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1. Introduction. It was Matsumoto [2] who first introduced Euler—
Zagier—Barnes multiple zeta functions

Cez,r((s1, - sr) (a1, ), (Wi, ..., w))
Z e Y (o mawn) " (ag + maw + maws)
m1:0 mr=O

X oo X (ap + mpwy + -+ mpw,) T,

where s1, ..., s, are complex variables and aq,...,q;,, wy,...,w, are com-
plex parameters, including both Barnes multiple zeta functions

. —S
CB,T’(Suav (wla”'v E E a+m1w1 + - +m7‘w7’) )
m1=0 my-=0
where s is a complex variable and «,wq,...,w, are complex parameters,

and Euler—Zagier sums

S —S
CEZ,T‘(Sla"'a 5 E ml m1+m2) 2X-'-X(m1—|—--~+mr) "
mi1=1 my=1
where s1, ..., s, are complex variables, as special cases. He proved the mero-

morphic continuation to the whole space, asymptotic expansions and upper
bound estimates of Euler—Zagier—Barnes multiple zeta functions by using
the Mellin—Barnes formula. He also obtained a recursive structure in the
family of those multiple zeta functions by using the Mellin—-Barnes inte-
gral.
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Apostol and Vu [1] first treated the following sum:

Z Z m181m m1+m2) L

mi1=1ma>m

Matsumoto [3] introduced Apostol-Vu multiple zeta functions

CAV,r(S15- -+ 873 8r41)

= g my iy % emy ST (my +ma 4 - my) T

My > >M]

Z Zm1 (m1+mg)™" x o x (my+ - +mp) "

mi1=1 my=1
X (rmi 4+ (r—1)mg+ -+ +m,)

where s1,..., 8,41 are complex variables, which generalizes the above sum.
He also proved the recursive structure

QAV,T‘ =@rr = Pr—1p — " Plr = CEZ,T7
Cezr — CEZyr—1 — =+ — CEz2 — (
in [3]. Hence the r-ple Apostol-Vu multiple zeta function can be reduced to
the r-ple Euler—Zagier multiple zeta function. Here (; — (2 means that (;

can be expressed as a Mellin—-Barnes integral involving (2, ¢ is the Riemann
zeta function, and ¢; ,—; is the auxiliary multiple series

(815,84 8¢+1, ey S5 Srg)
E E my P (my 4+ ma) T X X (my A ) T
mi1=1 myr=1

X (rmi+ (r—1)ma+ -+ (r—i+1)m;) "+,

where s1,..., 5,41 are complex variables.
Tornheim [6] introduced the series

—S81 S
E g my *tmg *2(my + ma) %,

mi1=1mao=1

where s1, 52,53 are complex variables, and studied its values when these
complex variables are integers in the region of absolute convergence. Also
Mordell [5] independently considered the case s; = sg = s3 of the above
sum, and studied the values of the following multiple sum:

Z Zml eyt ma 4 my 4+ a)

mi1=1 my=1
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where si,...,s, are complex variables and a > —r. Matsumoto [4] intro-
duced Mordell-Tornheim multiple zeta functions
QM (8155 873 Sr41)
oo oo
= Z Z m1_81m2_82"'m;5T(m1+m2+"'+m7‘)_sT+l,
mi1=1 myr=1
where s1, ..., s, are complex variables, which generalize the above sums. He

also proved the recursive structure

MTr — CMTr—1 — - — CuT,2 — ¢
in [3]. We can prove the meromorphic continuation of these functions to the
whole space by going upstream these arrows.

The purpose of the present paper is to introduce generalizations of
Apostol-Vu and Mordell-Tornheim multiple zeta functions, and discuss
their analytic properties. Our proofs are analogous to those in Matsumoto
[2], [3]. However, the recursive structure of Apostol-Vu multiple zeta func-
tions given in our Theorem 5 is different from that of Matsumoto mentioned
above.

2. Definitions and results on a generalization of Apostol-Vu
multiple zeta functions

DEFINITION 1. Let r be a positive integer, s1, ..., s,4+1 be complex vari-
ables, ayq,...,qpy1, Wi, ..., w, be complex parameters, and define
(2.1)  Cavr((s1s---s8r8r41); (01, oy s ), (Wi, ..., wy))

o oo
= Z Z (a1 + miwy)”* (g + mywy + mawsg) %2 X - -+

m1:0 my=0
X (o +mawy + -+ - + mpw, )"

X (ar—i-l + rmiwi + (7“ — l)m2w2 4+t mrwr)isrﬂ.

If aj + mqwy + --- + mjw; = 0 for some j and some (mq,...,m;) or
Qi1+ rmywy +- - -+mpw, = 0 for some (myq,...,m,), then the correspond-
ing terms are to be removed from the sum.

The multiple zeta functions of the form (2.1) generalize both Apostol-Vu
multiple zeta functions (the case w; =1for 1 <i<r,a;=jfor1 <j<r,
ar41 = r(r +1)/2) and Euler-Zagier-Barnes multiple zeta functions (the
case s,+1 = 0).

