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Abelian surfaces of GL2-type as Jacobians of curves
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1. Introduction. Let C/k be a smooth and irreducible projective alge-
braic curve over a field k and let (J(C), Θ) be its principally polarized Jaco-
bian variety. By Torelli’s theorem, C is completely determined by (J(C), Θ)
up to isomorphism over a fixed algebraic closure k of k. The question then
arises of whether the unpolarized abelian variety J(C) already determines
C. It turns out that the answer has its roots in the arithmetic of the ring
of endomorphisms End(J(C)) of J(C). Indeed, in the generic case where
End(J(C)) = Z, the curve C can be recovered from J(C), but as soon as
End(J(C)) ! Z, it may very well be the case that there exist finitely many
pairwise nonisomorphic curves C1, . . . , Cτ such that

J(C1) ' · · · ' J(Cτ )

as unpolarized abelian varieties. This phenomenon was first observed by
Humbert in [12], where he proved the existence of two nonisomorphic Rie-
mann surfaces C1 and C2 of genus two sharing the same simple Jacobian va-
riety. Humbert’s method was generalized by Lange in [13]. Finally, it has re-
cently been shown in [23] that there exist arbitrarily large sets {C1, . . . , Cτ},
τ � 0, of pairwise nonisomorphic curves of genus two such that J(Ci) are
isomorphic simple abelian surfaces.

The aim of this paper is to present an arithmetical and effective approach
to this question by considering abelian surfaces Af defined over Q attached
by Shimura to a newform f in S2(Γ1(N)). These surfaces are viewed as
optimal quotients of the Jacobian J1(N) of the modular curve X1(N) and
are canonically polarized with the polarization L over Q pushed out from
the principal polarization ΘX1(N) on J1(N). We provide an effective crite-
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rion for determining all their principal polarizations defined over Q and for
determining which of them correspond to the canonical polarization of the
Jacobian of a curve.

In Section 2, we consider abelian varieties A of GL2-type over k, i.e. such
that their algebra of endomorphisms F = Q⊗Endk A is a number field of de-
gree [F : Q] = dimA. In Theorem 2.10, we determine the set of isomorphism
classes of principal polarizations on A over k in an explicit and computable
way, while in Corollary 2.12 we provide necessary and sufficient conditions
for A to be principally polarizable over the base field of definition k.

Section 3 is devoted to the study of abelian surfaces of GL2-type over a
number field k and their principal polarizations from an arithmetical point
of view. As we discuss in detail, these questions are closely related to the
problem of finding nonisomorphic curves whose Jacobian varieties are pair-
wise isomorphic as unpolarized abelian varieties. One of our main results
can be rephrased as follows.

Theorem 1.1. Let A be a principally polarizable abelian surface over Q
such that EndQA = R is an order in a quadratic field. Let R0 be the subring
of R fixed by complex conjugation. Then:

(1) If either R0 = Z or R∗ contains a unit of negative norm, there is a
single isomorphism class of principal polarizations on A over Q.

(2) Otherwise, there are exactly two isomorphism classes of principal
polarizations on A over Q. More precisely , either

• there exists a curve C/Q of genus two and an elliptic curve C ′

over a quadratic extension K of Q such that A is both isomorphic
to J(C) and to Weil’s restriction ResK/Q(C ′) of C ′ as unpolarized
abelian surfaces over Q, or
• there exist two curves C, C ′/Q of genus two nonisomorphic over
Q such that A is isomorphic over Q to their Jacobian varieties.

As a consequence, we prove the existence of infinitely many abelian sur-
faces A/Q of GL2-type which are simultaneously the Jacobian variety of a
curve C/Q of genus two and Weil’s restriction of an elliptic curve over a
quadratic field.

In the last section explicit examples are presented. First, we summarize
well known results about modular abelian varieties arising from modular
newforms; in the rest of the section we show how our results can be effectively
applied to abelian surfaces arising from newforms of trivial Nebentypus by
using the procedure described in [3], which allows us to obtain an equation
of a genus two curve from a period matrix in a symplectic basis. In this way,
we construct an explicit example of two nonisomorphic (over Q) curves C,
C ′/Q of genus two such that their Jacobian varieties are isomorphic over
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Q to an absolutely simple quotient of the Jacobian of the modular curve
X0(65). We also provide explicit examples of curves C of genus two over
Q whose Jacobian variety J(C) is of GL2-type and isomorphic to Weil’s
restriction over Q of an elliptic curve E over a quadratic field. Finally, we
exhibit several pairwise nonisomorphic curves Ci/Q of genus two such that
their respective Jacobian varieties J(Ci) are mutually isogenous over Q.

Alternative methods to ours were proposed by Howe ([9], [8]) and Vil-
legas ([22]) and explicit equations of similar phenomena have been given
in [10] and [11]. However, Howe’s examples correspond to abelian varieties
which decompose as the product of elliptic curves with complex multipli-
cation (CM). As he remarked himself in [10], no explicit examples were
known of absolutely simple abelian varieties which could be realized as the
simultaneous Jacobian variety of several nonisomorphic curves.

Acknowledgements. The third author thanks Gabriel Cardona for
some useful comments on an earlier version of the paper.

2. Abelian varieties of GL2-type

2.1. The Néron–Severi group of an abelian variety. We begin by recall-
ing some basic facts on abelian varieties (cf. [17], [18]). Let k be a field, ks a
separable closure of k and let Gk = Gal(ks/k). For any field extension K/k,
let AK = A ×k K be the abelian variety obtained by base change of A to
SpecK. Let Pic(A) be the group of invertible sheaves on A, Pic0(Aks) be the
subgroup of Pic(Aks) of invertible sheaves algebraically equivalent to 0 and
Pic0(A) = Pic(A) ∩ Pic0(Aks). The Néron–Severi group of A is NS(A) =
Pic(A)/Pic0(A). We shall denote by NS(Aks)Gk = H0(Gk,NS(Aks)) the
group of k-rational algebraic equivalence classes of invertible sheaves. Note
that in general not all elements in NS(Aks)Gk are represented by an element
in Pic(A).

For any P ∈ A(ks), let τP denote the translation by P map on A. Every
invertible sheaf L ∈ NS(Aks)Gk defines a morphism ϕL : A → Â over k
given by ϕL(P ) = τ ∗P (L) ⊗ L−1, which is an isogeny if L is nondegenerate.
A polarization on A defined over k is the class of algebraic equivalence of
an ample invertible sheaf L ∈ NS(Aks)Gk . Equivalently, a polarization on A
over k is an isogeny λ : A → Â defined over k such that λ ⊗ ks = ϕL for
some ample line bundle L on Aks .

A nondegenerate invertible sheaf L on A induces an anti-involution on
the algebra of endomorphisms

∗ : Q⊗ Endk A
∼→ Q⊗ Endk A, t 7→ ϕ−1

L · t̂ · ϕL.
Let Ends

k A = {β ∈ Endk A : β∗ = β} denote the subgroup of symmetric en-



266 J. González et al.

domorphisms and Ends
k+A be the set of positive symmetric endomorphisms

of A.
From now on, we assume that k is a subfield of a fixed algebraic closure

Q = k of Q.

Proposition 2.1. Let A/k be an abelian variety and let L ∈ NS(Ak)
Gk

be nondegenerate. Then, for any endomorphism t ∈ Ends
k A, there exists a

unique L(t) ∈ NS(Ak)
Gk such that ϕL(t) = ϕL · t. The following properties

are satisfied :

(i) Let E and Et denote the alternating Riemann forms attached to L
and L(t) respectively. Then

Et(x, y) = E(x, ty) = E(tx, y).

(ii) If t is a totally positive element , then L is a polarization if and
only if L(t) is.

(iii) For any t ∈ Ends
k A and d ∈ Z, t∗(L) = L(t2) and L(d) = L⊗d.

