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1. Introduction. We consider the set of points in projective n-space
that generate an extension of degree e over a given number field k, and
deduce an asymptotic formula for the number of such points of absolute
height at most X, as X tends to infinity. We deduce a similar such formula
with a so-called adelic-Lipschitz height instead of the absolute height.

Let k be a number field of degree m = [k : Q] in a fixed algebraic closure
k of k and let n be a positive integer. Write Pn(k) for the projective space of
dimension n over the field k and denote by H(·) the non-logarithmic absolute
Weil height on Pn(k) as defined in [1, p. 16]. A fundamental property of the
height, usually associated with the name of Northcott due to his Theorem 1
in [11], states that subsets of Pn(k) of bounded degree and bounded height
are finite. This raises the question of estimating the cardinality of such a set
as the height bound gets large. Schanuel proved in [14] that for the counting
function

ZH(Pn(k), X) = |{P ∈ Pn(k) ;H(P ) ≤ X}|
one has an asymptotic formula

ZH(Pn(k), X) = Sk(n)Xm(n+1) + O(Xm(n+1)−1 log X)(1.1)

as X tends to infinity where Sk(n) is a positive constant involving all classical
field invariants (see (3.1) for its definition) and the constant implied by the
Landau O-symbol depends on k and n. The logarithm can be omitted in all
cases except for n = m = 1.

A projective point P = (α0 : . . . : αn) in Pn(k) has a natural degree
defined as

[k(P ) : k]

where k(P ) denotes the extension we get by adjoining all ratios αi/αj (0 ≤
i, j ≤ n, αj 6= 0) to k. In 1993 Schmidt drew attention to the more general
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set

Pn(k; e) = {P ∈ Pn(k) ; [k(P ) : k] = e}
of points with relative degree e. Clearly Pn(k; 1) = Pn(k) and so Schanuel
deals with the case e = 1. For the counting function

ZH(Pn(k; e), X) = |{P ∈ Pn(k; e) ;H(P ) ≤ X}|
Schmidt [16] proved the following general estimates:

cXme(max{e,n}+1) ≤ ZH(Pn(k; e), X) ≤ CXme(e+n)(1.2)

where c = c(k, e, n) and C = C(k, e, n) are positive constants depending
solely on k, e and n. The upper bound holds for X ≥ 0 and the lower bound
holds for X ≥ X0(k, e, n) depending also on k, e and n. Moreover, one can
choose C = 2me(e+n+3)+e2+n2+10e+10n.

For k = Q more is known. Schmidt [17] investigated the quadratic case.
Here he provided not only the correct order of magnitude but also the precise
asymptotics, and this in all dimensions n. As X tends to infinity one has

ZH(Pn(Q; 2), X) =


D1X

6 + O(X4 log X) if n = 1,
D2X

6 log X + O(X6
√

log X) if n = 2,
DnX2(n+1) + O(X2n+1) if n > 2.

(1.3)

The constant implied by the O-symbol depends only on n. In fact, Schmidt’s
result was more precise since it gave the asymptotics for real and imaginary
quadratic points separately. Here D1 = 8/ζ(3), D2 = 8(12 + π2)/ζ(3)2 and
Dn = D(Q, 2, n) is given by

D(Q, 2, n) =
∑
K

SK(n)

where the sum runs over all quadratic fields K. Schmidt also proved an ana-
logue to the above result for a more general kind of height and showed that
this leads to asymptotic formulae for the number of decomposable quadratic
forms (i.e. products of two linear forms) f(x0, . . . , xn) =

∑
0≤i≤j≤n aijxixj

with coefficients aij in Z having |aij | ≤ X, and moreover for the number of
symmetric (n+1)×(n+1) matrices with rank ≤ 2 such that bii ∈ Z, |bii| ≤ X
and 2bij ∈ Z, 2|bij | ≤ X for i 6= j. Already way back in 1967 Schmidt [15] in-
troduced more general classes of heights where the maximum norm in (2.1)
at the infinite places is replaced by an arbitrary but fixed distance func-
tion. More recently Thunder [21] and Roy–Thunder [13] introduced “twisted
heights” which allow also modifications at the finite places.

One year after Schmidt’s article on quadratic points, Gao [5] made fur-
ther progress. He proved that if n > e > 2 one has

ZH(Pn(Q; e), X) = D(Q, e, n)Xe(n+1) + O(Xe(n+1)−1)(1.4)
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as X tends to infinity. The constant implied by the O-symbol depends on
e and n and the constant D(Q, e, n) is given by

∑
K SK(n) where the sum

runs over all extensions K of Q of degree e. For 1 ≤ n ≤ e Gao showed
that the correct order of magnitude of ZH(Pn(Q; e), X) is Xe(e+1). Here the
asymptotics is still unknown, even in the case e = 3 and n = 2 of cubic
points in two dimensions.

Schmidt’s and Gao’s results are restricted to the ground field k = Q.
A more recent result of Masser and Vaaler [9] gives the asymptotics for the
number of points of fixed degree over an arbitrary fixed number field k,
but only in dimension n = 1. Masser and Vaaler established the asymptotic
formula

ZH(P1(k; e), X) = eVR(e)rkVC(e)skSk(e)Xme(e+1)(1.5)

+ O(Xme(e+1)−e log X)

as X tends to infinity. The constants VR(e), VC(e) have their origins in [3].
Moreover, the logarithm can be omitted in all cases except (m, e) = (1, 1)
and (m, e) = (1, 2) and the constant implied by the O-symbol depends on k
and e. Unfortunately, the proof of Masser and Vaaler’s theorem shed no light
on the case n > 1. Very roughly speaking, Masser and Vaaler’s idea was to
interpret the height of the root of an irreducible polynomial in k[x] of fixed
degree e as a suitable height of the coefficient vector of this polynomial and
to proceed by counting minimal polynomials with respect to this modified
height. To carry out this plan they had to generalize the class of heights
introduced by Schmidt [15], allowing now different distance functions at the
infinite places instead of only one for all infinite places as Schmidt did. On
the other hand, Masser and Vaaler had to impose a technical condition,
associated with the name of Lipschitz, on the boundaries of the unit balls
given by the respective distance function. They therefore introduced so-
called Lipschitz systems, giving what one could call Lipschitz heights.

In the present article we establish the asymptotics for Pn(k; e) if n is
slightly larger than 5e/2. Let us write

D = D(k, e, n) =
∑
K

SK(n)

for the formal sum taken over all extensions K of k in k of degree e. We
have the following result.

Theorem 1.1. Let e, n be positive integers and k a number field of de-
gree m and suppose that n > 5e/2 + 4 + 2/(me). Then the sum defining D
converges and as X tends to infinity we have

ZH(Pn(k; e), X) = DXme(n+1) + O(Xme(n+1)−1 log X).
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The logarithm can be omitted unless (me, n) = (1, 1), and the constant im-
plied by the O-symbol depends on k, e and n.