Next let ¢ be a fixed line on the complex plane C through the origin.
Then ¢ divides C into three parts; two open half-planes and ¢ itself. Let H (¢)
be one of those half-planes, and assume that

(2.2) wj € HE) (1<j<r).
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THEOREM 1. If condition (2.2) holds, then the series (2.1) is absolutely
convergent in the region
A, = {(517 <oy Sry 5r+1) eCt! | §R(ST’—k—H + -+ 3r+1) >k (0 <k< 7")}7
uniformly in any compact subset of A,.

This theorem is analogous to Theorem 3 of [4].

We assume
(2.3) e H() (1<j<r)
and
(2.4) Q41— € H(é) (1 < ] < T).

By (2.2) and (2.3) we see that always o; + mqjwi + - -+ mjw; € H(¢) and
apgp1 +rmiwy + - -+ mpw, € H(C). Let 6 € (—7, w] be the argument of the
vector contained in H (¢) and orthogonal to £. Then the line ¢ consists of the
points whose arguments are 6 + 7/2, and

H()={weC\{0}|0—7/2 <argw < 0+ m/2}.

The branch of the logarithm in each factor
(aj +mywy + -+ + mjw;) ™% = exp(—s;log(a; +miwy + -+ + mjw;))
and
(g1 + rmiwy + -+ + mpw,)
= exp(—$p41 log(ap41 + rmywy + - - - + mypw,))

on the right-hand side of (2.1) is to be chosen by the condition

0 — /2 < arg(a; + mwy + -+ -+ mjw;) < 0+ /2
and

0 —m/2 < arg(opir +rmiwy + -+ mpwy) < 0+ 7/2.

DEFINITION 2. For any complex numbers « and § we use the notation

ple, B) = max{[arg af, [arg 5]}

Put ag = 0, Rs; = o; and Js; = t;. Also denote by Ny the set of all
nonnegative integers and by d,.(,) the Euclidean metric on C"*!. The letter
€ denotes an arbitrarily small positive number, not necessarily the same at
each occurrence.

THEOREM 2. Let r be a positive integer. If r > 2, we assume (2.2),
(2.3), (2.4),

(2.5) pla — i, wy) <7m/2 (1<i<r)



Multiple zeta functions 173

and

(2.6) Qpp1 — 0y — -+ —ay =0,
Also, if r =1, we assume (2.2), (2.3), (2.5) and
(2.7) ag —ap = 0.

Then the following assertions hold:

(1) The series (2.1) can be continued meromorphically, as a function of
S1,...,5, 8041, to the whole C™t1.
(2) The function Cav » is holomorphic except for possible singularities in

(2.8)  Sing(r)

T
= U U{(Sla"'vsTasr+1)€(Cr+1’Si+---+$T+1:r+1_Z’_n}.
n€eNg 1=1

(3) Fix s1,...,8.—1, let o', d”, N and N be real numbers with o' < o,
N < X', and n be a small positive number. Then

Cavir (8155 83 8r41); (@1, - s s pgn), (W14 W)
T

- O(Z(\tml + DI U7 exp[tr | play — aj1, wj))
j=1
.

X 3 (] + 1)) exp([tpla — a1, w) )
i=1
fOT’ any Sr41, Sr with dT((Sla'-'75T7ST+1)7Sing(r)) > n, o' < Or+1 < o
and X' < o, < X', where the implied constant depends only on o — o1
(1 S j S 7’), ’U)j (1 S j § 7’), Ty Oly...,0p_1, tl;"'at’r‘—ly 0/,0'”,7],6,)\,
and N'. The quantities f(j,r,01,...,0041) and g(i,r,01,...,0041) can be
written down explicitly.

Our proof of Theorem 2 will be presented in Sections 5 and 6.

REMARK. In the above theorem we assume (2.6) and (2.7), but actually
we can weaken the assumption to

(2.9) Qpp] —Qp — -+ — Q1 € H(E) U {0}
However, we then also assume
(2.10) larg(apy1 —ap — - — )| < /2.

Hence if r > 2, we assume (2.2)—(2.5), (2.9) and (2.10), while if r = 1, we
assume (2.2), (2.3), (2.5), (2.9) and (2.10). Then (3) of Theorem 2 is to be
changed to
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(3") Fix s1,...,8.—1 and let o' ,d” ;N and N\ be real numbers with o' <
o, N < X', and n be a small positive number. Then
~AV,T Slyev ey SpySr41)5 ALy e ooy Qe Qg1 ), (W1, - - vy Wy
Cav,r(( )i ( ), ( )
T
= ({32l + 15779549 st 1 oo — s -1,107)
j=1
(el + 1D ey (s — g - o))}

,
3 (] + 1207 e[t plas — -1, wy)) )

for any ;le, sy with dp((81,- -, Sry Sr41),3ing(r)) > n, o' < 0,41 < 0’ and

N <o, <N, where the implied constant depends only on aj—aj—1 (1<j <r),

wy (1 < ] < ’I”), Qpyl] —Qp—>--—0Q1,T,01,... yOr—1,t1, .+ o1, J/a Ulla n, € N

and N'. The quantities f(j,r,01,...,0041), f(r + 1,7,01,...,0041) and

g(i,r,01,...,00+1) can be written down explicitly.