Proof. Let A(C) = V/Λ for a complex vector space V and a lattice Λ.
Since the involution induced by L on Ends

k A is the identity map, it may be
checked that, for any endomorphism t ∈ Ends

k A, Et : V × V → R, (x, y) 7→
E(tx, y) = E(x, ty) is again an alternating Riemann form on A. Then, by
the Appell–Humbert theorem, there exists a unique invertible sheaf L(t) up
to algebraic equivalence such that EL(t) = Et. It follows from the analytical
representation of the morphism ϕL in terms of E that ϕL(t) = ϕL ◦ t. Since
both t and L are defined over k, the same holds for L(t).

As for (ii), let us denote by H the hermitian form on V attached to L.
Then the matrix of the hermitian form Ht attached to L(t), with respect to
any basis of V , is the product of the matrices of H and t. Since t is a self-
adjoint endomorphism on the hermitian space (V,H), there is an orthogonal
basis of V over which t has diagonal form. It is clear that if t is totally
positive, then Ht is positive definite if and only if H is.

Finally, we know that for any endomorphism t ∈ Ends
k A and any invert-

ible sheaf L on A, Et∗(L)(x, y) = E(tx, ty) = E(t2x, y) = EL(t2)(x, y) and
thus t∗(L) = L(t2). Since EL⊗d = dE, we also have L(d) = L⊗d.

Remark 2.2. Note that our construction of L(t) extends to arbitrary
t ∈ Q⊗ Endk A to produce elements L(t) ∈ Q⊗ NS(Ak)

Gk .

Theorem 2.3. Assume there exists a principal polarization L0 on A de-
fined over k and let Ends

k A denote the subgroup of symmetric endomor-
phisms with respect to L0. Then there is an isomorphism of groups

ε : NS(Ak)
Gk ∼→ Ends

k A, L 7→ ϕ−1
L0
· ϕL,
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such that L ∈ NS(Ak)
Gk is a polarization if and only if ε(L) ∈ Ends

k+A and

it is principal if and only if ε(L) ∈ Auts
k+A. Moreover , ε−1(t) = L(t)

0 .

Proof. The first part of the theorem is well known if we replace k by k. It
is clear that if L0 ∈ NS(Ak)

Gk , then ε(L) ∈ Ends
k A for any L ∈ NS(Ak)

Gk .
From the relation

ε(L(t)
0 ) = ϕ−1

L0
· ϕL(t)

0
= ϕ−1

L0
· ϕL0 · t = t,

we conclude that the morphism ε is surjective and the statement is imme-
diate.

Definition 2.4. We shall say that two polarizations L1, L2 defined over

a field extension K/k are K-isomorphic, L1
K' L2, if there exists u ∈ AutK A

such that u∗(L2) = L1. We denote byΠ(Ak) the set of k-isomorphism classes
of principal polarizations on Ak defined over k, i.e.,

Π(Ak) = {principal polarizations L defined over k}/ k' .
Proposition 2.5 ([17]). The set Π(Ak) is finite.

We will denote by π(Ak) its cardinality. Two positive symmetric endo-
morphisms β1, β2 ∈ Ends

k+A are equivalent, β1 ∼ β2, if β1 = β∗β2β for some
β ∈ Autk A. The next result follows from Theorem 2.3.

Corollary 2.6. The morphism ε induces a bijection of finite sets

Π(Ak)↔ Auts
k+A/∼ .

2.2. Polarizations on abelian varieties of GL2-type. We now describe
explicitly the isomorphism of Theorem 2.3 for a certain class of abelian
varieties. This will provide a procedure for determining all isomorphism
classes of principal polarizations on them in a computable way. We will
illustrate it with several examples in Section 4.

Definition 2.7. An abelian variety A is of GL2-type over a field k if
A is defined over k and Endk A is an order in a number field F of degree
[F : Q] = dimA. If F is totally real, we then say that A is of real GL2-type
over k.

Remark 2.8. By Albert’s classification of involuting division algebras
(see [18]), the algebra of endomorphisms F = Q ⊗ Endk A of an abelian
variety A of GL2-type over k is isomorphic either to a totally real field or a
CM-field. The Rosati involution with respect to any polarization L on A over
k acts as complex conjugation on the number field F = Q⊗Endk A (see [18])
and it can be checked that the same holds for the involution with respect
to a not necessarily ample invertible sheaf L. In particular, Q ⊗ Ends

k A
is isomorphic either to F or to the maximal totally real subfield F0 of F ,
depending on whether A is of real GL2-type or not, and independently of
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the choice of L. This allows us in this section to refer to Ends
k(A) without

further mention of the chosen polarization.

Remark 2.9. An abelian variety A/k is said to have real multiplication
by a field F if F is a totally real field contained in Q⊗Endk A with [F : Q] =
dimA. It is clear that the condition of being of real GL2-type is stronger
than that of being of real multiplication.

The main sources of abelian varieties of GL2-type over Q are the abelian
varieties Af attached by Shimura to an eigenform f of weight 2 for the
modular congruence subgroup Γ1(N) and the real case occurs when f ∈
S2(Γ0(N)). Actually, Ribet has proved in [21] that, assuming Serre’s con-
jecture (3.2.4) of [24], these are all the abelian varieties of GL2-type over Q.

For the rest of this section, we fix the following notation. For any totally
real number field F0 and any subset S of F0, we shall denote by S+ the set
of totally positive elements of S.

The next theorem provides an explicit description of all polarizations on
an abelian variety of GL2-type.

Theorem 2.10. Let A be an abelian variety of GL2-type over k. Let
R = Endk A, R0 be the subring of R fixed by complex conjugation, F = Q⊗R
and F0 = Q ⊗ R0. Suppose that A admits a principal polarization L0 on A
defined over k and let ε be as in Theorem 2.3. Then:

(i) For any L ∈ NS(Ak)
Gk and any endomorphism s ∈ R,

degL = |NormF/Q(ε(L))|,

ε(s∗(L)) =

{
s2 · ε(L) if F = F0,

NormF/F0(s) · ε(L) if [F : F0] = 2.

(ii) The class of an invertible sheaf L ∈ NS(Ak)
Gk is a polarization if

and only if ε(L) ∈ (R0)+. In particular , L is a principal polariza-
tion if and only if ε(L) ∈ (R∗0)+.

(iii) Let P (R) be the multiplicative group

P (R) =

{
(R0)∗+/R

∗2
0 if F = F0,

(R0)∗+/NormF/F0(R∗) if [F : F0] = 2.

Then there is a bijective correspondence between the sets Π(Ak)
and P (R) and hence

π(Ak) = 2N with 0 ≤ N ≤ [F0 : Q]− 1.

The 2N isomorphism classes of principal polarizations on A over k
are represented by the invertible sheaves L(uj)

0 , where {uj}2Nj=1 is a
system of representatives of P (R).
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Proof. By Theorem 2.3, for every L ∈ NS(Ak)
Gk , there exists t ∈ R0

such that L = L(t)
0 . Thus, ε(s∗(L)) = ε(s∗(L(t)

0 )) = ε(L(sst)
0 ) = ss · ε(L),

where − denotes complex conjugation. Moreover, degL = deg(ε(L))1/2 =
|NormF/Q(ε(L))|. This yields (i).

Part (ii) follows immediately from Theorem 2.3 and part (i).
Finally, the bijection Π(Ak) ' P (R) is now a consequence of Corol-

lary 2.6. Dirichlet’s unit theorem then implies that π(Ak) = 2N for 0 ≤
N ≤ [F0 : Q]− 1. From (i) we deduce that any two polarizations L, L′ on A
defined over k are isomorphic if and only if ε(L) = uu·ε(L′) for some u ∈ R∗.
Hence, representatives of the isomorphism classes of principal polarizations
on A over k are provided by L(uj)

0 for representatives uj of P (R).