If e and n are both larger than one there is a considerable gap between
the exponents of the lower and the upper bound in (1.2). Schmidt mentioned
that the lower bound is likely to be nearer the truth than the upper bound.
Our Theorem 1.1 confirms Schmidt’s conjecture at least if n is large enough.
We will prove a more general result involving adelic-Lipschitz heights.

Let us give a single new example illustrating our theorem. We take
n = 11, k = Q(i), e = 2, so that we are counting points in eleven di-
mensions quadratic over Q(i). For the number Z = ZH(P11(Q(i); 2), X) of
points of height at most X, the Schmidt bounds are X48 ¿ Z ¿ X52 for
X ≥ X0, with absolute implied constants. Our result implies that

Z = DX48 + O(X47)

with

D = 12 · (2π)24
∑
K

[K:Q(i)]=2

hKRK

wKζK(12)|∆K |6
.

Our proof follows the general strategy of Schmidt and Gao. Their auda-
cious idea was to prove a result similar to (1.1) but with Pn(K) replaced by
Pn(K/Q), the subset of primitive points in Pn(K); by definition these satisfy
K = Q(P ). Now Pn(Q; e) is a disjoint union of the sets Pn(K/Q) where K
runs over all number fields of degree e. For each Pn(K/Q) the main term
is the same as that in (1.1) with K instead of k, but for e = 2 Schmidt
obtained a more precise error term:

O

(√
hKRK log(3 + hKRK)

|∆K |n/2
X2n+1

)
(1.6)

where the constant in O depends only on n but is independent of the field K.
This is the major step of the proof and involves many new ideas. Now one
can sum over all quadratic number fields and the Theorem of Siegel–Brauer
ensures that the sum over the main terms SK(n) as well as over the error
terms converges provided n > 2. For similar reasons the restriction n > e in
Gao’s result appears.

We close the introduction with some remarks about the structure of the
paper. First we take up the definition of an adelic-Lipschitz system from [23]
on a number field and we define a uniform adelic-Lipschitz system on the
collection of all extensions of k of degree e. This then gives rise to a class of
heights HN defined on Pn(k; e). The main result asymptotically estimates
the counting function of Pn(k; e) with respect to the height HN . In Theo-
rem 1.1 we used only the simplest formulation by choosing a special uniform
adelic-Lipschitz system with maximum norms at all places so that the cor-
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responding adelic-Lipschitz height HN becomes just the Weil height H. In
Section 3 we state our main theorem for general adelic-Lipschitz heights. It
is in [24] and [25] where we see the advantage of working in such generality.
In [24] we are concerned with counting points of fixed degree on linear sub-
varieties of projective space. In [25] we prove the following result. Let m, n
be positive integers with n > max{6m+2+2/m, m2 +m}. Then as X tends
to infinity the number of algebraic numbers α of degree mn such that Q(α)
contains a subfield of degree m and H(1, α) ≤ X is asymptotically equal to

D′(m, n)Xmn(n+1)

where D′(m, n) =
∑

K nVR(n)rK VC(n)sK SK(n) and the sum runs over all
number fields of degree m. Note that the subfield condition reduces the order
of magnitude from Xmn(mn+1) to Xmn(n+1).

In Section 4 we prove the main result, Theorem 3.1, which is a generaliza-
tion of Theorem 1.1 to adelic-Lipschitz heights. Section 5 is devoted to some
simple lower and upper bounds for the number of extensions K/k of fixed
degree with δ(K/k) ≤ T , where δ(K/k) = infα{H(1, α) ;K = k(α)}. The
invariant δ(K/k) was already introduced in [23]. Our bounds are essentially
by-products of the proof of Theorem 3.1.

2. Adelic-Lipschitz heights revisited. Subsections 2.1, 2.2 and 2.3
are entirely contained in [23]. But adelic-Lipschitz heights are crucial for
the entire paper and thus, for the convenience of the reader, we introduce
this notion here once again. Before we can define adelic-Lipschitz heights we
have to fix some basic notation. For a detailed account on heights we refer
to [1] and [6].

2.1. Preliminaries. Let K be a finite extension of Q of degree d=[K : Q].
By a place v of K we mean an equivalence class of non-trivial absolute values
on K. The set of all places of K will be denoted by MK . For each v in MK

we write Kv for the completion of K at the place v, and dv for the local
degree defined by dv = [Kv : Qv] where Qv is a completion with respect
to the place which extends to v. A place v in MK corresponds either to a
non-zero prime ideal pv in the ring of integers OK or to an embedding σ of
K into C. If v comes from a prime ideal we call v a finite or non-archimedean
place and denote this by v - ∞, and if v corresponds to an embedding we
say v is an infinite or archimedean place and denote this by v |∞. For each
place in MK we choose a representative | · |v, normalized in the following
way: if v is finite and α 6= 0 we set by convention

|α|v = Np
−(ordpv (αOK))/dv
v

where Npv denotes the norm of pv from K to Q and ordpv(αOK) is the
power of pv in the prime ideal decomposition of the fractional ideal αOK .
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Moreover, we set

|0|v = 0.

And if v is infinite and corresponds to an embedding σ : K ↪→ C we define

|α|v = |σ(α)|.
If α is in K∗ = K\{0} then |α|v 6= 1 holds for only a finite number of
places v.

Throughout this article, n will denote a positive rational integer. The
height on Kn+1 is defined by

H(α0, . . . , αn) =
∏
MK

max{|α0|v, . . . , |αn|v}dv/d.(2.1)

Due to the remark above this is in fact a finite product. Furthermore, this
definition is independent of the field K containing the coordinates (see [1,
Lemma 1.5.2] or [6, pp. 51–52]) and therefore defines a height on Qn+1

for an algebraic closure Q of Q. The well-known product formula (see [1,
Proposition 1.4.4]) asserts that∏

MK

|α|dv
v = 1 for each α in K∗.

This implies in particular that the value of the height in (2.1) does not
change if we multiply each coordinate with a fixed element of K∗. Therefore
one can define a height on points P = (α0 : . . . : αn) in Pn(Q) by

H(P ) = H(α0, . . . , αn).(2.2)

Moreover, to evaluate the height, we can assume that one of the coordinates
is 1, which shows that H(α) ≥ 1 for α ∈ Qn+1\{0}. The equations (2.1)
and (2.2) define the absolute non-logarithmic projective Weil height or just
Weil height.

