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Beta expansion of Salem numbers
approaching Pisot numbers with the finiteness property

by

Hachem Hichri (Monastir)

1. Introduction and basic definitions. In general, for any real num-
ber β > 1, it is possible to expand x ∈ [0, 1] in many different ways as

x =
∞∑
i=1

xiβ
−i,

where the sequence (xi)i∈N∗ , called the expansion of x in base β, takes values
in the alphabet Aβ = {0, 1, . . . , bβc}.

Example: If β is the golden ratio φ = (1 +
√
5)/2, which is a root of

x2 − x− 1, then 1 can be expanded as 0.11, 0.1011, 0.101011 and so on.
If β /∈ N, we distinguish among all possible expansions of x in base β

the lexicographically greatest one, which is called the beta expansion or the
greedy expansion and it is denoted by (the zero point is omitted)

dβ(x) = x1x2 . . . .

In order to avoid any confusion, note that some authors use the name of
“beta expansion” for all types of expansions in base β, but here it is reserved
for the greedy expansion.

This beta expansion, in a more general context, was first introduced by
Rényi [Ré] and the digits xi can be computed by the following algorithm:

Greedy Algorithm. Denote by byc and {y} respectively the integer
part and the fractional part of a real number y. Set r0 = x and for i ≥ 1,
xi = bβri−1c, ri = {βri−1}.

Or similarly, xi = bβT i−1(x)c using the beta transformation T = Tβ of
the unit interval given by

T = Tβ : x 7→ {βx} = βx− [βx].
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If the representation of x ∈ [0, 1] ends with infinitely many zeros, then
the ending zeros are omitted and the representation is said to be finite. Note
that this can happen if and only if there exists i ≥ 0 for which T iβ(x) = 0.

An important property of the beta expansion is its monotonicity. Namely,
if x < y, then the beta expansion (xn) of x is lexicographically less than the
beta expansion (yn) of y, i.e. xn < yn for the smallest n ≥ 1 such that
xn 6= yn.

This monotonicity implies that all the information on the beta transfor-
mation is already contained in the expansion of 1. This explains why dβ(1)
plays a crucial role.

In fact, the simplest expansion of 1 in base β is 1. However, defining dβ(1)
as a sequence computed by the greedy algorithm provides useful information
on the arithmetic and dynamical proprieties of β (see for instance [Par], [F]
or [Bl]).

In the remainder of this paper we are concerned only with the beta
expansion of 1. For simplicity, by the beta expansion of a given β > 1 we
mean the beta expansion of 1 in base β.

Moreover, we will define the digits to be the sequence of integers (c1, c2, . . .)
which are defined by:

∀n ≥ 1, cn = bβαn−1c, where α0 = 1 and αn = {βαn−1}.
In this case, we write dβ(1) = c1c2 . . . , where the digits {ci}i≥1 have

many properties [F]. For instance, for all i ≥ 1, ci ∈ Aβ = {0, 1, . . . , bβc}
and

1 =
∞∑
i=1

ciβ
−i.

Parry [Par] defined β to be a beta number (also called more recently a
Parry number) if the orbit {αn : n ≥ 1} is finite.

In this case, there exist smallest m ≥ 1 and p ≥ 1 for which αm = αm+p;
we denote D = D(β) = card{αn}.

In particular, if αm = 0 (so cn = 0 for n > m), we write

dβ(1) = c1, . . . , cm

and call β a simple beta number.
Otherwise, if αm = αm+p 6= 0, then dβ(1) is eventually periodic and we

write dβ(1) = (c1, . . . , cm)(cm+1, . . . , cm+p)
w. The values m and p are known

as the preperiod length and the period length, respectively.
It can be easily checked by induction that for all n≥ 1, αn=Pn(β) where

Pn(x) = xn − c1xn−1 − · · · − cn.
Consequently, if β is a beta number, then it must be a root of a monic

polynomial R with integral coefficients, called the companion polynomial
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of β, with

R(x) =

{
Pm(x) if αm = 0,
Pm+p(x)− Pm(x) if αm = αm+p 6= 0.