Remark 2.11. If L0 ∈ NS(Ak)
Gk is a not necessarily ample invertible

sheaf on A over k of degree 1, then the map ε : NS(Ak)
Gk → Endk A, defined

by ε(L) = ϕ−1
L0
·ϕ(L), is also an isomorphism that still satisfies ε−1(t) = L(t)

0
and part (i) of the theorem above.

Corollary 2.12. Let A be an abelian variety of GL2-type over k with
a polarization L over k of degree d ≥ 1. Then A is principally polarizable
over k if and only if there exists t ∈ (R0)+ satisfying NormF/Q(t) = d and
L(t−1) ∈ NS(Ak)

Gk .

Proof. Assume L(t−1) ∈ NS(Ak)
Gk for some t ∈ (R0)∗+ such that

NormF/Q(t) = d. Then L(t−1) must be ample, because t is totally positive
and principal, as deg(L(t−1)) = deg(L) NormF/Q(t−1) = 1. Conversely, if L0

is a principal polarization on A over k, it must be of the form L0 = L(t−1)

for some t ∈ (R0)+ whose norm from F over Q is d.

The above corollary provides an effective criterion to decide whether
a polarized abelian variety (A,L) of real GL2-type over k is principally
polarizable over k. Indeed, denote by M and T the matrices of the al-
ternating Riemann form E attached to L and t ∈ End+

k A with respect
to a fixed basis of H1(A,Z) respectively. It then suffices to check whether
M · T−1 ∈ GL2g(Z) for any t ∈ (R0)+ (up to multiplicative elements in R∗20
if F = F0 or NormF/F0(R∗) if [F : F0] = 2) such that NormF/Q(t) = d . Note
that if (A,L) is an abelian variety of GL2-type together with a polarization
L of primitive type (1, d2, . . . , dg) and degree d = d2 · · · dg, we only need to
consider those t ∈ (R0)+ of norm d such that t/m 6∈ R0 for any m > 1.

3. Abelian surfaces of GL2-type

3.1. Principal polarizations on abelian surfaces. Let C/k be a smooth
projective curve defined over a number field k and letA = J(C) = Pic0(C)/k
denote the Jacobian variety of C. The sheaf of sections of the Theta divisor



270 J. González et al.

ΘC associated to the curve is a principal polarization L(ΘC) defined over k.

For any other curve C ′/k such that A
k' J(C)

k' J(C ′), Torelli’s theorem
asserts that C and C ′ are isomorphic over k if and only if there exists
u ∈ Autk A such that u∗(ΘC′) = ΘC in NS(Ak)

Gk .
For an abelian variety A/k, this leads us to introduce the set T (Ak) of

k-isomorphism classes of smooth algebraic curves C/k such that J(C)
k' A.

Let τ(Ak) = |T (Ak)|. The Torelli map C 7→ L(ΘC) induces an inclusion of
finite sets

T (Ak) ⊆ Π(Ak).

While a principally polarized abelian surface over an algebraic closed
field can only be the Jacobian of a curve or the product of two elliptic
curves, the panorama is a little wider from the arithmetical point of view.
We refer the reader to [16] for an account of Weil’s restriction of scalars of
abelian varieties over number fields.

Theorem 3.1. Let A/k be an abelian surface with a principal polariza-
tion L defined over k. The polarized abelian variety (A,L) is of one of the
following three types:

(1) (A,L)
k' (J(C),L(ΘC)), where C/k is a smooth curve of genus two.

(2) (A,L)
k' (C1×C2,Lcan), where C1 and C2 are elliptic curves over k

and Lcan is the natural product polarization on C1 × C2.

(3) (A,L)
k' (ResK/k C,Lcan), where ResK/k C is the Weil restriction of

an elliptic curve C over a quadratic extension K/k, and Lcan is the
polarization over k isomorphic over K to the canonical polarization
of C × σC.

Proof. It is well known that (A,L) is isomorphic over k to either the
canonically polarized Jacobian variety (J(C),L(ΘC)) of a smooth curve of
genus two or to the canonically polarized product of two elliptic curves
(cf. [28]).

Let us first assume that (A,L) is irreducible. We then know that there

exists a curve C/Q of genus two such that (A,L)
Q' (J(C),L(ΘC)). Since

L = L(ΘC) ∈ NS(Ak)Gk , we claim that C admits a k-isomorphism onto all
its Galois conjugates σC for σ ∈ Gk. More precisely, if we regard C as an
embedded curve in Pic1(C), then σC = C + aσ for some aσ ∈ Pic0(C)(Q).
Indeed, this follows from the fact that the sheaves σL = L(ΘσC ) are all
algebraically equivalent and h0(L) = 1. In particular, we infer that the field
of moduli kC of C is contained in k. Let us now show that C does admit
a projective model over k. We distinguish two cases depending on whether
the group AutC is trivial or not.
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If AutC 6' Z/2Z, Cardona has recently proved that C always admits a
model over its field of moduli (cf. [1]).

We now consider the case that the hyperelliptic involution v on C gen-
erates the group of the automorphisms of C. Then, as shown by Mestre in
[15], there is a projective model C/K of C over a quadratic extension K/k.
Let σ ∈ Gk be such that σ does not act trivially on K. There is an isomor-
phism ϕσ : C '→ σC of C/K onto Cσ given by the translation by aσ map
on Pic1(C). The map Pic1(C) → Pic1(C), D 7→ D + aσ + σaσ descends to
an automorphism of C, σϕσ ◦ ϕσ, which cannot be the hyperelliptic involu-
tion v, since v = −1J(C) on J(C). As we are assuming that AutC ' Z/2Z,
we obtain σϕσ = ϕ−1

σ . Now, Weil’s criterion on the field of definition of an
algebraic variety applies to ensure that C admits a projective model over k
(cf. [27]).

Now, assume that (A,L) is reducible over k, i.e., A
k' C1 × C2 for some

elliptic curves C1 and C2. If both C1, C2 and the isomorphism are defined

over k, then (A,L)
k' (C1 × C2,Lcan). Otherwise, Ci/K must be defined

over a quadratic extension K/k and C1 = σC2 where Gal(K/k) = 〈σ〉, since
the product C1 × C2 is defined over k. This is equivalent to saying that

A
k' ResK/k(C1).

Definition 3.2. We say that a principal polarization L on an abelian

surface A over k is split if (A,L)
k' (C1 × C2,Lcan) for some elliptic curves

Ci/k. We shall denote by σ(Ak) the number of k-isomorphism classes of split
principal polarizations on A over k.

Corollary 3.3. Let A/k be an abelian surface. Then

π(Ak) = τ(Ak) + σ(Ak).

It may very well be the case that σ(Ak) ≥ 2 for some abelian surface
A/k. This amounts to saying that A ' C1 × C2 ' C3 × C4 as unpolarized
abelian varieties for two different nonordered pairs of elliptic curves (C1, C2)
and (C3, C4) (cf. [14, p. 318]).

3.2. Principal polarizations on abelian surfaces of GL2-type. We now
focus our attention on abelian surfaces of GL2-type. As an immediate con-
sequence of Theorem 2.10, we obtain the following.

Corollary 3.4. Let A be a principally polarizable abelian surface over
k such that Endk A = R is an order in a quadratic field F . Then

π(Ak) =
{

2 if F is real and all units in R have positive norm,

1 otherwise.
Since every abelian variety of GL2-type over k is simple over k, note that
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the second possibility of Theorem 3.1 cannot occur when the surface is of
this type. The following definition was first introduced in [2].

Definition 3.5. An elliptic curve C/k is a k-curve if C is isogenous
to all its Galois conjugates Cσ, σ ∈ Gal(k/k). A k-curve C is completely
defined over an extension K/k if C is defined over K and it is isogenous
over K to all its Galois conjugates.