2.2. Adelic-Lipschitz systems on a number field. Let r be the number of
real embeddings and s the number of pairs of complex conjugate embeddings
of K so that d = r + 2s. Recall that MK denotes the set of places of K.
For every place v we fix a completion Kv of K at v. The value set of v,
Γv := {|α|v ; α ∈ Kv}, is equal to [0,∞) if v is archimedean, and to

{0, (Npv)0, (Npv)±1/dv , (Npv)±2/dv , . . .}
if v is non-archimedean. For v |∞ we identify Kv with R or C respectively
and we identify C with R2 via ξ 7→ (<(ξ),=(ξ)) where we used < for the
real and = for the imaginary part of a complex number.

Before we can introduce adelic-Lipschitz systems we have to give a tech-
nical definition. For a vector x in Rn we write |x| for the euclidean length
of x.
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Definition 1. Let M and D > 1 be positive integers and let L be a
non-negative real. We say that a set S is in Lip(D,M, L) if S is a subset
of RD, and if there are M maps φ1, . . . , φM : [0, 1]D−1 → RD satisfying a
Lipschitz condition

|φi(x)− φi(y)| ≤ L|x− y| for x,y ∈ [0, 1]D−1, i = 1, . . . ,M,(2.3)

such that S is covered by the images of the maps φi.

We call L a Lipschitz constant for the maps φi. By definition the empty
set lies in Lip(D,M, L) for any positive integers M and D > 1 and any
non-negative L.

Definition 2 (Adelic-Lipschitz system). An adelic-Lipschitz system
(ALS ) NK , or simply N , on K (of dimension n) is a set of continuous
maps

Nv : Kn+1
v → Γv, v ∈ MK ,(2.4)

such that for v ∈ MK we have

(i) Nv(z) = 0 if and only if z = 0,
(ii) Nv(ωz) = |ω|vNv(z) for all ω in Kv and all z in Kn+1

v ,
(iii) if v |∞ then {z ; Nv(z) = 1} is in Lip(dv(n + 1), Mv, Lv) for some

Mv, Lv,
(iv) if v - ∞ then Nv(z1 + z2) ≤ max{Nv(z1), Nv(z2)} for all z1, z2 in

Kn+1
v .

Moreover, we assume that

Nv(z) = max{|z0|v, . . . , |zn|v}(2.5)

for all but a finite number of v ∈ MK . If we consider only the functions Nv

for v |∞ then we get an (r, s)-Lipschitz system (of dimension n) in the sense
of Masser and Vaaler [9]. With Mv and Lv from (iii) we define

MN = max
v|∞

Mv, LN = max
v|∞

Lv.

We say that N is an ALS with associated constants MN , LN . The set defined
in (iii) is the boundary of the set Bv = {z ; Nv(z) < 1} and therefore Bv is
a bounded symmetric open star-body in Rn+1 or Cn+1 (see also [9, p. 431]).
In particular, Bv has a finite volume Vv.

Let us consider the system where Nv is as in (2.5) for all places v. If v is
an infinite place then Bv is a cube for dv = 1 and the complex analogue if
dv = 2. Their boundaries are clearly in Lip(dv(n+1), Mv, Lv) most naturally
with Mv = 2n+2 maps and Lv = 2 if dv = 1, and with Mv = n+1 maps and
for example Lv = 2π

√
2n + 1 if dv = 2. This system is called the standard

adelic-Lipschitz system.
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We return to arbitrary adelic-Lipschitz systems. We claim that for any
v ∈ MK there is a cv in the value group Γ ∗

v = Γv\{0} with

Nv(z) ≥ cv max{|z0|v, . . . , |zn|v}(2.6)

for all z = (z0, . . . , zn) in Kn+1
v . For if v is archimedean then Bv is bounded

open and it contains the origin. Since Γ ∗
v contains arbitrarily small posi-

tive numbers the claim follows by (ii). Now for v non-archimedean Nv and
max{|z0|v, . . . , |zn|v} define norms on the vector space Kn+1

v over the com-
plete field Kv. But on a finite-dimensional vector space over a complete field
all norms are equivalent ([2, Corollary 5, p. 93]), hence (2.6) remains true
for a suitable choice of cv.

So let N be an ALS on K of dimension n. For every v in MK let cv be
an element of Γ ∗

v , such that cv ≤ 1 and (2.6) holds. Due to (2.5) we can
assume that cv 6= 1 only for a finite number of places v. We define

Cfin
N =

∏
v-∞

c−dv/d
v ≥ 1,(2.7)

C inf
N = max

v|∞
{c−1

v } ≥ 1.(2.8)

Multiplying the finite and the infinite part gives rise to another constant

CN = Cfin
N C inf

N .(2.9)

It will turn out that besides MN and LN this is another important quan-
tity for an ALS. So we say that N is an ALS with associated constants
CN , MN , LN .

Remark 1. Let v be an infinite place. Suppose Nv : Kn+1
v → [0,∞)

defines a norm, so that Nv(z1 + z2) ≤ Nv(z1) + Nv(z2). Then Bv is convex
and (2.6) combined with (2.7)–(2.9) shows that Bv lies in B0(CN

√
n + 1).

This implies (see Theorem A.1 in [22]) that ∂Bv lies in Lip(dv(n + 1), 1,
8d2

v(n + 1)5/2CN ).

We denote by σ1, . . . , σd the embeddings from K to R or C respectively,
ordered so that σr+s+i = σr+i for 1 ≤ i ≤ s. We define

σ : K → Rr × Cs, σ(α) = (σ1(α), . . . , σr+s(α)).(2.10)

Sometimes it will be more readable to omit the brackets and simply write
σα. We identify C in the usual way with R2 and extend σ componentwise
to get a map

σ : Kn+1 → RD(2.11)

where D = d(n + 1). On RD we use | · | for the usual euclidean norm. For
v ∈ MK let σv be the canonical embedding of K in Kv, again extended
componentwise on Kn+1.
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Definition 3. Let D 6= 0 be a fractional ideal in K and N an ALS of
dimension n. We define

ΛN (D) = {σ(α) ;α ∈ Kn+1, Nv(σv(α)) ≤ |D|v for all finite v}(2.12)

where |D|v = Np
−(ordpv D)/dv
v .

It is easy to see that ΛN (D) is an additive subgroup of RD. Now assume
B ≥ 1 and |σ(α)| ≤ B; then (2.6) implies H(α)d ≤ (BCfin

N )dND−1 and by
Northcott’s Theorem we deduce that ΛN (D) is discrete. The same argument
as for (2.6) yields positive real numbers Cv, one for each non-archimedean
place v ∈ MK , with Nv(z) ≤ Cv max{|z0|v, . . . , |zn|v} for all z = (z0, . . . , zn)
in Kn+1

v and Cv = 1 for all but finitely many non-archimedean v ∈ MK .
Thus there exists an ideal C1 6= 0 in OK with |C1|v ≤ 1/Cv for all non-
archimedean places v ∈ MK . This means that σ(C1D)n+1 ⊆ ΛN (D). It is
well-known that the additive group σ(C1D)n+1 has maximal rank in RD.
Therefore ΛN (D) is a discrete additive subgroup of RD of maximal rank.
Hence ΛN (D) is a lattice. Notice that for ε in K∗ one has

det ΛN ((ε)D) = |NK/Q(ε)|n+1 det ΛN (D).(2.13)

Therefore

∆N (D) =
det ΛN (D)

NDn+1
(2.14)

is independent of the choice of the representative D but depends only on
the ideal class D of D. Let ClK denote the ideal class group of K. We define

V fin
N = 2−s(n+1)|∆K |(n+1)/2h−1

K

∑
D∈ClK

∆N (D)−1(2.15)

for the finite part, where as usual, s denotes the number of pairs of com-
plex conjugate embeddings of K, hK the class number of K and ∆K the
discriminant of K. The infinite part is defined by

V inf
N =

∏
v|∞

Vv.