Hence, any beta number is in particular an algebraic integer and its min-
imal polynomial P (x) divides the companion polynomial R(x). In this case,
we have R(x) = P (x)Q(x), where the polynomial Q(x) (possibly constant)
is called the co-factor of the beta expansion.

Moreover, Parry [Par] showed that the roots of the companion polynomial
R(x) other than β (called beta-conjugates) lie in the disk |z| < min(2, β), and
this was improved to |z| ≤ (

√
5 + 1)/2 by Solomyak [So] and independently

by Flatto, Lagarias, and Poonen [FLP].
In the following definitions, we recall some interesting class of algebraic

integers which constitute the classic areas for the study of beta expansion:

Definition 1.1. An algebraic integer β > 1 is called a Perron number
if all its Galois conjugates have modulus less than β.

Definition 1.2. A Pisot number is an algebraic integer > 1 whose con-
jugates are all of modulus strictly less than 1.

Definition 1.3. A Salem number is an algebraic integer > 1 whose
conjugates all have modulus at most 1, with at least one conjugate having
modulus exactly 1. The minimal polynomial of a Salem number is also called
a Salem polynomial .

Remark 1.4. (1) The set of Pisot numbers is extended to contain all
positive integers n > 1, since they have minimal polynomial P (x) = x − n,
and so have no Galois conjugate ≥ 1.

(2) Note that the last definition implies that a Salem number is an al-
gebraic integer whose minimal polynomial is reciprocal and of even degree
(≥ 4). More precisely, its minimal polynomial has only one root τ outside
the unit disk, one root 1/τ inside the unit disk, and all other roots on the
unit circle.

There are many results which show that the sets of Salem and Pisot
numbers are closely linked, for instance:

Salem [Sa1] has proved that every Pisot number is the limit from both
sides of a sequence of Salem numbers.

On the other hand, it is proved in [BB] that, if R is the minimal polyno-
mial of a Salem number, then there exists an associated Pisot number with
minimal polynomial P such that (x2 + 1)R(x) = xP (x) + P ∗(x), where P ∗
is the reciprocal of P .
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However, despite these close links, there is no as much information in the
literature concerning Salem numbers as in the case of Pisot numbers.

For example, it was proved that all Pisot numbers are beta numbers ([?]
or [Sc]). More generally, the structure of the beta expansion of Pisot numbers
is very well known since it was extensively studied in several works ([Pan],
[Z], . . .). But for Salem numbers this structure is still unclear.

Actually, the fact that all Salem numbers are beta numbers is just a direct
consequence of a conjecture due to Schmidt [Sc]. This was proved by Boyd
[Bo2] for Salem numbers of degree 4. However, the same author [Bo3] gave
a heuristic argument suggesting the existence of Salem numbers of degree
≥ 8 that are not beta numbers. This clearly casts a doubt on Schmidt’s
conjecture.

More recently, Hare and Tweedle [HT] have determined some sufficient
conditions for a Salem number to have a periodic expansion. They used this
information to provide infinite families of Salem numbers with eventually
periodic beta expansion.

In this paper, we study the structure of the beta expansion of the se-
quence of Salem numbers defined by R. Salem [Sa1] that approaches a Pisot
number θ. In particular, we find that there exists a marked difference be-
tween the cases when θ is a Pisot number of degree 2 and of degree 3. Finally,
we give a sufficient condition for a Pisot number to be the limit of a sequence
of Salem numbers which are beta numbers.

Most of these results are rather easily proved, but the author could not
find them in the literature. This fact encourages us to present them here,
hoping that it helps to explain a part of the structure of the beta expansion
of Salem numbers.

2. Beta expansion of some sequences of Salem numbers. From
now on we assume that θ is always a Pisot number with minimal polynomial
P and for every integer k ≥ 1 we denote by βk the dominant root of the
polynomial

Rk(x) = xkP (x) + P ∗(x).

According to [Sa2, Theorem 4, p. 30], and its proof, the polynomial Rk
has a unique root βk outside the unit disk and the sequence (βk) converges
to θ. Moreover, if θ is not a quadratic unit, then for every sufficiently large
integer k, βk is a Salem number.