The proof of (3) is similar to that of (3) of Theorem 2.

THEOREM 3. Let r be a positive integer. Then the assertions (1) and
(2) of Theorem 2 hold without the assumption (2.5).

This theorem is analogous to Theorem 1 of [2].
THEOREM 4. Let r > 2 be a positive integer and assume (2.2)—(2.6) and
(2.11) oy — ap_1 = bw,

with a constant b satisfying |argb| < w. Then, for any positive integers M
and N satisfying M < N, the asymptotic expansion

5AV,T((S].’ ceey Spg 8T+1); (Oé]_, vy Qg a’l”-‘r].)) (’UJ]_, .. )w’l’))

M-1
_ Z <—5r+1>{ 1
=0 J 1—s41—8—7

X CAV r—1((815 -y Sp—2, 8p—1 + 8p + Spp1 +§ — 1;—3);

(alv sy Qp 15041 — aT)7 (wla s 7w’r'))wr_1
Nl s Sp—J
—Or41 — Or —
LY ()
k=0
X CAVr1((815 s Sr—9, 8p—1 + 8p + Spp1 + 7 + k3 —5);

(041, ey Op 15 Qg — Oér), (wl, . ,wr))
< C(—k, byuk + 0<rwr|N>} Ol ™)

holds for |w,| < 1 in the whole C™*1 except for the singularities.
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Our proof of Theorem 4 will be presented in Section 5.

REMARK 1. Let s,a be complex numbers, a # —I (I € Npy). Then the
Hurwitz zeta function

((s.0) = > (at+m)",

m=0
where
(a+m)~* = exp(—slog(a+ m))
with the branch —m < arg(a+ m) < m, is well defined and is absolutely
convergent if s > 1.

REMARK 2. Let v be a complex number and n be a nonpositive integer.
Then we put

(U) B {v(v —1)---(v=n+1)/n! if nis a positive integer,
1 if n=0.

Also we obtain the following theorem from the proof of Theorem 2(1), (2)
which will be presented in Section 5.

n

THEOREM 5. The family of the functions C~Av,r has the following recur-
swe structure:

CAV,T - CAV,rfl — CAV,Q — CAV,I-

In particular, Apostol-Vu multiple zeta functions have the following re-
cursive structure which only features Apostol-Vu multiple zeta functions:

Cavy — CAVr—1 — --- — Cav2 — C.

In this notation, (; — (2 means that (; can be expressed as a Mellin—
Barnes integral involving (2.

3. Definitions and results on generalization of Mordell-Torn-
heim multiple zeta functions. In this section we consider general mul-
tiple zeta functions of multi-variables, including Mordell-Tornheim multiple
zeta functions.

DEFINITION 3. Let r be a positive integer, s1, ..., s,+1 be complex vari-
ables, aq,...,qp41, w1, ..., w, be complex parameters, and define
(3.1)  Qurr((81 5 8r58r11); (@1 vy Qs 1), (W1, wy)

oo o0
— Z e Z (041 _|_ mlwl)—81 (Oé2 _|_ m2w2)_52 X o0 X (ar _|_ mrwr)—S'r

mi =0 mrz()

X (Qpy1 +miwy + mows + -+ - + mpw,)” L
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The class of multiple zeta functions of the form (3.1) includes a well-
known class of multiple zeta functions, Mordell-Tornheim multiple zeta
functions (the case w; =1for 1 <i<r, aj=1for1 <j <7, ap =r).
The Mordell-Tornheim multiple zeta functions were introduced in [2].

The following Theorems 6-8 are analogous to Theorems 1-3. The proofs
are similar to those of Theorem 3 of [4], Theorem 2 of [3] and Theorem 1
of [2] and we omit them.

THEOREM 6. If condition (2.2) holds, then the series (3.1) is absolutely
convergent in the region

B ={(s1,...,85,8.41) €CT | Rs, >1(1 <k <), Rsp41 > 0},
uniformly in any compact subset of B;.