Lemma 3.6. Let A be an abelian surface of real GL2-type over k, which
is k-isogenous to the Weil restriction ResK/k C of an elliptic curve C/K,
where K/k is a quadratic extension. Then C is a k-curve completely defined
over K, its j-invariant j(C) 6∈ k and Q⊗ EndK A is isomorphic to M2(Q).

Proof. Let σ be the nontrivial automorphism of Gal(K/k). We have
Q ⊗ EndK C = Q and there is an isogeny µ : C → σC defined over K,
since otherwise F = Q⊗ Endk A must be either Q or contain an imaginary
quadratic field. Therefore, C is a k-curve completely defined over K and
µ ◦ σµ ∈ Q. Then Q ⊗ EndK A ' M2(Q) and µ ◦ σµ = ±deg µ. Since
F is a totally real quadratic field, µ ◦ σµ = degµ and F = Q(

√
degµ).

Consequently, µ cannot be an isomorphism and hence j(C) 6∈ k.

Proposition 3.7. Let C1, C2 be two elliptic curves defined over the
quadratic fields K1, K2 respectively. If ResK1/Q(C1) and ResK2/Q(C2) are
Q-isomorphic and they are of real GL2-type over Q, then K1 = K2 and C1

is isomorphic over K1 either to C2 or to its Galois conjugate.

Proof. Let A = ResKi/Q(Ci). First, we show that K1 = K2. If Ci does
not have complex multiplication, we then know by the previous lemma that
Q⊗EndKi A = Q⊗EndQ A 'M2(Q) and hence Q⊗EndK1∩K2 A 'M2(Q).
It follows that K1 = K2.

Assume then that both C1 and C2 have complex multiplication by the
same imaginary quadratic field L because C1 and C2 must be isogenous.
Again by the lemma, Ki = Q(j(Ci)). We have j(Ci) = j(ai) for an invertible
ideal ai of the order End(Ci) of L. Since Ki is quadratic, the ideal classes of
ai and a−1

i are equal, and therefore, j(ai) = j(a−1
i ) = j(ai) = j(ai), where

denotes the complex conjugation. It follows that Ki = Q(j(Ci)) is a real
quadratic field. Assume that K1 6= K2 and let Gal(Ki/Q) = 〈σi〉. Since
C1 × Cσ1

1 ' C2 × Cσ2
2 over K1 ·K2 but not over Ki, there exists an isogeny

µ : C1 → C2 defined over K1 ·K2 but not over Ki. Let τ ∈ Gal(K1 ·K2/Q)
be the automorphism which does not act trivially over K1 or over K2. Then
µ̂ = µ × τµ ∈ Q ⊗ EndK1·K2 A \ Q ⊗ EndKi A. Denote by A the Q-algebra
generated by Q⊗ EndKi A and µ̂. From the inclusions

Q⊗ EndKi A 'M2(Q) ( A ⊆ Q⊗ EndQA 'M2(L),

we obtain A = Q ⊗ EndQA and, thus, all endomorphisms of A are defined
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over K1 · K2. In particular, Q ⊗ EndK1·K2(Ci) ' L, but this leads to a
contradiction since the totally real field K1 ·K2 cannot contain L. Therefore,
K1 = K2.

Set K = Ki, C = C1 and Gal(K/Q) = 〈σ〉. Now, we will prove that
C is isomorphic either to C2 or to σC2 over K. Denote by π : A → C the
natural projection over K, so that kerπ = σC. Then the period lattice of C
is Λ = {

�
γ π
∗(ω) | γ ∈ H1(A,Z)}, where ω is the invariant differential of C.

Given α ∈ Q ⊗ EndK A, we will denote by Λα the set {
�
γ α
∗(π∗(ω)) | γ ∈

H1(A,Z)}. When α∗(π∗(ω)) 6= 0, Λα is the period lattice of a certain elliptic
curve over K; these lattices cover all the K-isomorphism classes of elliptic
curves which are optimal quotients of A over K. We will prove that all these
classes are also obtained when α only runs over F ∗. Let w ∈ EndK A be the
composition of the morphisms

A
π→ C

i
↪→ A = C × σC,

where i is the natural inclusion. We have w∗H0(A,Ω1
A/K) = Kπ∗(ω) and

w2 = w. Moreover, Q⊗ EndK A = F ⊕ w · F since w 6∈ F and Q⊗ EndK A
is a F -algebra of dimension 2. Now, it suffices to use the equality w · Q ⊗
EndK A = w · F . Since for every integer m 6= 0, the classes corresponding
to Λα and Λmα are isomorphic, we can assume that α ∈ EndQA and in this
case Λα is a sublattice of Λ.

There exists a cyclic isogeny between C and σC over K of a certain
degree n, which extends to an endomorphism β ∈ EndQA with the following
properties:

(1) β restricted to σC (resp. C) provides a cyclic isogeny between σC
and C (resp. C and σC) of degree n.

(2) Λβ is the period lattice of the elliptic curve isomorphic to σC over
K which satisfies Λ/Λβ ' Z/nZ.

(3) β2 = n, F = Q(β), and moreover, for all integers m > 1 we have
β/m 6∈ EndQA.

(4) Due to the previous step, β also provides a cyclic isogeny between
σC2 and C2 of degree n.

(5) For all integers a, b we have Λa+bβ = aΛ+ bΛβ.

Let Λα be a lattice corresponding to the K-isomorphism class of C2 and
write α = a + bβ with a, b integers which we can assume to be coprime.
We can also assume that a, b 6= 0, since otherwise the statement is obvious.
Set d = gcd(a, n). Using the fact that Λ/Λβ ' Z/nZ, it can be checked that
Λα = aΛ + bΛβ is the sublattice dΛ + Λβ of Λ of degree d. Then we can
take a = d and b = 1. Now, we can see that Λα·β = nΛ+ dΛβ is a sublattice
of Λα of degree d · n. Therefore, d must be 1 and C and C2 are isomorphic
over K.
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Corollary 3.8. Let A be a principally polarizable abelian surface of
GL2-type over Q. Then σ(AQ) ≤ 1 and , in particular ,

τ(AQ) =

{
π(AQ)− 1 if A

Q' ResK/QC for a Q-curve C/K,

π(AQ) otherwise.

Remark 3.9. Note that if EndQA = EndQA, then π(AQ) = π(AQ) and
τ(AQ) = τ(AQ). Furthermore, if τ(AQ) = 2 then the two curves over Q
which share A as Jacobian are nonisomorphic over Q.

Now, Theorem 1.1 is a consequence of Corollaries 3.4 and 3.8.

Corollary 3.10. There are infinitely many genus two curves over Q
such that their Jacobians are of real GL2-type and isomorphic to the product
of two elliptic curves as unpolarized abelian varieties.

Proof. As a consequence of Corollary 3.4 and Corollary 3.8, for every
quadratic Q-curve C such that A = ResK/QC is of real GL2-type and the
order EndQA contains no units of negative norm, there is a genus two curve
over Q whose Jacobian is isomorphic to A as unpolarized abelian varieties.
Fix d = 3 or 7. It is known that for every quadratic field K there exists a
Q-curve C ′/K without CM such that K = Q(j(C ′)) and an isogeny from C ′

onto its Galois conjugate of degree d. For such a curve there is an isomorphic
curve C/K with A = ResK/QC being of real GL2-type if and only if d is a
norm of K (see [20]). Now, the statement follows from the fact that Z[

√
d]

contains no units of negative norm and from the existence of infinitely many
quadratic fields K such that d ∈ NormK/Q(K∗).

In Subsection 4.4, we will show how for some quadratic Q-curves Theo-
rem 1.1 allows us to construct a genus two curve over Q whose Jacobian is
isomorphic over Q to its Weil’s restriction.

