On the multiplicative independence of binomial coefficients

by
Jianguo Xia and Hourong Qin (Nanjing)

1. Introduction. Let F be a finite extension of the field \mathbb{Q} of rational numbers with the ring of integers O_{F}. For a finite set S of primes of F containing all infinite primes, we use U_{S} to denote the group of S-units of F, i.e., $a \in U_{S}$ if and only if $\operatorname{ord}_{p}(a)=0$ for all primes p of F not belonging to S. We call the elements in the set $W_{S}:=U_{S} \cap\left(1-U_{S}\right)$ good S-units. It is known that W_{S} is finite (see [2, Theorem 1]).

Let $S=\{\infty, 2,3, \ldots, p\}$ be the set of the first n prime numbers together with ∞, i.e., $p=p_{n}$. For $1 \leq k \leq p / 2$, put $q_{k}=k /(p-k)$. It is clear that every q_{k} is a good S-unit.

Two open problems were raised by Browkin in [1].
(a) Is it true that exactly $n-1$ numbers among q_{k} are multiplicatively independent?
(b) Is the index $\left(U_{S} \wedge U_{S}: \lambda\left(A\left(W_{S}\right)\right)\right)$ finite? Equivalently, are the free ranks of both groups equal?

We remark that a positive answer to problem (a) in fact answers problem (b) affirmatively. Browkin claimed that the answer to problem (a) is positive when $p \leq 47$ or $p=101$.

Let G be the subgroup of \mathbb{Q}^{*} generated by the binomial coefficients $\binom{p-1}{i}, i=1, \ldots,[p / 2]$. Because $q_{k}=\binom{p-1}{k-1} /\binom{p-1}{k}$ and $\binom{p-1}{k}=\left(q_{1} \cdots q_{k}\right)^{-1}$, G is equal to the subgroup of \mathbb{Q}^{*} generated by good S-units $q_{k}, k=1, \ldots$, [$p / 2$]. We see that exactly $n-1$ numbers among q_{k} are multiplicatively independent if and only if the rank of G is $n-1$.

In this paper, we prove the following theorem, which means that the answers to the two problems mentioned above are positive.

[^0]Theorem. Let $p=p_{n}$ be the nth prime and G the subgroup of \mathbb{Q}^{*} generated by the binomial coefficients $\binom{p-1}{i}, i=1, \ldots,[p / 2]$. Then the rank of G is $n-1$.
2. Proof of Theorem. It is evident that the rank of G does not exceed $n-1$ since every binomial coefficient $\binom{p-1}{i}$ has the form

$$
\binom{p-1}{i}=p_{1}^{m_{1}} \cdots p_{n-1}^{m_{n-1}}
$$

for some integers $m_{1}, \ldots, m_{n-1} \in \mathbb{Z}$.
In order to prove that the rank of G is exactly $n-1$, we only need to prove the following assertion:

There exist integers $e_{k 1}, \ldots, e_{k k}$ with $e_{k k} \neq 0$ such that $2^{e_{k 1}} 3^{e_{k 2}} \cdots p_{k}^{e_{k k}} \in$ G for $1 \leq k \leq n-1$.

The case $n=1$, i.e., $p_{n}=2$, is trivial.
Now suppose that $p=p_{n}$ is an odd prime. First let us prove that the assertion is true for $k=1$, i.e., $2^{e_{11}} \in G$ for some $e_{11} \in \mathbb{Z}$ with $e_{11} \neq 0$.

Set $b_{0}=1, a_{1}=b_{0} \cdot 2^{m_{1}}$, where $m_{1} \in \mathbb{Z}$ and $2^{m_{1}}$ is the highest power of 2 less than p. Then $p / 2<a_{1}<p$. Set $b_{1}=p-a_{1}$. Then $0<b_{1}<p / 2$. Set $a_{2}=b_{1} \cdot 2^{m_{2}}$, where $m_{2} \in \mathbb{Z}$ and $2^{m_{2}}$ is the highest power of 2 less than p / b_{1}. Then $p / 2<a_{2}<p$. In general, we define $a_{i}=b_{i-1} \cdot 2^{m_{i}}, b_{i}=p-a_{i}$ by induction on i, where $m_{i} \in \mathbb{Z}$ and $2^{m_{i}}$ is the highest power of 2 less than p / b_{i-1}. Then $p / 2<a_{i}<p$. Thus $b_{i}<p / 2$ and $m_{i}>0$ for any i.

Notice that each of a_{i} is a positive integer less than p, so there exist i and j with $i<j$ such that $a_{i}=a_{j}$. Thus

$$
\begin{aligned}
\frac{a_{i}}{p-a_{i}} \cdot \frac{a_{i+1}}{p-a_{i+1}} \cdots \frac{a_{j-1}}{p-a_{j-1}} & =\frac{a_{i}}{b_{i}} \cdot \frac{a_{i+1}}{b_{i+1}} \cdots \frac{a_{j-1}}{b_{j-1}} \\
& =\frac{a_{i+1}}{b_{i}} \cdot \frac{a_{i+2}}{b_{i+1}} \cdots \frac{a_{j}}{b_{j-1}}=2^{m_{i+1}+\cdots+m_{j}}
\end{aligned}
$$

Set $e_{11}=m_{i+1}+\cdots+m_{j}$. Then $e_{11}>0$ and $2^{e_{11}} \in G$. So the assertion is true for $k=1$.