THEOREM 7. Let r be a positive integer. If r > 2, assume (2.2)—(2.6),
and if r =1, assume (2.2),(2.3),(2.5) and (2.7). Then the following asser-
tions hold:

(1) The series (3.1) can be continued meromorphically, as a function of
$1,...,50, 8041, to the whole C™t1,

(2) The function (v, s holomorphic except for possible singularities in

Sji+srp1=1—-1(1<j<r leNy),

S+ 8y + 801 =21 (1< j1 <jo<r €Ny,

Sj1+"'+8jr71+sr+1:7“—1—l(1§j1<"'<jr_1§7“,l€No),
S1+ -+ S+ Spp1 =T

(3) Fiz s1,...,5, let o’,0” be real numbers with o' < o”, n be a small
positive number, and Sing(r) be the above set of possible singularities. Then

~MT,7‘ 817"'781”;87"‘1‘1 ; a17"‘7a1”;a7“+1 y (W1, - Wy
G, (( )i ( ) ( )

T

— O(Z(‘t’l‘-f—l‘ + 1)f(]77'70'17..-70'7‘+1) exp(‘tr_"_l‘p(aj’ w])))

j=1
for any s,41 with o/ < 0,11 < 0" and d,((s1,..., 5, Sr41),Sing(r)) >n,
where the implied constant depends only on oj — aj—1 (1 < j < 1),
wj (1 <j<r),r on,....,00, t1,...,t, 0',0",n and €. The quantities
fl,ryo1,...,0041) can be written down explicitly.

REMARK. In the above theorem we assume (2.6) and (2.7), but actu-
ally we can weaken the assumption to (2.9). Hence if r > 2, we assume
(2.2)-(2.5), (2.9) and (2.10), while if » = 1, we assume (2.2), (2.3), (2.5),
(2.9) and (2.10). Then (3) of Theorem 7 is to be changed to
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(3") Fiz s1,...,8, let o',0" be real numbers with o' < o”, and n be a
small positive number. Then

5MT,T((S].’ <oy Sry ST‘+1); (Oé]_, ey Qg ar+1)7 ('U)]_, cee 7w?“))
T

= O3l + 176770 ety (s, )
j=1

+ ([tr+1] + 1)f(r+1’r’al’m’gr+1) exp([tr41] larg(ary1 —ap — -+ — al)’)}

for any sy11 with o' < 0,41 < 0" and d.((s1,---, S, Sr+1), Sing(r)) > n,
where the implied constant depends only on a; — aj—1 (1 < j < 1), w;
(1<j<r), Q1 —qp— - —Q1, 7, 01,...,00, t1,...,tp, d',0” ,m and e.
The quantities f(j,r,01,...,0041) and f(r+1,r,01,...,0041) can be written
down explicitly.

THEOREM 8. Let r be a positive integer. Then the assertions (1) and (2)
of Theorem 7 hold without the assumption (2.5).

4. Lemmas. First of all we introduce lemmas on Hurwitz zeta functions.
The following Lemmas 1 and 2 will be used to prove Theorems 2 and 4.

LEMMA 1. Let a« € C\ {1} (I € Ny). The function ((s,a) can be
continued meromorphically to the whole complex plane, and the only pole is
at s =1.

LEMMA 2. Let o',0” be real numbers satisfying o' < o”, n be a small
fized positive number, and a,w € H({) so |arg(a/w)| < 7. Then
(41) (s, afwyw™ = O(|lw] 77 (Jt] + 1) O exp(|t]p(ar, w)))
for any s = o+ it with o’ < o < ¢” and |s — 1| > n, where the implied

constant depends only on a/w,d’ d” ,n and e.

Next we give lemmas on the order estimate. We will use the following
lemmas to prove Theorem 2(3).
Let p,q, A, B, t be real numbers with A + B < 0, and

[e.9]

="\ (Jt+yl+ DP(lyl + 1)?exp(Alt + y| + Bly|) dy.

—00
LEMMA 3. We have
(4.2) I =0((1+ m°)77t8eBlH 4 (1 4+ 72)eAllly,

where T = [t|+ 1, = 1 or 0 according as A = B or A # B, and the implied
constant depends only on p,q, A and B.

Lemmas 1-3 are proved in [2].
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Next we define
o0
J = S (lta +t1 +y| + 1)P(t2 + y| + 1)Uy + 1)"

—0o0

x exp(Alta + b1 +y| + Blta + y| + Cly|) dy,
where t1,t2,p,q, 7, A, B, C are real numbers with A > 0 and A+ B+ C < 0.

LEMMA 4. We have
(4.3)  J = O(eM max{1, 7P} (1 4 P9 4 p0) {79 Cl2l 4 ((A+BlE2lYy

where v = |ta] + 1, 7 = |t1] + 1, &' = 1 or 0 according as A+ B =
C or A+ B # C, and the implied constant depends only on p,q,r, A, B
and C.

The proof of Lemma 4 is straightforward and is left to the reader (see
Section 2 of [2]). Lemma 4 yields

COROLLARY 1. We have
(4.4) J=0(1+ a4 yq){,/“+5’60\tzl + e(A'FC)\tz\})’

where v = [ta| + 1, &' =1 or 0 according as A+ B =C or A+ B # C, and
the implied constant depends only on t1,p,q,r, A, B and C'.

Lastly we give the Mellin—Barnes integral formula.