In view of the above, it would be useful to have a criterion for deciding
whether an abelian surface of real GL2-type is principally polarizable or
not. In addition to Corollary 2.12, we now characterize the existence of a
principal polarization on an abelian surface of real GL2-type under some
arithmetical restrictions on the ring of the endomorphisms.

Proposition 3.11. Let A be an abelian surface of GL2-type over k by a
real quadratic field F of class number h(F ) = 1 and assume that Endk A = O
is the ring of integers of F . Then:

(1) If O∗ contains some unit of negative norm, then A is principally
polarized over k and , in particular , the degree of any polarization on
A over k is a norm of F .

(2) If O∗ contains no units of negative norm and L is a polarization
of degree d over k, then either d or −d is a norm of F. In the first
case, A is principally polarizable over k.
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Proof. First, we will prove that there is an invertible sheaf on A in
NS(Ak)Gk of degree 1. Since A is defined over k, there is a polarization
L on A defined over k. Let us denote by E the corresponding alternating
Riemann form on H1(A,Z). Since H1(A,Z) is a free O-module of rank 2
and h(F ) = 1, we have H1(A,Z) = Oγ1 ⊕ Oγ2 for some γ1, γ2 ∈ H1(A,Z).
Consider the morphism of groups

φ : O → Z, α 7→ E(αγ1, γ2).

By the nondegeneracy of the trace, there exists a δ ∈ F such that φ(α) =
TrF/Q(α · δ). Due to the fact that δ lies in the codifferent of O, there is
v ∈ O such that δ = v/

√
∆, where ∆ is the discriminant of F . Set

L0 = L(v−1) ∈ Q ⊗ NS(Ak)
Gk and denote by E0 its alternating Riemann

form. From the relations

E0(αγ1, γ2) = TrF/Q(α/
√
∆) ∈ Z, E0(γ, αγ) = 0

for all α ∈ O and γ ∈ H1(A,Z), we obtain L0 ∈ NS(Ak)
Gk . Moreover, taking

a basis γ1, αγ1, γ2, αγ2 of H1(A,Z) for a suitable α, an easy check shows that
the matrix of E0 with respect to this basis has determinant 1.

Now, assume that O∗ contains some unit u of negative norm. Then either
L0, L(−1)

0 , L(u)
0 or L(−u)

0 must be a principal polarization. By Corollary 2.12,
we also see that the degree of any polarization on A over k is a norm of F .

In the case −1 6∈ NormF/Q(O∗), by Remark 2.11, there is t ∈ O such

that L(t)
0 = L, with NormF/Q(t) = ±degL. If degL is a norm of F , then

NormF/Q(t) = degL. Therefore, either t or −t lies in O+ and, thus, either

L0 or L(−1)
0 is a polarization.

4. Explicit examples. In the previous section we have shown the dif-
ferent possibilities for abelian surfaces of GL2-type over Q. We now illustrate
these possibilities with explicit examples for the case of real GL2-type. We
will not consider abelian surfaces of CM GL2-type because they are less in-
teresting. Indeed, these abelian surfaces have a unique primitive polarization
L and they are principally polarizable if and only if L is principal. Assuming
Serre’s conjecture to be true, we must look for these examples among the
abelian varieties Af attached by Shimura to an eigenform f ∈ S2(Γ0(N)).
In order to present these abelian varieties as Jacobians of curves, we will use
the procedure described in [3], which is based on Jacobian Thetanullwerte
(see [7]).

All the computations were performed with Magma v.2.7 using the pack-
age MAV written by E. González and J. Guàrdia ([4]). Both the package and
some files required to reproduce them are available via the web pages of the
authors.
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4.1. Modular case. We summarize here some facts about modular abel-
ian varieties, fixing also the notation used in the examples in the following
subsections. Let f =

∑
n≥1 anq

n be a normalized newform of S2(Γ0(N))
where, as usual, q = e2πiz. Attached to f , Shimura constructed an abelian
variety Af over Q in two different ways. In [25], this abelian variety is pre-
sented as a subvariety of J0(N) while in [26] it is constructed as an optimal
quotient of J0(N), and it is proved that both are dual. We will take Af as
subvariety, and this will not be a restriction because we will only consider
the principally polarized case and in this situation both abelian varieties
are isomorphic (over Q). More precisely, let T be the Hecke algebra of en-
domorphisms of the Jacobian variety J0(N) of X0(N), and let If be the
kernel of the map T → Z[a1, a2, . . .] which identifies every Hecke operator
with the corresponding eigenvalue of f . Then A = J0(N)/IfJ0(N) is the
abelian variety attached by Shimura as an optimal quotient. We recall that
Kf = Q({an}) is a number field of degree n = [Kf : Q] = dimA, the endo-
morphism algebra Q⊗EndQA is the Q-algebra generated by T acting on A,
Q⊗T/If , and this is isomorphic to Kf . Denote by π : J0(N)→ A the natu-
ral projection over Q. There is a Z-submodule H of H1(J0(N),Z) of rank 2n
such that H1(J0(N),Z) = kerπ∗ ⊕H. Note that kerπ∗ = IfH1(J0(N),Z).

It is well known that π∗H0(A,Ω1
A/C) is the C-vector space generated

by the Galois conjugates of f(q) dq/q and π∗H0(A,Ω1
A/Q) is the subspace

obtained by taking the modular forms with rational q-expansion. For a fixed
rational basis h1, . . . , hn of π∗H0(A,Ω1

Af/Q), the Abel–Jacobi map induces
an isomorphism of complex torus:

A(C)→ Cn/Λ, P 7→
( P�

0

h1, . . . ,

P�

0

hn

)
,

where

Λ =
{( �

γ

h1, . . . ,

�

γ

hn

) ∣∣∣ γ ∈ H1(X0(N),Z)
}

=
{( �

γ

h1, . . . ,

�

γ

hn

) ∣∣∣ γ ∈ H
}
.

The abelian variety Af , viewed as subvariety of J0(N), is described by

Af (C)→ Cn/Λf , P 7→
( P�

0

h1, . . . ,

P�

0

hn

)
,

where Λf = {(
�
γ h1, . . . ,

�
γ hn) | γ ∈ Hf} and Hf = {γ ∈ H1(X0(N),Z) |

Ifγ = {0}}. Note that Λf is a sublattice of Λ. Obviously, given T ∈ Q⊗T,
we have T ∈ EndQ(Af ) if and only if T leaves Λ stable or equivalently T
leaves Hf stable. Let Θ be the canonical polarization on J0(N) and E its
corresponding Riemann form, which is obtained from the intersection num-
bers on H1(X0(N),Z). From now on, we shall call the polarization L on Af
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obtained from the canonical polarization Θ on J0(N) the canonical polariza-
tion on Af . Note that the corresponding Riemann form EΛ on Λ is obtained
as the restriction of E to Λ, and although Θ is principal, L may not be.

We know by Ogg (see [19]) that the cusps of X0(N) associated to 1/d
for d |N and gcd(d,N/d) = 1 are rational points on X0(N). Moreover, the
divisors of degree 0 generated by these cusps are torsion points on J0(N)(Q),
and the same holds for their projections on Af , although their orders can
decrease. For a given torsion Gal(Q/Q)-stable subgroup G of Af , the abelian
variety Af/G is isogenous to Af over Q. Moreover, both abelian varieties
can be isomorphic over Q only if G is the kernel of some endomorphism in
EndQ(Af ). As complex tori, if we identify Af (C) = Cg/Λf , then Af/G(C) =
Cg/ΛG, where ΛG = 〈Λf , G〉. The polarization L induces a polarization LG
on Af/G, whose alternating Riemann form EG is given by EG = #G ·EΛ :
ΛG × ΛG → Z and its degree is #G · degL. Notice that EndQ(Af ) and
EndQ(Af/G) can be different.