By virtue of (2.6) we observe that

V inf
N =

∏
v|∞

Vv ≤
∏
v|∞

(2C inf
N )dv(n+1) = (2C inf

N )d(n+1).(2.16)

We multiply the finite and the infinite part to get a global volume

VN = V inf
N V fin

N .(2.17)
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2.3. Adelic-Lipschitz heights on Pn(K). Let N be an ALS on K of di-
mension n. Then the height HN on Kn+1 is defined by

HN (α) =
∏

v∈MK

Nv(σv(α))dv/d.

Thanks to the product formula and (ii) from Subsection 2.2, HN (α) does
not change if we multiply each coordinate of α with a fixed element of K∗.
Therefore HN is well-defined on Pn(K) by setting

HN (P ) = HN (α)

where P = (α0 : . . . : αn) ∈ Pn(K) and α = (α0, . . . , αn) ∈ Kn+1.

Remark 2. Multiplying (2.6) over all places with suitable multiplicities
yields

HN (P ) ≥ C−1
N H(P )(2.18)

for P ∈ Pn(K). Thanks to Northcott’s Theorem it follows that {P ∈ Pn(K) ;
HN (P ) ≤ X} is a finite set for each X in [0,∞).

2.4. Adelic-Lipschitz systems on a collection of number fields. Recall
that k is a number field of degree m and k is an algebraic closure of k. We
fix k and k throughout and assume finite extensions of k to lie in k. Let C
be a collection of finite extensions of k. We are especially interested in the
set of all extensions of fixed relative degree. We denote it by

Ce = Ce(k) = {K ⊆ k ; [K : k] = e}.
Let N be a collection of adelic-Lipschitz systems NK of dimension n, one
for each K of C. Then we call N an adelic-Lipschitz system (ALS) on C
of dimension n. We say N is a uniform ALS on C of dimension n with
associated constants CN , MN , LN in R if the following holds: for each ALS
NK of the collection N we can choose associated constants CNK

, MNK
, LNK

satisfying

CNK
≤ CN , MNK

≤ MN , LNK
≤ LN .

Notice that a uniform ALS N (of dimension n) on the collection consisting
only of a single field K with associated constants CN , MN , LN is simply an
ALS N (of dimension n) on K with associated constants CN , MN , LN in
the sense of Subsection 2.2.

A standard example of a uniform ALS on Ce (of dimension n) is given as
follows. For each K in Ce choose the standard ALS on K (of dimension n)
so that Nv is as in (2.5) for each v in MK . For this system we may choose
CN = 1, MN = 2n + 2 and LN = 2π

√
2n + 1. Choosing l2-norms at all

infinite places and Nv as in (2.5) for all finite places yields another important
uniform ALS.
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2.5. Adelic-Lipschitz heights on Pn(k; e). Let C be a collection of finite
extensions of k and let N be an ALS of dimension n on C. Now we can
define heights on Pn(K/k) (the set of points P ∈ Pn(K) with k(P ) = K)
for K in C. Let P ∈ Pn(K/k). According to Subsection 2.3 we know that
HNK

(·) defines a projective height on Pn(K). Now we define

HN (P ) = HNK
(P ).(2.19)

From Subsection 2.3 we know

HNK
(P ) =

∏
v∈MK

Nv(σv(α))dv/d(2.20)

for the functions Nv of NK and [K : Q] = d, [Kv : Qv] = dv. Starting with
C = Ce we get a height defined on Pn(k; e).

3. The main result. Let N be an ALS on Ce of dimension n. Then
HN (·) defines a height on Pn(k; e), the set of points P = (α0 : . . . : αn) in
Pn(k) with [k(P ) : k] = e where k(P ) = k(. . . , αi/αj , . . .) for 0 ≤ i, j ≤ n,
αj 6= 0. The associated counting function ZN (Pn(k; e), X) denotes the num-
ber of points P in Pn(k; e) with HN (P ) ≤ X. AssumeN is a uniform ALS on
Ce (of dimension n). Then due to Northcott and (2.18), ZN (Pn(k; e), X) is
finite for all X in [0,∞). The Schanuel constant SK(n) is defined as follows:

SK(n) =
hKRK

wKζK(n + 1)

(
2rK (2π)sK√

|∆K |

)n+1

(n + 1)rK+sK−1.(3.1)

Here hK is the class number, RK the regulator, wK the number of roots
of unity in K, ζK the Dedekind zeta-function of K, ∆K the discriminant,
rK is the number of real embeddings of K, and sK is the number of pairs
of distinct complex conjugate embeddings of K. Recall also the definition of
VNK

(see (2.17)). Now we define the sum

DN = DN (k, e, n) =
∑
K

2−rK(n+1)π−sK(n+1)VNK
SK(n)(3.2)

where the sum is over all extensions of k with relative degree e. We will prove
that the sum in (3.2) converges if n is large enough compared to e. It will
be convenient to use Landau’s O-notation. For non-negative real functions
f(X), g(X), h(X) we say that f(X) = g(X) + O(h(X)) as X > X0 tends
to infinity if there is a constant C0 such that |f(X) − g(X)| ≤ C0h(X) for
each X > X0.

After all this we are ready to state the main result.

Theorem 3.1. Let e, n be positive integers and k a number field of de-
gree m. Suppose N is a uniform adelic-Lipschitz system of dimension n
on Ce, the collection of all finite extensions of k of relative degree e, with
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associated constants CN , MN and LN . Write

AN = Mme
N (CN (LN + 1))me(n+1)−1.(3.3)

Suppose that either e = 1 or

n > 5e/2 + 4 + 2/(me).(3.4)

Then the sum in (3.2) converges and as X > 0 tends to infinity we have

ZN (Pn(k; e), X) = DNXme(n+1) + O(ANXme(n+1)−1L),

where L = log max{2, 2CNX} if (me, n) = (1, 1) and L = 1 otherwise. The
constant in O depends only on k, e and n.