LEMMA 5 (The Mellin-Barnes integral formula). Let s, A be complex
numbers, Rs > 0, |arg A| < 7 and X\ # 0. We have

(4.5) F(s)(14+N)* = 2i | D(s + ) (—2)2* dz,

v
(c)

where —Rs < ¢ < 0 and the path of integration is the vertical line Rz = c.

For the proof we refer to [7, Section 14.51, p. 289, Corollary].

5. Proof of Theorem 2(1), (2) and Theorem 4. The most novel
part of the present paper is to obtain a new recursive structure in the family
of Apostol-Vu multiple zeta functions. Hence we give all the details of how
to use the Mellin—Barnes integral formula for this proof, and for the rest of
the proof we refer to [2]. In this section we prove (1) and (2) of Theorem 2
by induction and Theorem 4. First assume that fs; =o; > 1 (1 <j <r)
and Rs, 11 = gp41 > 0.
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When r = 1, we only assume (2.2), (2.3), (2.5) and (2.7). Then we have

(5.1)  Cavi((s1552); (a1;a2), wy)

e 00
= Z (Oél + mlU)l)*51 (a2 + mlwl)*sz — Z (al + mlwl)fslfsg
m1=0 m1=0
oo
= Z (m1 + aq fwy) = 52w T2
m1=0

Hence we have proved (1) and (2) of Theorem 2 for » = 1 by Lemma 1.
Next we assume the validity of Theorem 2(1), (2) for {av 1, and we

will prove these assertions and Theorem 4 for (av . The validity of Theo-
rem 2(3), will be proved inductively in the next section.

We have

5A\/’r((81, ey SpySpg1); (@1 e Qs ), (W1, - W)

Z Z (a1 +mywy)” ™ (o + miwy + maws) ™2 X - - -

m1 =0 my=0

X (Oér +miw; + -+ mru)r)*sT(ar +mqwy + -+ mrwr)f‘”“

X 1+Oér+1—ozr+(r—1)m1w1+(T—2)m2w2+'"+mr—1wr—1 o
Qp +miwi +mows + - -+ +MypwWy .

Put

\ o Grel—or + (r—=1Dmiwy + (r — 2)mowg + -+ - + Myp_1wWr—1
oy + miwy + mows + - - - + mpw, '

By (2.2)-(2.4), both the numerator and the denominator of A are elements
of H({), hence X\ # 0 and |arg A\| < m. Therefore we can use Lemma 5 to get

(5.2) éAV,r((Sly---’Sr;Sr—i-l);(0417--‘7ar;ar+1)a(wla~-vwr))

1 S F(3r+1+z

- SP I SR
21 © I'(sp4+1)

mi1= =0 mr—O
X (g +miwy + mowg)” %2 X -+ X (ap + mwy + -+ + mpw,)” 7T
X (Qpy1 — ap + (r = D)mqwy + (r — 2)mowg + - -+ + my_jw,—1)° dz.

We may assume

(5.3) Orgfié{z R(spg1 4+ 8r+ -+ 8pp1-i)} < e <O.
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We put
éZV,T((Sl’ cey Sp—1, =258 + Spy1 + Z)a (alﬂ sy Qp—1, Qpy1 — O aT)a
(wi,...,wy))
o0 [e.e]
= Z Z (a1 +mywy) (o + miwy + maws) "2 X - -

m1=0 my=0

X (Qp_1 +mywy + - 4 Mp_qwp_1) "

X (o +miwy + -+ + mpw, ) T HTF

X (r1 — ar + (r = D)mawy + (r — 2)mawz + -+ + myp_1wp—1)°.

From now on we study the analytic properties of the function g:j‘wr as a
function in z. First we have

ap +miwy + - + mpwy, = (Qp_1 +miwy + -+ mp_jwp_q)

( Oy — Olp_q + mywy >
X |1+ .
ap_1 +tmiwy + -+ Mp_qWr—q

We put
Qp — Qp_1 + MyWy

Qr_1 t+miwr + -+ Myp_qWr1

N =

By (2.2)—(2.4), both the numerator and the denominator of X" are elements
of H(¢), hence X' # 0 and |arg \'| < 7. Therefore we can use Lemma 5 again
to get

Cavar (81, s 8rm1, =25 80+ spy1 + 2)5 (Qn, o Qi1 Q) — Qi ),
(’U)l, ) w’r))
_ i I(sr+sry1+2+ Z,)F(_Z,) ¢ ) Qp — Qr—1 w?
2mi @ I'(sy + Sp41 + 2) W
X CAvr—1((815 -y 8r—2,8r—1 + 8r + 8p41 + 2+ 25 —2);
(a1 ey Q1 Qa1 — i), (W1, -y we)) 2.