4.2. Nonisomorphic genus two curves with Q-isomorphic Jacobian. We
begin by studying the unique two-dimensional factor S65,B of J0(65), given
by the newform

f = q + aq2 + (1− a)q3 + q4 − q5 + (a− 3)q6 + · · ·
with a =

√
3. We know that EndQ(Af ) = Z[

√
3] and moreover Af is simple

in its isogeny class over Q, because f does not admit any extra-twist. Hence,
each principal polarization on Af is the sheaf of sections of the Theta divisor

of a smooth curve C of genus two such that Af
Q' J(C). A basis of the

Z-module Hf is spanned by the modular symbols

γ1 =
{
− 1

15 , 0
}
−
{
− 1

30 , 0
}

+
{
− 1

40 , 0
}
−
{
− 1

60 , 0
}
,

γ2 =
{
− 1

20 , 0
}
−
{
− 1

35 , 0
}

+
{
− 1

50 , 0
}
−
{
− 1

55 , 0
}
,

γ3 =
{
− 1

15 , 0
}
−
{
− 1

26 , 0
}

+
{
− 1

40 , 0
}
−
{
− 1

50 , 0
}
−
{
−2

5 ,− 5
13

}
,

γ4 =
{
− 1

30 , 0
}
−
{
− 1

45 , 0
}

+
{
− 1

52 , 0
}
−
{
− 1

55 , 0
}

+
{
−2

5 ,− 5
13

}
.

An integral basis of H0(Af , Ω1) is given by the forms h1 = (σf − f)/
√

3,
h2 = (f+σf)/2. By integrating these differentials along the paths γ1, . . . , γ4,
we obtain an analytic presentation of the abelian surface Af as a complex
torus C2/Λ. The restriction of E to Hf is the Riemann form of a polarization
on Af , given by the following Riemann matrix:

ME = (E(γi, γj))i,j =




0 2 −2 0
−2 0 −2 2
2 2 0 0
0 −2 0 0


 .
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The type of this polarization is (2, 2). Thus, the primitive polarization L0
associated to it is principal. In [3] it has been checked that (S65,B ,L0) is the
polarized Jacobian of the hyperelliptic curve

C65,B,1 : Y 2 = −X6 − 4X5 + 3X4 + 28X3 − 7X2 − 62X + 42,

whose absolute Igusa invariants are

{i1, i2, i3} =
{
−265 · 3135

133 ,
139 · 3133701

5 · 133 ,
7 · 313259104229

2352133

}
.

Following Theorem 2.10, we now build a second polarization on S65,B , which
will exhibit S65,B as the Jacobian of a second curve C65,B,2 nonisomorphic
to C65,B,1 over Q. Let us consider the Hecke operator u = 2+T2 = 2+

√
3 ∈

EndQ(Af ). This is a nonsquare totally positive unit in the ring of integers O
of Kf . The action of u on H1(Af ,Z) with respect to the basis γ1, γ2, γ3, γ4
is given by

Mu =




3 2 −1 1
0 0 1 0
0 −1 4 0
2 1 1 1


 .

We now take the polarization L(u)
0 , which is given by the Riemann form Eu

whose alternating Riemann matrix is MEu = 1
2 ·ME ·Mu. It is a principal

polarization on Af and nonisomorphic to L0. Since Af is simple (over Q),

the polarized abelian variety (Af ,L(u)
0 ) is the Jacobian of a curve C65,B,2

defined over Q. A symplectic basis with respect to Eu is



δ1

δ2

δ3

δ4




=




1 0 0 0

0 3 1 0

0 1 0 −2

0 0 0 1







γ1

γ2

γ3

γ4



.

In order to identify the polarized abelian variety (Af ,L(u)), we compute the
period matrix Ω = (Ω1 |Ω2) = ((

�
δk
hjdq/q)k=1,2 | (

�
δk
hjdq/q)k=3,4) of the

forms h1, h2 along these paths. Let Z = Ω−1
1 Ω2 ∈ H2, which belongs to the

Siegel upper half space. We can now apply the method of [3] to recover an
equation of this curve. We obtain

C65,B,2 : Y 2 = −(X2 + 3X + 1)(7X4 + 37X3 + 71X2 + 44X + 8).

The absolute Igusa invariants of this curve are

{i1, i2, i3} =
{
−2331095

53134 ,
31093206639

2 · 53134 ,
7 · 31092123916753

2353134

}

and this makes it clear that the curves C65,B,1 and C65,B,2 are nonisomor-
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phic over Q, although their Jacobians are isomorphic as unpolarized abelian
varieties over Q.

4.3. A genus two curve with Jacobian isomorphic to the Weil restric-
tion of a quadratic Q-curve. Let us now consider the factor Af of J0(63)
corresponding to the newform

f = q + aq2 + q4 − 2aq5 + q7 − aq8 + 6q10 + 2q11 + 2q13 + · · · ,
where a =

√
3. Again EndQ(Af ) ' Z[

√
3] =: O is the integer ring of Kf =

Q(
√

3). Let L0 be the primitive canonical polarization on Af induced from
J0(63). It turns out that L0 is principal and that the polarized abelian
variety (Af ,L) is the Jacobian of the hyperelliptic curve (see [3])

C63,B : Y 2 = −3X6 + 162X3 + 81.
We see that f does not have complex multiplication and the quadratic

character of L = Q(
√
−3) is an extra-twist for f . Since the discriminant

of L is a norm of Kf , we know (see [6]) that, up to Galois conjugation,
there is a unique quadratic Q-curve C defined over L such that C is an
optimal quotient of Af defined over L. In fact, the invariant differentials of
the optimal quotients of Af , when pulled back to H0(Af , Ω1

Af/L
), are given

by
〈(1−i

2 (a+b
√

3)f+ 1+i
2 (a−b

√
3)σf

)
dq/q

〉
, with a+b

√
3 running over K∗f .

In order to obtain the other principal polarization on Af , we proceed as
in the previous example. Let u = T2 + T13 =

√
3 + 2 ∈ O∗ \ O∗2 be the

Hecke operator acting on Af and let L(u)
0 be the principal polarization on

Af associated to it by Proposition 2.1. A symplectic basis of H1(Af ,Z) with

respect to the Riemann form Eu associated to L(u)
0 is

γ1 =
{
− 1

24 , 0
}
−
{
− 1

28 , 0
}

+
{
− 1

30 , 0
}
−
{
− 1

51 , 0
}
−
{
−1

3 ,−2
7

}
,

γ2 = 2
({
− 1

24 , 0
}
−
{
− 1

28 , 0
}

+
{
− 1

39 , 0
}
−
{
−1

6 ,−1
7

})
− 5
{
− 1

57 , 0
}

+ 3
(
−
{
− 1

36 , 0
}

+
{
− 1

49 , 0
}
−
{
− 1

51 , 0
}

+
{
− 1

54 , 0
}

+
{
− 1

60 , 0
}

+
{
−1

3 ,−2
7

})
,

γ3 = −
{
− 1

28 , 0
}

+
{
− 1

36 , 0
}

+
{
− 1

45 , 0
}
−
{
− 1

49 , 0
}

+
{
− 1

51 , 0
}
−
{
− 1

54 , 0
}

−
{
−1

6 ,−1
7

}
+
{3

7 ,
4
9

}
,

γ4 = 2
(
−
{
− 1

36 , 0
}

+
{
− 1

49 , 0
}
−
{
− 1

51 , 0
}

+
{
− 1

54 , 0
}
−
{
− 1

57 , 0
})

+
{
− 1

24 , 0
}

+
{
− 1

39 , 0
}
−
{
− 1

45 , 0
}

+
{
− 1

60 , 0
}

+
{
−1

3 ,−2
7

}
−
{3

7 ,
4
9

}
.

