k;

Siprm = (=1)%,  2k+1<i<t
0ii = 0igym =L t+h+1<i<t+m-—1;
dij =1, otherwise,

where 0 < k < /2 and 0 < h < m — 1. By elementary operations (I) and
(IT), we have the following equivalent form:

-1 -1 1
-1 -1 1

NkJrh(d) = -1 -1

0ii = —1, 1 <i<2k;

Siiv1 = (—=1)%, 1<i<2k;

Sii1 = (1)1 1< < 2k;

ii=0Oitam=—1,2k+1<i<t—1
ort+h+1<i<t+m—1;

6t,t = —1;

0ij =1, otherwise,

\
where 1 <k <t¢/2and 0 < h < m— 1. One can easily check that r4 = k+h
for the above choice. So, by assumption, we may choose the last row of M (d)
such that 1 < ry <t/2+m.

(C2):t=1 (mod2). Then d/2 = 3 (mod4). This is the same as the case
t =1 (mod2) of case (C).

Case (D): T = 2(m,n,s,0) with m +n +s > 3: Then 2 ¢ NF.
Suppose that S = {p1,...,Pn,q1,---,qs,l1,...,lm—1} is a system of /-
representatives. Deal with M (d) as in case (B).
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(D1): » = 0 (mod2). Then d/2 = 1 (mod4). With suitable choices of
M(d) as in cases (A) and (Bp), we can easily check that r4 can be any
integer k with

n/2+s+m if s =1 (mod2);
1<k <
- n/2+s+m-—1 if s=0 (mod2).

It follows from Lemma 3.1 that r4 < n/2+s+m+1if s = 1 (mod?2).
On the other hand, when s = 0 (mod2), the product of all entries in any
of the first n rows of M(d) is 1 and the product of all entries in row ¢
(i=n+1,...,n+s)is —1. By Lemmas 3.1 and 3.2, one can easily prove
that ry < n/2+ s+ m.

(D2): n =1 (mod2). Then d/2 = 3 (mod4). By a similar discussion to
that in case (B2), the number of totally 1 rows in the first n rows of M (d)
can range from 1 to (n—1)/2+1.If s =1 (mod 2), by a similar construction
of M(d) to that in case (Ag), the number of totally 1 rows in the first n + s
rows is (n —1)/2+s+1. Sol1<ry <(n—1)/2+4+ s+ m. Now, we assume
s =0 (mod 2). We want to verify that r4 can be (n —1)/2 + s+ m. In fact,
choose d € d(T) such that

-1 -1 1 1--- 11
-1 -1 1 1--- 11 T
1-1 1 1. 11 -1
-1 1 1. 11 -1
~ -1 —1 —-11 1
M(d): -1 -1 1 1
-1 -1 11 1
1
11
512— 1, 1§z§n,
511—0—1 ( 1), 1<1<n—1;
i = (- 1)’1 1<i<n-—-1;
5n -1, n+1<j<n+s;
5w: -1, n+l<i<n+sand1l<j<m;
L 0ij = 1, otherwise.

Hence r4 = (n—1)/2+ s+ m. So, for this type, r4 can be any integer k with
1<k<(n—-1)/24 s+ m. Note that r4 < (n —1)/2+ s+ m is ensured by
Lemma 3.1.
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Case (E): T = 2(m,0,s,t) with m + s+t > 3: Suppose that S =
{ri, s, q1, -y qs, 1, ..., Lim—1} is a system of s/-representatives. Deal
with M (d) as in case (D).

(E1): t =0 (mod2) and s = 0 (mod2). Then d/2 = 1 (mod4). With
similar choices of entries of M (d) to those in cases (A1) and (B2), we find
that r4 can be any integer k with 1 <k <t/2+ s+ m — 2. Taking n =0 in
Lemma 3.3(i), we can prove that r4 < t/2+ s+ m — 1. Now we are going to
show that 74 can be t/2 4+ s+ m — 1. Consider the matrix

-1 -1 1

-1 -1 1

11 1

-1 -1 ~1

M(d) = 1 -1

1 1

1 1

11
0i; = —1, 1< <t
biiv1 = (1), 1<i<t
Sii1= (-1t 1<i<t

5i,t+s+m:_1a t<i<t+s;

dij =1, otherwise.

Multiplying row t by row ¢ + 1, we obtain an equivalent form
-1 -1 1
-1 -1 1

1 -1 1
1 -1 1

51'71':—1, 1§i§t;
Siiv1 = (1), 1<i<t
51'71'_1 = (—1)1'71, 1< <t
Oitrstm = —1, t+1<i<t+s;
05 =1, otherwise.
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Hence 74 = t/2 4+ s + m — 1. So, for this type, we have 1 < ry <
t/2+s+m—1.