In subsequent papers [24] and [25] we will explore some applications of
Theorem 3.1. Here we are content with some immediate consequences. For
e = 1 we recover a version of the Proposition in [9], which allows more gen-
eral norms at the finite places (this generalization will be essential to deduce
the results of [24]). Now choose the standard uniform ALS as described at
the end of Subsection 2.4 so that HN becomes the Weil height. Schanuel’s
theorem implies SK(n) = DN (K, 1, n) = 2−rK(n+1)π−sK(n+1)VNK

SK(n). We
can verify

VNK
= 2rK(n+1)πsK(n+1)(3.5)

directly by noting that ΛN (D) = (σD)n+1 in (2.12), so that detΛN (D) =
(2−sK ND

√
|∆K |)n+1 (see [9, Lemma 5]). Inserting the latter in definition

(2.15) we get V fin
NK

= 1 and it is clear that V inf
NK

= 2rK(n+1)πsK(n+1). Then
(3.5) follows from VNK

= V inf
NK

V fin
NK

and so we find Theorem 1.1 from the
introduction. For k = Q and e = 2 we recover essentially Schmidt’s theorem
(1.3) but only for n > 10 while Schmidt does it for all n ≥ 3 and even (in
a modified form) for n = 1, 2. For k = Q and e > 2 we find Gao’s result
(1.4) but again with the stronger restriction n > 5e/2 + 4 + 2/(me) instead
of Gao’s n > e.

It is likely that Theorem 3.1 is valid for n > e instead of (3.4). Gao
showed, at least for his definition of height (see also [22, Appendix B]), that
for k = Q the bound n > e suffices. On the other hand, Schmidt’s lower
bound in (1.2) implies that Theorem 3.1 cannot hold for e > 1 and n < e.
However, there is a good possibility of obtaining the asymptotics for e > 1
and n = 1 using a kind of generalized Mahler measure.

4. Proof of the main result. The major part of the work was al-
ready done in [23] where we proved estimates for ZNK

(Pn(K/k), X). These
estimates will be essential to deduce Theorem 3.1.



Counting points 157

4.1. Preliminaries. Let K be in Ce. Then by definition HN (P )=HNK
(P )

for all P in Pn(K/k). Since

Pn(k; e) =
⋃

K∈Ce

Pn(K/k),(4.1)

where the right-hand side is a disjoint union, we get

ZN (Pn(k; e), X) =
∑

K∈Ce

ZNK
(Pn(K/k), X).(4.2)

To state the estimates for ZNK
(Pn(K/k), X) from [23] we are forced to

introduce some more notation. For fields k, K with k ⊆ K and [K : k] = e
we define

G(K/k) = {[K0 : k] ;K0 is a field with k ⊆ K0 ( K}
if k 6= K, and we define

G(K/k) = {1}
if k = K. Clearly, |G(K/k)| ≤ e. Then for an integer g ∈ G(K/k) we define

δg(K/k) = inf
α,β
{H(1, α, β) ; k(α, β) = K, [k(α) : k] = g}(4.3)

(which is ≥ 1) and

µg = m(e− g)(n + 1)− 1.(4.4)

In [23] the author proved the following result.

Theorem 4.1. Let k, K be number fields with k ⊆ K and [K : k] = e,
[k : Q] = m, [K : Q] = d. Let NK be an adelic-Lipschitz system of dimen-
sion n on K with associated constants CNK

, LNK
, MNK

. Write

ANK
= Md

NK
(CNK

(LNK
+ 1))d(n+1)−1,(4.5)

DNK
= 2−rK(n+1)π−sK(n+1)VNK

SK(n),(4.6)

BNK
= ANK

RKhK

∑
g∈G(K/k)

δg(K/k)−µg .(4.7)

Then as X > 0 tends to infinity we have

ZNK
(Pn(K/k), X) = DNK

Xd(n+1) + O(BNK
Xd(n+1)−1L),

where

L =
{

log max{2, 2CNK
X} if (n, d) = (1, 1),

1 otherwise
and the implied constant in O depends only on n and d.

Thanks to (4.2) and Theorem 4.1 it suffices to show that
∑

DNK
and∑

BNK
are convergent (here the sum is over the same fields as in (3.2) and

(4.2)).
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We will also deal with δ(·), a simplified version of δg(·):
δ(K/k) = inf

α
{H(1, α) ;K = k(α)}.

The quantity δ(K/Q) was already introduced by Roy and Thunder [12].
It will be extremely convenient to use Vinogradov’s ¿,À-notation. The

constants involved in ¿ and À will depend only on k, n, e unless we indicate
the dependence on additional parameters by an index.

The case e = 1 of Theorem 3.1 is already covered by Theorem 4.1 upon
choosing K = k. For the rest of this article we assume

e > 1.

For a non-zero ideal A in K let DK/k(A) be the discriminant-ideal of A
relative to k (for definitions see [10, p. 212] or [7]) and write DK/k for
DK/k(OK) where OK denotes the ring of integers in K. By assumption we
have Q ⊆ k ⊆ K and hence by [10, Korollar (2.10), p. 213]

|∆K/Q| = |∆k/Q|[K:k]Nk/Q(DK/k)(4.8)

where Nk/Q(a) denotes the absolute norm of an ideal a 6= 0 of the ring of
integers Ok, i.e. Nk/Q(a) = |Ok/a|. Let P be in Pn(K/k), so K = k(P ).
We use a theorem of Silverman ([20, Theorem 2]) with Silverman’s SF (for
F = k) as the set of archimedean absolute values. Then Silverman’s LF (·)
is simply the usual norm Nk/Q(·). Hence we deduce

H(P )m ≥ exp
(
− δk log e

2(e− 1)

)
Nk/Q(DK/k)

1
2e(e−1)(4.9)

where δk is the number of archimedean places in Mk. Since Silverman uses
not an absolute height but rather an “absolute height relative to k”, we
had to take the mth power on the left-hand side of (4.9). Combining (4.8)
and (4.9) yields

H(P ) ≥ exp
(
− δk log e

2(e− 1)m

)
|∆k|

− 1
2(e−1)m |∆K |

1
2e(e−1)m(4.10)

À |∆K |
1

2e(e−1)m .