We may assume
—R(sp + 541 +2) < < —1.
Now we shift the path to %2’ = N — ¢, where N is a positive integer and

€ is a small positive number. The legitimacy of this shifting is easily shown
by using the Stirling formula and Lemma 2. Counting the residues of the
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poles, we get

(5.4) EK\/,T((SL ey Sp—1,—2;Sp + Spy1 + 2);

(041, ceey Qp—1, Qpy ] — Qo ar)(wla ) wr))
_ 1
N 1—8 —S41—%
X CAVr—1((81,- -+, Sr—2,8p—1 + Sp + Spp1 + 2 — 15 —2);
(1, .oy 150041 — o), (W1, .oy wr_l))w,f1
Nl s —sii1—2 Qp — @
+ Z ( T kr—l—l )C<_k7 r T_1>w,’f
Wy
k=0
X Cav,r—1((S1,- -y Sr—2,8p—1 + Sr + Spq1 + 2+ k; —2);
(ala ceey Op—150p41 — aT)u (wla e 7w’r—1))
+ Sr—l,N
where
1 I NIC(—2 — QU
Sr—iN = S (o £ oris $2 7) T Z)C<—z/,ar o 1)wi/
271 I'(sy + Sp41 + 2) Wy
(N—¢)
X CAVr—1 (815 -+ -+ Sr—2, Sr1 + 8p + 8p41 + 2 + 23 —2);
(ala ey Q13 aT+1 - a?“)7 (wlu L) 7w7”—1)) dZ/7

under the conditions
(55) %(Sr—k—i_+$T—1+8T+8T+1)>k_N+€ (13]{3?”—1)
and
(5.6) x=Rz>—-R(sp + 5p41) — N + €.
Moreover, we assume
(5.7) Si+"‘+8r71+8r—|—8r+1#T—i—l—’i—l (1§i§7“—1,l€N0)
because if s; + -+ -+ sp—1 + Sp + $p4+1 = 7+ 1 — i — [ then the right-hand side
of (5.4) is singular. Since S,_; x is holomorphic in z under condition (5.7),
we can see from (5.5) that the only pole of CAv - as a function of z, in the
region (5.7)isat z=1— 8, — 8p_1.
Next we estimate S,_; n. We put
g(i,’f’ - 17017' ey Op—1 + 0p + 0rq1 +h,$) = g(i77a - l,h,.’lj),
f(j,T_ 1)017"'7UT—1 +UT+U’/‘+1 +h’7$) - f(jaT_ 1,h7$),
H = |y+tr+t7‘+1|+1v Di :g(i,r—l,x—{-N—e,x) (1 SZST—]-)’
g=o0r+op1+c+N—-€e—1/2, r=—N+¢e—1/2+max{e,1 — N + 2¢},

z = x+iy and 2/ = 2'+iy’, where z,y, ',y € R, and we assume xg < 2’ < x7,
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where g,z are (arbitrarily) fixed real numbers. Similarly to Sections 4
and 5 of [2], we obtain

(5.8) S, 1w
r—1
= 0w Y=Yyl + DTN exp(yl(a; — a1, w;))
j=1

.
37 M exp ([t + trar + ylplas — i, w,;))),
=1
where
hi,r =1, x) = —or —0pp1 —x +1/2

+ max {0,¢,7 4+, pi+q,pi +q+r+08,q+r+0}.
1<ei<r—1

We note that the implied constant is independent of y.

We evaluate (5.4) with Lemma 2, (5.8) and assumption (3) of Theorem 2
for (av,r—1 and, by (5.4) and the Stirling formula, we obtain
I'(sp41+2)I'(—2)

(5.9) P

fjgv,,,((sl, ey Sp—1,—2;8p + Spp1 + 2);
(Q1y .oy Qo1 Qg1 — Qs )y (W1, .y wy))

o+t 1))+ |+ 7702+ 1)

s
< eXp<—2

N-1 r—1

3 T 3yl + 1) 0 ) ey — a1, ;)
k=—1 j=1

r—1
% Z Mg(i,r—l,x+k7—x) exp([ty + try1 + ylp(as — aim1,w;))
i=1

r—1
x Y pfOTTB R oxp([t, + g+ ylp(as — qio1,wy)
i=1
r—1 ‘
w7yl + 1) OO exp(ly|play — ajo1,wy))
j=1

,
x Y O exp([ty + trgr + ylp(ei — aioy, wi))},
i=1
which is valid under conditions (5.5)—(5.7), and the implied constant is in-
dependent of y.
We return to (5.2), which is valid for

R(srpp1 4+ +s+s41) >k (0<E<T).
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Now we shift the path to Rz = M — ¢, where M is a positive integer and €
is a small positive number. From (5.3) we see that (5.6) holds for Rz > ¢,
hence we can use estimate (5.9) in the strip ¢ < Rz < M —e. The legitimacy
of this shifting is easily shown by using the Stirling formula and Lemma 1.
By (5.3), the only pole z =1 — s, — 41 of EZV , is irrelevant to this shift.
Counting the residues at z =0,1,..., M — 1, we get

(5.10) 5AV,7’((517 cesSpySe1); (A1 e s agt), (W1 e wy)
M-—1 s
—Sr41 \ e . )
= Z ( 7."+ )CAV,T((SL-'-75r—17_];3r+3r+1 +.7);
— J
7=0
(0417 sy Qp1, Qpy1 — a7’§a7")7 (wla ce 7w7"))
+T7',M7
where
(5.11) T
1 I'(sp41+2)(—2) =,
= 5 _- S ( r+l ) ( )CAVT((Sl)"'aST—lv_Z;ST+8T+1+Z);
2mi I'(sp41) ’
(M—¢)
(Q1y .oy o1, Qg1 — Qs ), (W1 .. wy)) dz.