Next let us prove that the assertion is true for $k=2$, i.e., $2^{e_{21}} 3^{e_{22}} \in G$ for some $e_{21}, e_{22} \in \mathbb{Z}$ with $e_{22} \neq 0$.

Set $b_{0}=1, a_{1}=b_{0} \cdot 3^{m_{1}}$, where $m_{1} \in \mathbb{Z}$ and $3^{m_{1}}$ is the highest power of 3 less than p. Then $p / 3<a_{1}<p$. Let $p-a_{1}=2^{n_{1}} b_{1}$ with b_{1} odd. Since a_{1} is odd, $n_{1} \geq 1$. So $b_{1} \leq\left(p-a_{1}\right) / 2<p / 3$. Set $a_{2}=b_{1} \cdot 3^{m_{2}}$, where $m_{2} \in \mathbb{Z}$ and $3^{m_{2}}$ is the highest power of 3 less than p / b_{1}. Then $p / 3<a_{2}<p$. Since $b_{1}<p / 3, m_{2} \geq 1$. Let $p-a_{2}=2^{n_{2}} b_{2}$ with b_{2} odd. Then $n_{2} \geq 1$. In general, we define a_{i} and b_{i} by induction on $i: a_{i}=b_{i-1} \cdot 3^{m_{i}}$, where $m_{i} \in \mathbb{Z}$ and $3^{m_{i}}$ is the highest power of 3 less than p / b_{i-1}. Let $p-a_{i}=2^{n_{i}} b_{i}$ with b_{i} odd. It is easy to prove by induction on i that $b_{i}<p / 3$. So m_{i} is a positive integer.

Notice that each of a_{i} is a positive integer less than p, so there exist i and j with $i<j$ such that $a_{i}=a_{j}$. Thus

$$
\frac{a_{i}}{b_{i}} \cdot \frac{a_{i+1}}{b_{i+1}} \cdots \frac{a_{j-1}}{b_{j-1}}=\frac{a_{i+1}}{b_{i}} \cdot \frac{a_{i+2}}{b_{i+1}} \cdots \frac{a_{j}}{b_{j-1}}=3^{m_{i+1}+\cdots+m_{j}}
$$

So

$$
\frac{a_{i}}{p-a_{i}} \cdot \frac{a_{i+1}}{p-a_{i+1}} \cdots \frac{a_{j-1}}{p-a_{j-1}}=2^{-\left(n_{i}+\cdots+n_{j-1}\right)} \cdot 3^{m_{i+1}+\cdots+m_{j}}
$$

Set $e_{21}=-\left(n_{i}+\cdots+n_{j-1}\right), e_{22}=m_{i+1}+\cdots+m_{j}$. Then $e_{22}>0$ and $2^{e_{21}} 3^{e_{22}} \in G$. So the assertion is true for $k=2$.

Finally, let us prove that the assertion is true for $3 \leq k \leq n-1$, i.e., there exist integers $e_{k 1}, \ldots, e_{k k}$ with $e_{k k} \neq 0$ such that $2^{e_{k 1}} 3^{e_{k 2}} \cdots p_{k}^{e_{k k}} \in G$ for $3 \leq k \leq n-1$.

Let $q=p_{k}$. Set $b_{0}=1, a_{1}=b_{0} q^{m_{1}}\left(2 l_{1}-1\right)$, where $m_{1} \in \mathbb{Z}$ and $q^{m_{1}}$ is the highest power of q less than p, l_{1} the largest integer with $b_{0} q^{m_{1}}\left(2 l_{1}-1\right)$ less than p. Then $p / q<b_{0} q^{m_{1}}<p$ and $b_{0} q^{m_{1}}\left(2 l_{1}-1\right)<p<b_{0} q^{m_{1}}\left(2 l_{1}+1\right)$. Let $p-a_{1}=2^{n_{1}} b_{1}$ with b_{1} odd. Then $n_{1} \geq 1$. In general, we define a_{i} and b_{i} by induction on i : $a_{i}=b_{i-1} q^{m_{i}}\left(2 l_{i}-1\right)$ with $p / q<b_{i-1} q^{m_{i}}<p$ and $b_{i-1} q^{m_{i}}\left(2 l_{i}-1\right)<p<b_{i-1} q^{m_{i}}\left(2 l_{i}+1\right), p-a_{i}=2^{n_{i}} b_{i}$ with b_{i} odd. Clearly $2 l_{i}-1<q$ for $i \geq 1$. Since q is odd, $2 l_{i}+1 \leq q$ for $i \geq 1$.