Recalling the definitions of δ, δg and G(K/k) and taking P = (1 : α1 : α2)
in P2(K/k) we get

δg(K/k) À |∆K |
1

2e(e−1)m(4.11)

for any g ∈ G(K/k); and similarly

δ(K/k) À |∆K |
1

2e(e−1)m .(4.12)

Here it might be worthwile to point out that (4.10) can be used to prove a
version of Theorem 4.1 where BNK

is redefined in terms of the discriminants;
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namely

BNK
= ANK

RKhK

∑
g∈G(K/k)

(|∆k|−e|∆K |)
− µg

2e(e−1)m .(4.13)

At a first glance this error term looks more appropriate due to the un-
avoidable appearance of ∆K in the main term. But it turns out that the
summation over ∆K instead of over δg(K/k) leads to a result weaker than
Theorem 3.1, in which we have to assume that n exceeds some quadratic
function of e instead of (3.4). The reason for this is that we have estimates
for the number of number fields K with δg(K/k) ≤ T which are more accu-
rate than the best available estimates for the number of number fields with
|∆K | ≤ T ; see Section 5 for a discussion on this. Thanks to the well-known
Theorem of Siegel–Brauer (see [7, Corollary, p. 328] or [19, Satz 1, p. 67]
for a more precise version) we can use the inequalities (4.11) and (4.12) to
bound the product of regulator and class number. More precisely, we have

RKhK ¿β δg(K/k)β(4.14)

and

RKhK ¿β δ(K/k)β(4.15)

for any β > e(e− 1)m and any g ∈ G(K/k).

4.2. Three preparatory lemmas. We start with a very simple argument,
known as dyadic summation. Since it will be frequently used we state it as
a lemma.

Lemma 4.1 (Dyadic summation). Let C be a non-empty subset of Ce

and let ι be a map ι : C → [1,∞). Write Nι(T ) = |{K ∈ C ; ι(K) ≤ T}| and
suppose there are non-negative real numbers b, c (independent of T ) with

Nι(T ) ≤ cT b

for all T > 0. Let C′ be a non-empty subset of C. Set M = [log2 maxC′ ι(K)]
+ 1 if C′ is finite and M = ∞ otherwise. Moreover , suppose α is a real
number such that

∑M
i=1 2i(α+b) converges. Then∑

K∈C′
ι(K)α ≤ c2|α|

M∑
i=1

2i(α+b).

Proof. From the definition of M and since C′ ⊆ C we have∑
K∈C′

ι(K)α =
M∑
i=1

∑
K∈C′

2i−1≤ι(K)<2i

ι(K)α ≤
M∑
i=1

∑
K∈C

2i−1≤ι(K)<2i

ι(K)α.
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First suppose α < 0. Then the latter is

≤
M∑
i=1

2(i−1)αNι(2i) ≤ c2−α
M∑
i=1

2i(α+b).

If α ≥ 0 then we even get∑
K∈C′

ι(K)α ≤ c

M∑
i=1

2i(α+b).

This proves the lemma.

Recall the definition of G(K/k) from Subsection 4.1. In our applications,
ι will be δg and C will be

C(g)
e = {K ∈ Ce ; g ∈ G(K/k)},

the set of extensions K of k of relative degree e containing an intermediate
field K0 ( K with [K0 : k] = g. Let Gu be the union of all sets G(K/k):

Gu =
⋃

K∈Ce

G(K/k),

so that C(g)
e is non-empty if and only if g ∈ Gu. In fact, Gu is simply the set

of positive, proper divisors of e, but we need only

{1} ⊆ Gu ⊆ {1, . . . , [e/2]}.
To apply the dyadic summation lemma we need information about the
growth rate of Nδg(T ). In accordance with the notation in Lemma 4.1 we
define, for an integer g ∈ Gu and real positive T ,

Nδg(T ) = |{K ∈ C(g)
e ; δg(K/k) ≤ T}|.

The set on the right-hand side is finite. More precisely, we have the following
lemma.

Lemma 4.2. Set γg = m(g2 +g +e2/g +e). Then for real positive T and
g in Gu we have

Nδg(T ) ¿ T γg .

Proof. Since H(1, α1, α2) ≥ max{H(1, α1), H(1, α2)} it suffices to show
that the number of tuples (α1, α2) ∈ k

2 with

[k(α1) : k] = g,(4.16)
[k(α1, α2) : k(α1)] = e/g,(4.17)
H(1, α1), H(1, α2) ≤ T(4.18)

is ¿ T γg . The number of projective points in P(k; g) with height not ex-
ceeding T is an upper bound for the number of α1 in k of relative degree g
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with H(1, α1) ≤ T . Thus by (1.2) we get the upper bound

¿ Tmg(g+1)(4.19)

for the number of α1. Next for each α1 we count the number of α2. By (4.17)
we have [k(α1, α2) : k(α1)] = e/g and moreover H(1, α2) ≤ T . Applying
(1.2) (note that the constant C(k, e, n) in (1.2) depends only on [k : Q], e, n)
once more yields the upper bound

¿ T [k(α1):Q](e/g)(e/g+1) = Tme(e/g+1)(4.20)

for the number of α2 provided α1 is fixed. Multiplying the bound (4.19) for
the number of α1 and (4.20) gives the upper bound

¿ Tm(g2+g+e2/g+e)

for the number of tuples (α1, α2) and thereby proves the lemma.

Recall that δ1 = δ and that Nδ(T ) denotes the number of number fields
K in k of relative degree e with δ(K/k) ≤ T . So Lemma 4.2 with g = 1
yields an upper bound for the growth rate of Nδ(T ) but applying (1.2)
directly gives a slightly better result.

Lemma 4.3. Set γ = me(e + 1) and let Cδ = C(k, e, 1) be as in (1.2).
Then for T > 0 we have

Nδ(T ) ≤ CδT
γ .(4.21)

Proof. The number of points in P(k; e) with height not larger than T is
clearly an upper bound for Nδ(T ). Thus the lemma follows from the upper
bound in (1.2).

In fact, Lemma 4.2 would suffice to prove the full Theorem 3.1, so one
could omit Lemma 4.3. We did not because γ looks nicer than γ1 and the
proof above is essentially simply a reference.

4.3. Proof of Theorem 3.1. Recall the definition of BNK
and DNK

from
(4.7) and (4.6). We have seen that it suffices to show that

∑
BNK

and∑
DNK

are convergent where the sums are over all fields in Ce.
Since N is a uniform ALS on Ce with associated constants CN , MN

and LN we can assume that

CNK
≤ CN ,(4.22)

MNK
≤ MN ,(4.23)

LNK
≤ LN .(4.24)

Hence by definition (3.3) and (4.5),

ANK
≤ AN .(4.25)
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Let us now prove that
∑

K BNK
converges. We set β = e(e − 1)m + 1/8.

Using (4.14) and (4.25) we get∑
K∈Ce

BNK
¿ AN

∑
K∈Ce

∑
g∈G(K/k)

δg(K/k)β−µg .

Recall that Gu =
⋃
Ce

G(K/k). So the term on the right-hand side above is

AN
∑

g∈Gu

∑
K∈Ce

g∈G(K/k)

δg(K/k)β−µg = AN
∑

g∈Gu

∑
K∈C(g)

e

δg(K/k)β−µg(4.26)

provided the sum converges. This will be verified in a moment (see (4.27)).
Applying the dyadic summation lemma with ι = δg and b = γg from Lemma
4.2 we see that the above is

¿ AN
∑

g∈Gu

∞∑
i=1

2i(γg+β−µg).