(E3): t =0 (mod2) and s =1 (mod2). Then d/2 =1 (mod4). It follows
from Lemma 3.1 that 4 < /2 + s+ m. Choose d € d(T') such that

-1 -1 1 =11--- 1
-1 -1 1. 11--- 1
-1 -1 1 11 1
-1 -1 1 11
-1 1 11 -1
Mio+n(d) = -1 1 11 -1
-1 -1
_1_1 Nh(d)
1 -- 1
1 1
8ii = —1, 1<i<2k;
Siir1 = (—1)7, 1<i<2k;
Siim1 = (—1)"1, 1 <i<2k;
0ii = Oippsym = —1, 2b+1 <1<t
015 = —1, t+1<j<t+s;
dij = —1, t+1<i<t+sand1<j <t
dij =1, otherwise,

where 0 < k < ¢/2 and the submatrices Nj, (0 < h < s+ m — 1) are the
same as in case (Ag). Then ry =k +h+1,1e.,1<ry <t/2+ s+ m.
(E3): t =1 (mod2). Then d/2 =3 (mod4). Choose d € d(T') such that

1 =1 e e 1
1 =1 e e 1
1 -1 1
-1 -1 1
My (d) = ! !
1 1
1. 1
: : Ny,
1 1
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;i = —1, 1 <i < 2k;

Siit1 = (—1)%, 1<i<2k;

Sii1 = (=1) 1, 1<i<2k;

0ii = Oitrstm = —1, 2k+1 <0 < t;
[ dij =1, otherwise,

where 0 < k < (¢t — 1)/2 and the submatrices N, (0 < h < s+ m — 2 if
siseven,or 0 < h < s+m—1if sis odd) are the same as in case (A).
When s is odd, we have 1 < ry < (t—1)/2+ s+ m — 1. Furthermore, taking
k = (t —1)/2 and putting 6;4 = 0t t4s+m = 1 in the above sign matrix, we
have r4 = (t — 1)/2 4+ s + m. Now we assume that s is even. It follows from
the above choices of M (d) that 1 <ry < (t—1)/24+ s+ m — 2, and ry is
(t—1)/2+s+m—1if we take k = (t —1)/2 and put ¢+ = ¢ t4s4m = 1 in
the above sign matrix. Choose d € d(T') such that

—1 -1 1 -1--+-11--- 1
-1 -1 1 1--- 11- 1
R T S
-1 -1 1 1-- 11-- 1
~ 1 1- 11 1
M(d): -1 -1 1. 11-- 1
-1 -1 il 01
1. 1
11
Siip1 = (1), 1<i<t—1;
Siim1 = (-1 1<i<t—1;
o1 = —1, t+1<j<t+s;
0ij = —1, t+1<i<t+sand1<j5 <4,
di; =1, otherwise.

Then we have ry = (t —1)/2 4 s + m.
So, for this type, Lemma 3.1 implies that 1 <7y < (t —1)/2+ s+ m.

Case (F): T = 2(m,n,0,t) with t +n+m > 3: Let S = {ry,...,m,
Ply-esPnyl1,- -« lm—1} be a system of s/-representatives.

(F1): t+n =1 (mod2). Then d/2 = 3 (mod4). Applying elementary
operations (I) and (II) to M(d), we see from Lemma 3.1 that the number
of totally 1 (or totally —1) rows in any equivalent form of M(d) is no more
than (t +n + 1)/2 + m. Suppose that M’(d) is one of equivalent forms of



254

X. B. Yin et al.

M (d) whose number of totally 1 (or totally —1) rows is (t+n+1)/2+m. If
(1t =17 1) or (=11, 1-+"T™) appears in M'(d), then by an elementary
operation (IIT) we can obtain an extra totally 1 row. So r4 < (t+n+1)/2+m.
Now we show that every value of r4 between 1 and (t+n+1)/2+m occurs.
First assume that t = 1 (mod 2). With a similar argument to that in case (B),

we choose d € d(T') such that My ..x(d) is equivalent to

-1 -1
-1 -1

-1 -1
-1 -1
-1

— =

-1

-1 -1
-1 -1

-1 -1
-1 -1

\

5i,t+n+m = _17

di; =1,

1<i<t+n

1 -1

ort+n+h+1<i<t+n+m-—1;

1 <i <2k

)

Y1 < < 2k;

Vol 41 <i <t 2e;
)

t+1 <1< t+ 2e;

1<) <t

2k+1 <3<t
ort+2e+1<:<t+n

ort+n+h+1<i<t+n+m-—1;

otherwise,

where 0 < k< (t—1)/2, 0<e<n/2and 0 <h <m—1. When e =n/2,
multiplying both rows t+n—1 and t+n by allrows t+2i (i = 1,...,n/2—1),
we obtain a new equivalent form of My.in(d) whose (t + n — 1)th and
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(t + n)th rows both are

(1...t’ _1...n7 1m)
By an elementary operation (III) with e = 2, they will be totally 1. Therefore
one can easily check that r4 = k + e + h + 1 for the above choices. So
1<ry < (t+n+1)/24+m—1.If wetake k = (t—1)/2, e =n/2, h=m—1and
Ott = Ot t4n+m = 1 in the above sign matrix, we obtain r4 = (t+n+1)/2+m.