Now we assume N > M and put
FT(M, 6) = {(81, ceey Sy 3r+1) S CT—H ‘
R(sp—kr1+ -+ 8r41) >k—M+e (0<k<r)}
If (s1,..., 87, Sr4+1) € Fr. (M, €), we see that
R(sp—py1+ -+ S4+1)>k—M+e>k— N +e,
so (5.5) holds. Also (5.6) obviously holds for x = M —e. Hence, if (s1, ..., s,,
Sr41) € Fr(M,e€) and (s1,..., Sy, Sy41) satisfies (5.7), we can apply (5.9) to
the right-hand side of (5.11), and get the absolute convergence of the integal
in the region from (2.5) and (2.6). The poles of the integrand are only at
z=—841—1l,z=1(l€Ng) and z=1— 8, — s,41. Hence by (5.11) we find
that T} ps can be continued meromorphically to
Fl(M,e) ={(s1,.-, 80 8+1) € F(M,¢) |
Sit -t s1tsrtsmAEr+1—i—1(1<i<r—1,1€Ny)}.
Therefore (5.10) gives the analytic continuation of Cay .. to F.(M,e).
By using (5.9), we obtain

N-1
Tons < ( S el + wayN*f) < Juw, |
k=-—1

if (s1,...,8,841) € Fl(M,¢€) and |w,| < 1. Also, since (5.6) holds if z =
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j >0, we can substitute (5.4) with z = j into (5.10). The error term S,_; n
is O(|w, |V =€) by (5.8). Similarly to Section 4 of [2], we obtain

ST—I,N < ‘wr’N
if |w,| < 1. Hence we obtain Theorem 4. Since N > M can be arbitrarily
large we substitute (5.4) into (5.10), and find that
(5.12) Sp 4 Spp1=1—1 (l € No)

are possible singularities of (av,.. From (5.7) and (5.12), we obtain (2) of
Theorem 2. Also since NV and M are arbitrary with N > M, by using (5.10)
and Theorem 2(1) for {av,—1, we can continue

EAV,,,((sl, cesSpySpt1); (A1 e ey apgr), (W1, L wy)
meromorphically to the whole C"*!, hence we obtain Theorem 2(1).
To end this section we note that, in the above proof, we have found the
recursive structure

Cavy — Cavr — CAV, -1,
which can be written in terms of Mellin-Barnes integrals. This observation
gives the assertion of Theorem 5.

6. Proof of Theorem 2(3). In this section we prove Theorem 2(3) by
induction. This proof is similar to Section 5 of [2].

When r = 1, we estimate the order of EAV,l at (s1,s2) satisfying o’ <
o9 <o, N <01 <N and di((s1,s2),Sing(1)) > 7.

First, from (5.1), we have

o0

Cav,1 (815 82); (a1; a2), wr) = wy ™~ my + o Jwy) TS T52,
Cava(( ); ( ), w1) s (M1 + aq/wy) "7
m1=0

By Lemma 2, we have
C(s1 4+ s2, fwy)wy *t 2

< |ty + to| + 1ymax{0I=or=akte o (It + to] p(ar, wy))
< (|t + 1)melO=o1=o2b4 oxp |ty p(r, w1))

x ([ta] + 1)mx{O1=o1=2b e exp(|ta| plar, wn)),
where
9(1,1,01,09) = f(1,1,01,02) = max{0,1 — 01 — o2} + €.

The implied constant here depends only on w1y, ay,0’,d”, N, N, n,e. Hence
we have proved Theorem 2(3) for r = 1.