Since each of a_{i} is a positive integer less than p, there exist i and j with $i<j$ such that $a_{i}=a_{j}$. Thus

$$
\begin{aligned}
\frac{a_{i}}{b_{i}} \cdot \frac{a_{i+1}}{b_{i+1}} \cdots \frac{a_{j-1}}{b_{j-1}} & =\frac{a_{i+1}}{b_{i}} \cdot \frac{a_{i+2}}{b_{i+1}} \cdots \frac{a_{j}}{b_{j-1}} \\
& =q^{m_{i+1}+\cdots+m_{j}}\left(2 l_{i+1}-1\right) \cdots\left(2 l_{j}-1\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{a_{i}}{p-a_{i}} \cdot \frac{a_{i+1}}{p-a_{i+1}} \cdots \frac{a_{j-1}}{p-a_{j-1}} \\
& \quad=\frac{a_{i}}{b_{i}} \cdot \frac{a_{i+1}}{b_{i+1}} \cdots \frac{a_{j-1}}{b_{j-1}} 2^{-\left(n_{i}+\cdots+n_{j-1}\right)} \\
& \quad=q^{m_{i+1}+\cdots+m_{j}}\left(2 l_{i+1}-1\right) \cdots\left(2 l_{j}-1\right) \cdot 2^{-\left(n_{i}+\cdots+n_{j-1}\right)}
\end{aligned}
$$

We claim that $m_{i+1}+\cdots+m_{j}>0$. In fact, if $m_{i+1}+\cdots+m_{j}$ $=0$, then $m_{i+1}=\cdots=m_{j}=0$. Since $a_{i}=a_{j}$, we have $b_{i}=b_{j}$ and $a_{i+1}=a_{j+1}$, which means that $l_{j+1}=l_{i+1}$. Since $m_{i+1}=m_{i+2}=0$, $a_{i+1}=b_{i}\left(2 l_{i+1}-1\right), a_{i+2}=b_{i+1}\left(2 l_{i+2}-1\right)$. By definition of l_{i+1} we have

$$
\frac{2 l_{i+1}-1}{2 l_{i+1}+1} p<a_{i+1}<p
$$

Notice that $n_{i+1} \geq 1$, hence

$$
0<b_{i+1}=\frac{p-a_{i+1}}{2^{n_{i+1}}} \leq \frac{p-a_{i+1}}{2}<\frac{1}{2 l_{i+1}+1} p
$$

So $2 l_{i+2}-1 \geq 2 l_{i+1}+1$, hence $l_{i+2}>l_{i+1}$. Continuing this process, we finally get $l_{j+1}>l_{j}>l_{j-1}>\cdots>l_{i+2}>l_{i+1}$, which is a contradiction to $l_{j+1}=$ l_{i+1}. On the other hand, $m_{i+1}+\cdots+m_{j} \geq 0$, hence $m_{i+1}+\cdots+m_{j}>0$.

Since $2 l_{i+1}-1<q, \ldots, 2 l_{j}-1<q,\left(2 l_{i+1}-1\right) \cdots\left(2 l_{j}-1\right)$ has the form $3^{e_{k 2}} \cdots p_{k-1}^{e_{k, k-1}}$ for some $e_{k 2}, \ldots, e_{k, k-1} \in \mathbb{Z}$. Let $e_{k 1}=-\left(n_{i}+\cdots+n_{j-1}\right)$, $e_{k k}=m_{i+1}+\cdots+m_{j}$. Then $2^{e_{k 1}} 3^{e_{k 2}} \cdots p_{k-1}^{e_{k, k-1}} p_{k}^{e_{k k}} \in G$ and $e_{k k}>0$. So the assertion is true for $3 \leq k \leq n-1$.

This completes the proof.
Acknowledgements. The authors are greatly indebted to the referee for careful reading of this paper and detailed suggestions for improvement.

References

[1] J. Browkin, K-theory, cyclotomic equations, and Clausen's function, in: Structural Properties of Polylogarithms, L. Lewin (ed.), Math. Surveys Monogr. 37, Amer. Math. Soc., Providence, RI, 1991, 233-273.
[2] J.-H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent. Math. 75 (1984), 561-584.

Jianguo Xia
Department of Mathematics
Nanjing Normal University
Nanjing, 210097, China
E-mail: jgxia@pine.njnu.edu.cn

Hourong Qin
Department of Mathematics
Nanjing University
Nanjing, 210093, China
E-mail: hrqin@nju.edu.cn

[^0]: 2000 Mathematics Subject Classification: 05A10, 11B65, 11R27.
 Key words and phrases: rank of subgroups, good S-units.
 This work was supported by the National Natural Science Foundation of China 10471118 , SRFDP, the Jiangsu Natural Science Foundation Bk2002023, the National Distinguished Youth Science Foundation of China Grant and the 973 Grant.