The next lemma will tell us that γg + β − µg ≤ −1/8. Assuming this for a
moment we see that the inner sum above is ¿ 1. Thus we derive the upper
bound

¿ AN
∑

g∈Gu

1 ¿ AN ,(4.27)

confirming that the whole sum in (4.26) converges. This verifies the con-
vergence of

∑
K BNK

under the hypothesis γg + β − µg ≤ −1/8 for all
g ∈ Gu. The following lemma shows that this hypothesis holds true. Recall
that we assume e > 1 and therefore, by our assumption in Theorem 3.1,
n > 5e/2 + 4 + 2/(me).

Lemma 4.4. Let g be in Gu. Then

γg + β − µg ≤ −1/8.(4.28)

Proof. Recall that Gu ⊆ {1, . . . , [e/2]} and µg = m(e − g)(n + 1) − 1.
Write

F (g) =
1

m(e− g)
(γg + β + 1).

So (4.28) claims that m(e−g)(F (g)− (n+1)) ≤ −1/8 for all g ∈ Gu. Hence
it suffices to show that

F (g)− (n + 1) ≤ − 1
4me

for 1 ≤ g ≤ e/2. By definition

F (g) =
g2 + g + e2/g + e

e− g
+

e(e− 1)
e− g

+
1 + 1/8
m(e− g)

.
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We claim that the second derivative F ′′(g) is positive for 1 ≤ g ≤ e/2. One
finds

F ′′(g) =
2(e2/g3 + 1)(e− g) + 2(2g + 1− e2/g2)

(e− g)2
+

2e(e− 1)
(e− g)3

+
2(g2 + g + e2/g + e)

(e− g)3
+

2(1 + 1/8)
m(e− g)3

.

For 1 ≤ g ≤ e/2 the last three fractions are certainly positive and so we
may focus on the numerator of the first fraction. Now if 2g + 1− e2/g2 ≥ 0
the claim follows at once. If 2g + 1− e2/g2 < 0 it suffices to show that

(e2/g3 + 1)(e− g) ≥ e2/g2 − 2g − 1.

With u = e/g the latter is equivalent to u3 − u2 + e− g ≥ u2 − 2g − 1 and
this is equivalent to u2(u− 2) + e + g + 1 ≥ 0, which is certainly true since
1 ≤ g ≤ e/2 and therefore 2 ≤ u ≤ e.

Thus we have shown that F ′′(g) > 0 for 1 ≤ g ≤ e/2 so that F is
here concave. It suffices to prove F (g) − (n + 1) ≤ −1/(4me) for g = 1,
g = e/2. First we use a simple arithmetic argument. Since n is an integer
and n > E = 5e/2+4+2/(me) with denominator dividing 2me we see that

n + 1 ≥ E + 1 + 1/(2me).(4.29)

Now F (e/2) = 5e/2 + 5 + 2/(me) + 1/(4me) = E + 1 + 1/(4me) and thus

F (e/2)− (n + 1) ≤ 1/(4me)− 1/(2me) = −1/(4me).

Finally,

F (1) = 2e + 2 + 4/(e− 1) + 9/(8m(e− 1)).

Using (4.29) again yields

F (1)− (n + 1) ≤ 4
e− 1

+
9

8m(e− 1)
− e

2
− 3− 2

me
− 1

2me
.(4.30)

First suppose e = 2. Then (4.30) says F (1) − (n + 1) ≤ −1/(8m) =
−1/(4em). Next suppose e > 2. Then the right-hand side in (4.30) is
≤ 4/2 + 9/(16m) − e/2 − 3 − 5/(2me) < −5/(2me) < −1/(4em). This
completes the proof of the lemma.

To show convergence for
∑

K DNK
we may use similar arguments but

here we use only δ = δ1 instead of δg. Let d = me so that [K : Q] = d. To
estimate VNK

in (4.6) recall that VNK
= V inf

NK
V fin
NK

. By (2.16) we have

V inf
NK

¿ (C inf
NK

)d(n+1).

To estimate V fin
NK

we define the non-zero ideal C0 by

C0 =
∏
v-∞

p−(dv log cv)/log Npv
v(4.31)
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with cv as in (2.7). Thus |C0|v = cv and

NC0 = (Cfin
NK

)d.(4.32)

Let D 6= 0 be a fractional ideal. Clearly, |α|v ≤ |C−1
0 D|v for all non-

archimedean v is equivalent to α ∈ C−1
0 D. By (2.6) we conclude

ΛNK
(D) ⊆ σ(C−1

0 D)n+1(4.33)

(where σ is given by (2.11)) and therefore

det ΛNK
(D) ≥ det σ(C−1

0 D)n+1.

It is well-known (see [10, Satz (5.2), p. 33]) that

det σ(C−1
0 D) = 2−sK

√
|∆K |N(D)N(C0)−1,

where sK is the number of pairs of complex conjugate embeddings of K.
Combining the latter with (4.32) we see that

det σ(C−1
0 D)n+1 = 2−sK(n+1)|∆K |(n+1)/2NDn+1(Cfin

NK
)−d(n+1).

Inserting the latter in the definition (2.15) yields

V fin
NK

¿ (Cfin
NK

)d(n+1).

Now on recalling that CNK
= C inf

NK
Cfin
NK

and using (4.22) we conclude

VNK
¿ C

d(n+1)
NK

≤ C
d(n+1)
N .

The number of roots of unity wK in (3.1) is at least 2. Furthermore, ζK(n+1)
> 1. Hence SK(n) ¿ RKhK |∆K |−(n+1)/2. This together with the above
estimate for VNK

implies DNK
¿ C

d(n+1)
N RKhK |∆K |−(n+1)/2 and since by

Siegel–Brauer RKhK ¿ε |∆K |1/2+ε for any positive ε we get

DNK
¿ε C

d(n+1)
N |∆K |−n/2+ε.(4.34)

Remark 3. Let N∆(T ) = |{K ∈ Ce ; |∆K | ≤ T}|. Schmidt [18] showed

N∆(T ) ¿ T (e+2)/4.(4.35)

Thus we could apply the dyadic summation lemma with ι = |∆K | and
b = (e + 2)/4 to see that

∑
K DNK

converges for n > e/2 + 1.

Instead of using Schmidt’s bound (4.35) we will prove a lower bound for
|∆K | in terms of δ(K/k) which might be of interest for its own sake. Then
we can apply Lemma 4.3 instead of (4.35).