Similarly, we can prove that 1 < ry < (t+n+1)/2+ m when t = 1
(mod 2).

(F2): t+n =0 (mod2). Then d/2 =1 (mod4). A similar argument to
those in cases (B) and (E) implies that the number of totally 1 rows in the
equivalent forms of M (d) can range from 1 to (¢t + n)/2 + m. So, for this
type, by Lemma 3.3 we have 1 <7y < (t +n)/2+ m.

CASE (G): T = 2(m,n, s,t) with m +n+ s+t > 3: Suppose that S =
{1, T, P13 Dy @y -+ 5 sy 1y - -5 lm—1} 1S a system of s/-representa-
tives. Since the upper bound can be determined by Lemmas 3.6 and 4.1, it
suffices to show that every value of r4 between the lower and upper bounds
can occur.

(G1): s =0 (mod 2). We consider the following subcases:

(G11):t+n =1 (mod2). Then d/2 = 3 (mod4). First assume that ¢t = 0
(mod 2). We choose d € d(T') such that Mj ey rin(d) is equivalent to

—1-1 1
1.1 1
11 1
11 1
—1 -1
1 -1
L e e e =1 =1 =1 1. =11--- 1
ST 1 R R 1. 11--- 1
1.1
1.1 1o 11 1
~1 1o 11----1
-1 1o 11----1
1 1 1l 1. 11-- 1
-1 - -1
e Npon
1 1
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(5,‘71‘:—1, 1§i§t+n;
Siip1 = (1), 1<i<2k
ort+1<1<t+ 2e;
Siic1= (1)1 1<i<2k
ort+1<1<t+ 2¢
Op41,5 = —1, 1<j<t
ort+n+1<j53<t+n+s;
Oittntstm = —1, 2k +1 <i <t
ort+2e+1<i<t+n-—1;
0ij = —1, t+n+1<i<t+n+4+sandt+1<7<t+n;
05 =1, otherwise,

\

where 0 < k <t/2 and 0 < e < (n —1)/2, and the submatrix

1 111 1
-1 “1|1 1
—1 1
—1]1 1
Nyip = - .
SR
-1 ... -1
1 -1
di; = —1, 1<i< fand 1 <5 <s;

0ii = Oitintstm = —1, f+1<i<s
ors+h+1<i<s+m-—1;
dij =1, otherwise,
where 0 < f < sand 0 < h < m — 1. Note that, multiplying row ¢ + n

by all rows 2i (1 = 1,...,k,t+1,...,t 4+ ¢e) and rows k + 1 to ¢, and then
multiplying it by rows e+ 1 to t +n — 1, we easily see that row ¢ +n will be

(_1‘..t+n’ 1‘..s+m).

Applying an elementary operation (III) with ¢ = —1, one can see that it
will become totally 1. By Lemma 4.1, we have ry = k+e+ f+ h+ 1, ie.,
1<r<({t+n-1)/2+m+s.

When ¢t is odd, with a similar choice of entries of M (d) as above, we can
show that 1 <7y < (t+n—1)/24+m+s.



Tame kernels of quadratic number fields 257

(G12): t=n =0 (mod2). Asin cases (E;) and (G11), we can check that
the number of totally 1 rows in the equivalent forms of M (d) can range from
lto(t+n)/24+s+m—1.801<ry<(t+n)/2+s+m—1.

(G13): t = n =1 (mod2). With a similar argument to those in cases
(B2) and (G11), one can easily verify that the number of totally 1 rows in
the equivalent forms of M (d) can range from 1 to (¢t +n)/2 + s + m. The
assertion that r4 can be (t +n)/2 + s + m follows from putting

-1 -1 11—1 ~1l=1 --- =11 |
1 -1 11 1 11 1 ... 11 a1
-1-1 1 :
-1-1 1 :
1 1 1 1 11 1
-1 -1
-1 -1
M(d) =
-1 -1
-1 -1
1
-1 -1 -1 ~11 1
-1 -1 1 11 -1
1 1
11
(0, = —1, 1<i<t—1

ort+1<1<t4+n—-1
ort+n+1<i<t+n+s;
Y, 1<i<t—1;
Siii1= (-1 1<i<t—1;
YLt 1 <i<t+n-—1;
-1 t+1<i<t+n-1;
0ij = —1, t+n+1<i<t4+n+sand1 <5<t
ort+n+1<:1<t+n-+s
andt+n+1<j5<t+n+s;
0 =—1 t+1<j<t+n+s;

dij =1, otherwise.
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(G2): s =1 (mod?2). We consider the following subcases:
(Go1):t+n =1 (mod2). Then d/2 =3 (mod4). First assume that t = 1
(mod 2). We choose d € d(T) such that M. fn(d) is equivalent to