Next we assume the validity of Theorem 2(3) for EAV,r—h and we will
prove it for CN AV,
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We put z = x + iy (x,y € R), assume that o < = < w3, where
Tg, T3 are fixed real numbers, fix si,...,s.-1, and estimate the order
of Cavr at (s1,..., 8y, Spq1) satisfying o’ < o,41 < 0”, N < o, < X and
A (512 59, 5041), Sing(r)) > . Also we put

Ve =max{j — (op—jp1+ -+, +0,41) | 0< 5 <7}
Then we choose a small € > 0 such that V, + € is not an integer, and choose
an integer N > V. +2e. Then (s1,..., 8, $y+1) € F/(N,€). We shift the path
Rz = N — € of the integral in (5.4) to Rz = V,. + €. Then we obtain

(61) EIZV,T((Slv"'7ST*157Z;ST'+ST+1+Z);(ala--'aa7‘flaar+l CMT,OZT),
(wl,..., ))
1 .
= - (AV,rfl((Sla ey Sp—2, 81+ Sr Stz -1 72);
1—5 —841—%
(1, 10041 — Qp), (W1, ... ,wr,l))wr_1
Kl —Sr — S Oy —
+Z < r 'r—|—1 >C<_k7 T r—l)wf
k=0 Wr
X CAV.r1((815 -y Sr—, Sp—1 + 8p + Spy1 + 2 + k5 —2);
(ala"wa?“—l;a?“-f—l _a’r’)7(w17"‘7w7"—1))

)

L S F(Sr + Sp41 + 2+ Z’)F(—Z/) C(—Z’ Qp — ar—l)ﬂ]i/

2mi (Vite) I'(sr + sp41 + 2) Wy
X EAV,T—I((Sb ey Sp—2,8r—1 + Sp + Sr4-1 +z+ Z,; —Z),
(ala sy Op 150y 1 — CVT)v (wlv v 7w7'—1)) dzlv

where K is the integer satisfying K — 1 < V. + ¢ < K. Note that if K <0
then the sum on the right-hand side of (6.1) is empty, and if K < —1 then
the first term on the right-hand side does not appear.

Using the notation introduced in Section 5, we obtain

(6.2) 5/§V,r<(517 ey Sp—1, =2 Sr + Spq1 + 2)5 (o Qe eyl — i),

(wl,..., ))

I8
< Z ,ua(z’r_l’x) exp(|tr +try1 +ylp(oi — i1, w;))
i=1
r—1 .
Syl + 1P exp(lylp(ay — a1, wy)),
j=1
where

a(i,r—1,z) =max{K —1, 121}33}}{( 1{9( -l z+k,—x)}, h(i,r—1,2)},

b(j,?"—l,ﬂf) max{ 12%2)](( 1{f(.77 1,x+k,—x)},f(j,r—l,m—i—N—e,x)}.
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The implied constant here depends only on z9, 23, (, — ap—1)/w, = b and
a; — Q-1 (1 < ] < ’I”), wj (1 < ] < T)v ry 01y...,0pr-1, tl""?tTfla
o', 0" n,e, N, N, Similarly we shift the path 2 = M — € of the integral
in (5.10) to Rz = V;. + € and obtain

(6.3)  Cavir((s1s--ySmssri1); (0,0 apg), (Wi, .., wy))
K-1, o
— 51 =
= Z ( df‘+ )CAV,T((SL'--73r—1a—d35r+3r+1+d)5
d=0
(a17“'7a7’—17a7‘+1_aT;a’l‘)a(wla"'awT‘))
1 I'(spp1+2)'(—2) ~,
i S (TJ;(S ))( )CAV,T((Sl,---»Sr—la*ZQST+5r+1+2)§
(VT+6) r+1
(Q1y .oy Qo1 Qg1 — Qs )y (W1 .. wy)) dz.

Applying (6.2) to the sum on the right-hand side of (6.3), we obtain

(64) i CAV r((sla' . 'asr—la_d; Sy + Sr41 +d)7
d )

(Q1y ey Q1,01 — Qs ), (W1, .o w,))

r
< Z(|tr| + 1)a(i,r—1,d)(’tr+1’ + 1)a(i,r—1,d)+d
i=1

x exp(([tr| + [tra1])plas — i1, wy)).

Also, applying (6.2) and Lemma 3 to the integral on the right-hand side
of (6.3), we obtain

1 I'(sp11+2)'(—2) =,
(6.5) ~— S (sr41 + 2) (=) Cavr (81,0 y8r—1, =21 80 + Sp41 + 2);
2mi I'(sp41) ’
(Vrte)
(ala sy Qp—1, Qpy ] — Qi a'r)a (wb ey wr)) dz
T
<Y ([te] A+ 10T ) exp([ty | (o — i1, wi))
i=1
r .
x Z(‘trﬂ\ + 1) roteori) exp([tpga (e — a1, wy)),
j=1
where

f(jvr70-17 o 7UT+1) = maX{O, 1/2 - UT+17‘/7" + €,

max{a(i,r =1,V +€) +1/2+b(j,r =1,V + )},
<:<r

—opy1—Ve—e+140b(j,r—1,V, 4+¢€),1/2+b(j,r—1,V, +€)}
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and

g(i,ryo1,...,0041) = a(i,r —1,V, +¢€).
The implied constant here depends only on 2, x3, (o — ar—1)/w, = b and
aj—oj1 1< j<r),w (1 <4< 7r),r o,...,00-1, ti,...,tp—1,
o',o” m,e, N, \'. Hence, from (6.4) and (6.5), we have proved Theorem 2(3).
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