We take the basis of H0(Af , Ω1
Af/L

) given by

g1 =
(

1− i
2

(1 +
√

3)f +
1 + i

2
(1−

√
3)σf

)
dq
/
q

= ((1− i
√

3)q + (3− i
√

3)q2 + (1−
√

3)q4 + · · ·)dq
/
q
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and its conjugate g1. Let Ω = (Ω1 |Ω2) be the period matrix of this basis
g1, g1 with respect to γ1, γ2, γ3, γ4 and take Z = Ω−1

1 Ω2. When we compute
the even Thetanullwerte corresponding to Z, we find that, up to high ac-
curacy, exactly one of them vanishes. This suggests that (Af ,L(u)) is not
irreducible. We may confirm this by giving its explicit decomposition. Let



δ1
δ2
δ3
δ4


 =




1 0 0 −1
0 1 −1 0
0 0 1 0
0 0 0 1






γ1
γ2
γ3
γ4




so that (δ1, δ2, δ3, δ4) is a new symplectic basis for Eu. The period matrix of
g1, g1 with respect to it is Ω′ = (Ω′1 |Ω′2) with

Ω′1 =
(

6.584352 . . .+ 8.916903 . . . i 0
0 −15.444529 . . .+ 11.404432 . . . i

)
,

Ω′2 =
(
−2.275825 . . .+ 6.429374 . . . i 0

0 −8.860177 . . .+ 2.487529 . . . i

)
.

The lattices Λ = 〈6.584352 + 8.916903i,−2.275825 + 6.429374i〉, Λσ =
〈−15.444529 + 11.404432i,−8.860177 + 2.487529i〉 correspond to a pair of
Galois conjugate elliptic curves C and σC and the invariants of C are

c4(C) =
9(5− 12

√
−3)

28 , c6(C) =
27(43 + 42

√
−3)

212 ,

j(C) =
27(121171− 36627

√
−3)

686
.

Hence,
C × σC

Q(
√−3)' (Af ,L(u))

Q' ResQ(
√−3)/QC.

4.4. Constructing a genus two curve from a quadratic Q-curve. In the
example above, we have modified the canonical polarization on the Jacobian
of a hyperelliptic curve to present it as the Weil restriction of a Q-curve. We
now perform the reverse process, i.e., we depart from a quadratic Q-curve
and construct a polarization on its Weil restriction which transforms it in
the Jacobian of a rational genus two curve. Notice that modular tools will
not be used in this construction.

Let C be the elliptic curve Y 2 = X3 + aX + b, where a = −9(767 +
212
√

13) and b = −18(17225+4778
√

13). We denote by σ the nontrivial Ga-
lois conjugation of K = Q(

√
13) over Q. The points on C with x-coordinate

equal to 3(−13+4
√

13) generate a subgroup G of 3-torsion points, and the el-
liptic curve C/G is isomorphic over K to σC. More precisely, there is a cyclic
isogeny µ : C → σC of degree 3 defined overK such that µ∗(ωσ) = λω, where
λ = 4+

√
13 (see [5]) and ωσ and ω are the invariant differential forms of σC

and C respectively. In particular, σµ∗(ω) = σλωσ = 3/λωσ. We note that the
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Weil restriction of C is of real GL2-type, since Q⊗End(ResK/QC) = Q(
√

3).
Moreover, as there are no units of negative norm in this algebra, Corol-
lary 3.4 ensures the existence of a second polarization on ResK/QC. We will
now build it.

Consider the period lattices
Λ = 〈w1 = 0.220377 . . . , w2 = 0.428744 . . . i〉,
Λσ = 〈wσ,1 = −λw1, wσ,2 = −λ/3w2〉,

of the curves C, σC respectively. Let γ1, γ2 (resp. γσ,1, γσ,2) be a basis of
H1(C,Z) (resp. H1(σC,Z)) such that

�
γi
ω = wi (resp.

�
γσ,i

ωσ = wσ,i). Then
(γ1, γσ,1, γ2, γσ,2) is a symplectic basis of H1(C × σC,Z) for the canonical
polarization L attached to C × σC.

The action of the endomorphisms T =
√

3 on H1(C × σC,Z) is obtained
from its action on Λ× Λσ:

T : Λ→ Λσ, w 7→ λ · w,
T : Λσ → Λ, w 7→ σλ · w = 3/λ · w.

From this, we compute the matrix of the action of the fundamental unit
u = 2 +

√
3 of End(ResK/QC) on H1(C × σC,Z) (with respect to the basis

γ1, γσ,1, γ2, γσ,2):

M =




2 −3 0 0
−1 2 0 0
0 0 2 −1
0 0 −3 2


 .

Hence, the Riemann form attached to the polarization L(u) is given by

Eu =




0 0 2 −1
0 0 −3 2
−2 3 0 0
1 −2 0 0


 .

Taking into account that ω1 = ω + ωσ, ω2 = (ω − ωσ)/
√

13 form a rational
basis of H0(ResK/QC,Ω1

Q), we compute the period matrix of these differ-
ential forms with respect to an Eu-symplectic basis of H1(C × σC,Z), and
apply the procedure of [3]. We find that (ResK/QC,L(u)) is the Jacobian of
one of the two curves

Y 2 = ±(12909572X6 + 17307966X5 + 8746257X4

+ 2170636X3 + 278850X2 + 17238X + 377).

Both curves have good reduction at p = 23. Only for the curve correspond-
ing to the + sign, the characteristic polynomial of Frobp acting on the Tate
module of its Jacobian (modp) equals the square of the characteristic poly-
nomial of Frobp acting on the Tate module of C/Fp. In conclusion, the right
sign is +.
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4.5. Nonprincipally polarized abelian surfaces. Coming back to the mod-
ular examples, we now illustrate what can be done to describe briefly those
abelian surfaces Af which are nonprincipally polarized. While our ideas do
not provide a systematic method to treat any abelian surface, since we use
the fact that they are of GL2-type, it covers many interesting cases. This
will be apparent in the following subsection, where we will build a number
of genus two curves with isogenous Jacobian.

We will work with the abelian surface Af which is the unique two-
dimensional factor of J0(35). It corresponds to the newform

f = q + aq2 + (−a− 1)q3 + (−a+ 2)q4 + q5 − 4q6 + · · ·+ (a+ 3)q13 + · · ·

where a = (−1+
√

17)/2. We see that EndQ(Af ) = Z[(1+
√

17)/2] =: O is the
integer ring of K = Q(a). Since f does not have any extra-twist, Af is simple
in its Q-isogeny class and, in particular, every principal polarization on Af
determines a curve whose Jacobian is isomorphic to Af . In addition, by
Corollary 3.4, if such a curve exists, it must be unique up to Q-isomorphism.

Let σ denote the Galois conjugation ofK/Q, and take α = (17+
√

17)/34.
The cuspidal forms h1 = αf + σ(α) σf , h2 = (f − σf)/

√
17 provide an

integral basis of H0(Af , Ω1
Q). A basis of the Z-module H1(Af ,Z) is given by

the modular symbols

γ1 = {−1/10, 0} − {−1/25, 0},
γ2 = {−1/21, 0} − {−1/28, 0},
γ3 = {−1/7, 0} − {−1/15, 0}+ {2/5, 3/7},
γ4 = {−1/10, 0} − {−1/15, 0}+ {−1/25, 0} − {−1/30, 0}.

In this basis, the matrix of the alternating Riemann form attached to the
canonical polarization L on Af is

ME = (E(γi, γj))i,j =




0 1 −1 0
−1 0 0 1
1 0 0 1
0 −1 −1 0


 .