-1-=1 e 1
—1-1 o1
R o
~1-1
-1 —
[ N 1
_1 “1|=1=1 e e 1
1l=1=1 | e 1
i 1
—1-1
1 _
1 1 —1| e 1
—1 -1 1
—1 _i 1
—1 1
—1 1
1 1
1
—1 —
1
0ii = —1, 1<i<t+n+s
ort+n+s+h+1<i<t+n+s+m-—1;
i1 = (1),  1<i<2k;
biim1 = (—1)"71, 1 <i <2k
Giiv1 = (—1)"71 t+1<i<t4 2
Siic1= (1), t+1<i<t+2e
Ott1,5 = —1, 1<j<t
0ij = —1, t+n+1<i<t+n+ fandt+n+1<j<t+n-+s;
5i,t+n+s+m:_17 2]{3+1§Z§t
ort+2e+1<i<t+n
ort+n+s+h<t+n+s+m-—1;
[ 0ij = 1, otherwise,
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where 0 <k < (t—1)/2, 0<e<n/2, 0< f<sand 0 < h<m-—1.
Multiplying row ¢t + 1 by all rows t +2i (i = 2,...,e) and rows t +2e+ 1 to
t 4+ n, we see that row t + 1 will be

(_1...15’ _1...7’1,’ 1...8’ 1m)

Applying an elementary operation (III) with e = —1, we see that it will
become totally 1. Note that, when e > 1, multiplying row ¢ 4+ 2 by all
rows t +2i (1 = 2,...,e) and all rows j (j =t+2e+1,...,t +n+ 1 if
f>1lorj=t+2e+1,....;t+n+sif f =0), we see that row t + 2
will be

(1...t7_1...n+s71...m)'

By an elementary operation (III) with e = 2, it will be totally 1. So,
by Lemma 4.1, we can easily check that 4 = k+e+ f 4+ h + 1 and
1<ry<(t+n-—1)/2+ s+ m for this type.

Now assume that ¢t = 0 (mod2). Choose d € d(T) such that My (d)
is equivalent to

—1 =1 1
-1 -1 1
-1 -1 1
-1 -1 1
-1 -1
-1 -1
-1 —1|1-1 -1 -1 -11 1
1 1[—-1 -1 1 11 1
-1 -1
-1 -1 -1
-1 . -1
1 1 -1 1 1 -1
-1 cee -1
~1 -1 Ny,
1 1
1 1
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(5,‘71‘:—1, 1§i§t+n;
Siip1 = (1), 1<i<2k
ort+1<1<t+ 2e;
Siic1= (1)1 1<i<2k
ort+1<1<t+ 2¢
Op41,5 = —1, 1<j<t
ort+n+1<j53<t+n+s;
Oittntstm = —1, 2k +1 <i <t
ort+2e+1<i<t+n;
0ij = —1, t+n+1<i<t+n+sandt+1<7<t+n;
dij =1, otherwise,

\

where 0 < k < t/2, 0 < e < (n —1)/2 and the submatrices N (0 <
h < s+ m — 1) are the same as in case (Ag). The previous discussion im-
plies that 1y = k+e+h+1.So1 <ry < (t+n—1)/2+ s+ m for this
type.

(Ga2): t+n =0 (mod2). Then d/2 =1 (mod4). It is easy to check that
1<ry <(t+mn)/2+4 s+ m — 1 by a similar choice of entries of M (d) to
those in cases (E;) and (Gq1).

When ¢t =n =0 (mod2), if we choose d € d(T') such that

1 -1 s RN | o1

-1 -1 T ovee oo e 11 1

-1 -1 : N :

-1 -1 T oeee oo e 11 1

-1 -1 T oeee oo e 11 1

—1 -1 T oo e enn 1|1 1
M(d) = _
-1 -1} :

1 =1 1 e e e 1|1 1

~1 T 1/—1 —1l1 1

~1 S [ 1—1 —11 1

1 -1

11
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0ii = —1, 1<i<t+m

biiv1 = (-1)", 1<i<t+mn;

iic1= (1" 1<i<t+mn;

b =—1, t+n+1<j<t+n+s;

0i; = —1, t+n+1<i<t4+n+s 1<j<t
ort+n+1<i<t+n+s, t+n+1<73<t+n+s;

05 =1, otherwise,

then ry = (t +n)/2 4+ s +m.

When t =n =1 (mod2), the procedure is analogous.

Case (H): T' = 2(m,0,0,0) with m > 3. This situation is the same as

in case (H).

This completes the proof of the theorem. m
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