Lemma 4.5. We have

δ(K/k) ≤ δ(K/Q) ¿ |∆K |1/d.(4.36)

Proof. The lemma is trivially true for K = k = Q. However, we have
e ≥ 2 by assumption and so [K : Q] = em ≥ 2. The first inequality follows
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immediately from the definition. Let σ be as in (2.10) and suppose α is a
non-zero integer of K. One gets

H(1, α) =
d∏

i=1

max{1, |σi(α)|}1/d ≤ max{1, max
1≤i≤d

{|σi(α)|}} ≤ |σ(α)|(4.37)

because
∏

1≤i≤d |σi(α)| ≥ 1. Let v1 = σ(α1), . . . , vd = σ(αd) be linearly inde-
pendent vectors of the lattice σOK with |vi| = λi for the successive minima
λi (i = 1, . . . , d = [K : Q]). Let us temporarily denote by b the maximum
of the degrees of the proper subfields of K. Therefore K = Q(α1, . . . , αb+1).
Next we need to construct a primitive element in OK with small height.
A standard argument (see [8, p. 244] or Lemma 3.3 in [23]) yields a primitive
α =

∑b+1
j=1 mjαj with rational integers 0 ≤ mj < e. Hence by (4.37) we get

H(1, α) ≤
∣∣∣σ(b+1∑

j=1

mjαj

)∣∣∣ ≤ b+1∑
j=1

mj |σ(αj)| ¿ λb+1.

We estimate λb+1:

λb+1 =
(

λ1 . . . λbλ
d−b
b+1

λ1 . . . λb

)1/(d−b)

≤
(

λ1 . . . λd

λ1 . . . λb

)1/(d−b)

¿
(

det(σOK)
λ1 . . . λb

)1/(d−b)

=
(

|∆K |1/2

2sK λ1 . . . λb

)1/(d−b)

¿ |∆K |1/(2(d−b))

where we used the fact that λ1 = |σ(α1)| ≥ H(1, α1) ≥ 1. So all this together
implies

δ(K/Q) ¿ |∆K |1/(2(d−b)).(4.38)

Now b is the degree of a proper subfield. Thus b ≤ d/2 and we get (4.36).

Using Lemma 4.5 and (4.34) with ε replaced by ε/d we deduce

DNK
¿ε C

d(n+1)
N δ(K/k)−dn/2+ε(4.39)

for any positive ε. Choosing ε = 1/2 we get

DNK
¿ C

d(n+1)
N δ(K/k)−dn/2+1/2.

Applying the dyadic summation lemma with ι = δ and b = γ from Lemma
4.3 we conclude∑
K∈Ce

DNK
¿ C

d(n+1)
N

∑
K∈Ce

δ(K/k)−dn/2+1/2 ¿ C
d(n+1)
N

∞∑
i=1

2(−dn/2+1/2+γ)i

¿ C
d(n+1)
N

provided −dn/2 + 1/2 + γ < 0, which is equivalent to n > 2e + 2 + 1/d. But
the latter holds since n > 5e/2 + 4 + 2/(me). This completes the proof of
Theorem 3.1.
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5. Counting number fields. Using results of the previous section we
give simple lower bounds for the growth rate of Nδ(T ) and N∆(T ), the
number of field extensions K/k of degree e with δ(K/k) ≤ T or |∆K | ≤ T .
The following corollary shows that the estimates for Nδ(T ) are more precise
than those available for N∆(T ). Recall that e > 1.

Corollary 5.1. With c = c(k, e, 1), C = C(k, e, 1) and X0(k, e, 1) from
(1.2) set

cδ = 2−5em−22c, Cδ = C, T0 = X0(k, e, 1).

Then

cδT
me(e−1) ≤ Nδ(T ) ≤ CδT

me(e+1)

where the upper bounds holds for T > 0 and the lower bound holds for
T ≥ T0.

Proof. From the definition it is clear that ZH(P(K/k), T ) > 0 if and
only if δ(K/k) ≤ T . Therefore

Nδ(T ) =
∑

K∈Ce
δ(K/k)≤T

1 =
∑

K∈Ce
δ(K/k)≤T

ZH(P(K/k), T )
ZH(P(K/k), T )

.(5.1)

Using the equivalence above once again, we see that the term on the far
right-hand side of (5.1) is

≥ ( sup
K∈Ce

{ZH(P(K/k), T )})−1
∑

K∈Ce
δ(K/k)≤T

ZH(P(K/k), T )

= ( sup
K∈Ce

{ZH(P(K/k), T )})−1
∑

K∈Ce

ZH(P(K/k), T )

= ( sup
K∈Ce

{ZH(P(K/k), T )})−1ZH(P(k; e), T ).

Now ZH(P(K/k), T ) ≤ ZH(P(K; 1), T ) and by the upper bound in (1.2) and
recalling that [K : Q] = em we get

ZH(P(K; 1), T ) ≤ C(K, 1, 1)T 2me = 25em+22T 2me.

The lower bound in (1.2) with c = c(k, e, 1) yields

ZH(P(k; e), T ) ≥ cTme(e+1)

for T ≥ X0(k, e, 1) = T0. Hence

Nδ(T ) ≥ (25em+22T 2me)−1cTme(e+1) = cδT
me(e−1)

for T ≥ T0. On the other hand, Lemma 4.3 tells us that

Nδ(T ) ≤ CδT
me(e+1)

for T > 0.
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Corollary 5.1 combined with the lower bound (4.12) for δ in terms of
|∆K | yields

Corollary 5.2. There are positive constants c∆ = c∆(k, e) and T1 =
T1(k, e) depending only on k, e such that

N∆(T ) ≥ c∆T 1/2

for T ≥ T1.

Proof. From (4.12) we know that there is a positive constant c1 = c1(k, e)
depending only on k, e > 1 such that δ(K/k) ≥ c1|∆K |1/(2e(e−1)m). Using
Corollary 5.1 and setting c∆ = cδc

me(e−1)
1 , T1 = (T0/c1)2e(e−1)m we conclude

N∆(T ) ≥ Nδ(c1T
1/(2e(e−1)m)) ≥ c∆T 1/2

provided T ≥ T1.

Ellenberg and Venkatesh’s Theorem 1.1 in [4] shows that the exponent
1/2 in Corollary 5.2 can be replaced by 1/2+1/e2 and according to Linnik’s
Conjecture (see [4, p. 723]) the correct exponent is 1. Although the general
Linnik Conjecture is known to be true only for e ≤ 3 the exponent 1/2 can
always be increased to 1 if e is even or a multiple of 3 (see [4, pp. 723–724]).

What about upper bounds for N∆(T )? From (4.36) we know that there
is a positive constant c2 = c2(d) depending only on d = em such that

δ(K/k) ≤ c2|∆K |1/(em).

Thus we get

N∆(T ) ≤ Nδ(c2T
1/(em)) ≤ Cδc

me(e+1)
2 T e+1

for T > 0. But Schmidt’s bound (4.35) has the much better exponent
(e + 2)/4 on T .
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