This polarization over Q is not principal, since it is of type (1, 2). Thus,
we cannot describe (Af ,L) as a Jacobian or as a Weil restriction. We will
look for a different polarization L0 on Af allowing this explicit description
for Af . Of course, we will require L0 to be principal and defined over Q.

The existence of this polarization is guaranteed by Proposition 3.11.
By Theorem 2.10 and Corollary 2.12, we must check the polarizations L(u)

for those endomorphisms u ∈ EndQ(Af ) of norm 2. We take u = T13 =
(5 +

√
17)/2. The rational representation of u with respect to the basis
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(γ1, γ2, γ3, γ4) is

Mu =




2 1 1 1
2 2 1 2
2 0 3 −2
0 1 −1 3


 .

The symplectic product Eu of the polarization L(u) is given by the matrix
MEu = ME ·Mu; it is of type (2, 2), so that there is a principal polarization
L0 on Af over Q such that L⊗2

0 = L(u). A symplectic basis for H1(Af ,Z)
with respect to this principal polarization is




δ1

δ2

δ3

δ4




=




1 0 0 0

0 1 1 0

0 2 −1 −1

0 0 2 1







γ1

γ2

γ3

γ4



.

We now compute the periods of the differential forms h1dq/q, h2dq/q along
these paths to represent (Af ,L0) as the complex torus C/Λ, where Λ is the
lattice spanned by the columns of the matrix Ω = (Ω1 |Ω2), with

Ω1 =
(

3.429722 . . . i 1.265864 . . . i
−0.224497 . . . i 1.714858 . . . i

)
,

Ω2 =
(
−4.737944 . . . 3.044837 . . .+ 1.898796 . . . i
2.706904 . . . −2.368972 . . .+ 2.572287 . . . i

)
.

We finally apply the method of [3] to see that this torus is the Jacobian of
the curve

C35,A : Y 2 = −(X + 1)(8X + 3)(10X3 + 14X2 + 6X + 1),

whose absolute Igusa invariants are

{i1, i2, i3} =
{
−223295

5575 ,
21729337 · 83

5575 ,
282928321913

5575

}
.

As we mentioned before, this is the only rational curve whose Jacobian is
isomorphic to Af .

4.6. Distinct genus two curves with isogenous Jacobians. We now de-
scribe a method to find many nonisomorphic genus two curves with isoge-
nous Jacobians. As before, we will work with the only two-dimensional factor
Af of J0(35). We shall consider abelian surfaces obtained as quotients Af/G,
where G is a finite rational torsion subgroup of Af .

The existence of a nontrivial rational 2-torsion point on the Jacobian
J(C35,A) is evident from the equation of the curve C35,A. Rational torsion
points on Af can also be found by means of cuspidal divisors on X0(35). We
have the rational cusps 0, 1/5, 1/7,∞ of X0(35) at our disposal. Consider
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the cuspidal divisors D5 = (0)−(1/5), D7 = (0)−(1/7) and D∞ = (0)−(∞)
on X0(35). We denote by G the group generated by their projections on Af .

The integrals
� 0
∞ hjdq/q provide the projection of D∞ on Af : it is the

point (−0.677587 . . . ,−0.084914 . . .), which corresponds to the path in
H1(Af ,Q) given by 1

8γ2 − 1
4γ3 + 1

8γ4 = −9
8δ2 + 5

8δ3 + 3
4δ4. Similarly, we

obtain

D5 ↔ 1
8γ2 + 1

4γ3 + 1
8γ4 = −1

8δ2 + 1
8δ3 + 1

4δ4,

D7 ↔ 1
2γ2 = −1

2δ2 + 1
2δ3 + 1

2δ4.

Thus G ' Z/8Z × Z/2Z× Z/2Z is generated by the images of the divisors
D5,D7,D5 − D∞ (we shall denote these images by the same letters, since
there is no risk of confusion). Note that all points in G are rational torsion
points on Af . For every subgroup G′ of G the quotient abelian variety Af/G′

could admit, in principle, a principal polarization over Q since the degree of
the polarization induced by L on A/G′ is 2 ·#G′ ∈ Norm(Kf/Q). We will
only examine the cyclic subgroups of G.

The first step to check whether Af/G′ is principally polarized is the
determination of EndQ(Af/G′). Consider the Hecke operator v = 2u− 1 =
T11 + T18 corresponding to the fundamental unit of negative norm 4 +

√
17

in Kf . We have

v(D∞) = 3D∞, v(D5) = 3D5, v(D7) = 3D7,

i.e., v acts on G as the multiplication by 3 and hence leaves every subgroup
of G stable. This implies that the order Z[

√
17] is contained in EndQ(A/G′)

for all subgroups G′ of G. Nevertheless, the action of u on G only leaves the
following cyclic subgroups stable:

G′ = 〈P 〉 Order of P u(P )

〈4D∞〉 2 0

〈2D∞〉 4 4D∞
〈D5 +D7〉 8 −2(D5 +D7)

For these three subgroups G′, we can ensure that EndQ(A/G′) = O, and
then Proposition 3.11 tells us that A/G′ is principally polarized; we will
show how to build the principal polarization for Af/〈4D∞〉.

In order to do so, we consider the lattice

Λ′ =
〈
γ1, γ2, γ3, γ4,

1
2γ2 − γ3 + 1

2γ4
〉
⊂ H1(Af ,Q),

with basis γ′1 = 1
2(γ2 + γ4), γ′2 = 1

2(γ2 − γ4), γ′3 = γ′1, γ′4 = γ3. The canon-
ical polarization E on J0(35) provides a natural symplectic form on this
lattice, which we shall denote by E/Λ′ . Its matrix with respect to the basis
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(γ′1, γ
′
2, γ
′
3, γ
′
4) is

ME/Λ′ =




0 −1/2 −1/2 −1/2
1/2 0 −1/2 1/2
1/2 1/2 0 −1
1/2 −1/2 1 0


 .

The type of the corresponding primitive polarization on A/〈4D∞〉 is (1, 4).
We now proceed as in the previous subsection to derive a principal polariza-
tion from E/Λ′ : we use the operator u2 (of norm 4) to define the Riemann
form E′ determined by the matrix A/〈4D∞〉 given by the symplectic form

ME′ := ME/Λ′M
2
u =




0 −4 −14 −14
4 0 6 4
14 −6 0 −8
14 −4 8 0


 ,

which is of type (2, 2), and hence it is the square of a principal polariza-
tion L′0. Computing periods and Jacobian Thetanullwerte, we find that
(Af/〈4D∞〉,L′0) is the Jacobian of the curve

C35,B : Y 2 = −10X(4X + 5)(5X + 8)(25X3 + 110X2 + 156X + 70),

with absolute Igusa invariants

{i1, i2, i3} =
{
−2134353595

51775 ,−21043335938933
51375 ,

− 2437 · 4323592571 · 126949
51375

}
.

Applying the same procedure to the quotient A/〈2D5〉, we arrive at the
curve

C35,C : Y 2 = −2(11X+16)(5X+8)(3X+5)(127X3 +598X2 +938X+490),

with absolute Igusa invariants

{i1, i2, i3} =
{

228895

5377 ,−21911 · 23 · 8931489
5377 ,−21043 · 8922683 · 11239

5377

}
.

Finally, the quotient A/〈D5 + D7〉 is Q-isomorphic to the Jacobian of the
curve

C35,D : Y 2 = −142(8X + 13)(X2 + 4744X + 3776)

× (2173X3 + 10154X2 + 15820X + 8218),

with absolute Igusa invariants

{i1, i2, i3} =
{

21310952140635

52757112 ,
21211 · 17 · 10935171 · 2140633

5275718 ,

2435109233871 · 2140632271175273
5275718

}
.
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In conclusion, we have found four nonisomorphic curves C35,A, C35,B , C35,C ,
C35,D, whose Jacobians are pairwise isogenous.
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