This idea, as simple as it is powerful, was first introduced by Salem. But
we can find many other further developed versions in [Bo1], [MS1], [MS2], . . .

For simplicity, we will refer to this idea as the Salem construction and
we will use the following notation:
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Notation. (1) If a sequence s = (cj)j≥0 is eventually periodic, we write

s = c1, . . . , cn : cn+1, . . . , cn+`,

and this means that cn+i+k` = cn+i for all k, i ∈ N.
(2) We write (a)k for the word a . . . a (k times).

Finally, we recall the following important lemma called “Parry’s criterion”
and which is necessary for all the remainder of this paper:

Lemma 2.1 (Parry). Let (c1, c2, . . .) be a sequence of non-negative inte-
gers which is different from 1(0)w and satisfies c1 > 0 and ck ≤ c1 for k ≥ 1.
The unique solution β > 1 of

x = c1 + c2x
−1 + c3x

−2 + · · ·
has c1c2 . . . as the beta expansion of 1 if and only if

∀k ≥ 1, σk(c1, c2, . . .) <lex (c1, c2, . . .)

where σ(c1, c2, . . .) = (c2, c3, . . .).

Proof. Corollary 1 of Theorem 3 of [Par].

2.1. Case of degree 2. Pisot numbers of degree 2 are characterized
in [FS] by the following lemma:

Lemma 2.2. The only Pisot numbers of degree 2 are the dominant roots
of the integral polynomial P = x2 − ax− b with:

(1) first type: a ≥ b ≥ 1,
(2) second type: a ≥ 3 and −a+ 2 ≤ b ≤ −1.

In this case we find that all Salem numbers obtained via Salem con-
struction are beta numbers with small orbit size and with “quite organized”
beta expansion, because always m = 1 and the companion polynomial is
reciprocal.

Moreover, as the beta expansions of Salem numbers of degree 4 are al-
ready completely determined in [Bo2], we will consider only the case when
βk is the dominant root of Rk = xkP + P ∗ with k ≥ 4.

Theorem 2.3. If a ≥ b ≥ 1 then βk is a beta number and

dβk(1) = a(b(0)k−3b(a− 1)2)w.

Proof. First we set

t = c1 : c2, c3, . . . , ck−1, ck, ck+1, ck+2(2.1)
= a : b, 0, . . . , 0, b, a− 1, a− 1,

and for any integer m ≥ 1,

Lm(x) = xm − c1xm−1 − · · · − cm−1x− cm.
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It is clear that the conditions of Parry’s criterion follow for the sequence t
from the condition a ≥ b ≥ 1. Thus, according to Lemma 2.1, the unique
solution γ > 1 of

x = c1 + c2x
−1 + c3x

−2 + · · ·
has beta expansion t = dγ(1) = c1 : c2, . . . , ck+2.

But the assumed periodicity of the sequence t implies in particular that
Tγ(1) = T k+2

γ (1). Consequently, γ is a real root > 1 of the polynomial
Lk+2(x) − L1(x) = xk+2 − axk+1 − bxk − bx2 − ax + 1, which obviously
coincides with the polynomial Rk.

However, according to [Sa2, proof of Theorem, p. 30], Rk has a unique
real root βk > 1. Hence, βk = γ and

dβk(1) = a(b(0)k−3b(a− 1)2)w.

Remark 2.4. Note here that if k = 2p + 1 is odd, then Rk is never
irreducible because −1 is a root, and so Rk = (x+ 1)F (x) with

F (x) = x2p − (a+ 1)x2p−1 + (a− b+ 1)

2p−2∑
j=2

(−1)jxj − (a+ 1)x+ 1.

Consequently, the result of Theorem 2.3 can be applied for the dominant
root (which is a Salem number for all p large enough) defined by any integral
polynomial of the form of F , under the condition a ≥ b ≥ 1.

For example, the Salem number β ≈ 5.541 with minimal polynomial

x10 − 6x9 + 3x8 − 3x7 + 3x6 − 3x5 + 3x4 − 3x3 + 3x2 − 6x+ 1

is a beta number satisfying

dβ(1) = 5(3(0)63(4)2)w,

by applying Theorem 2.3 for (a, b) = (5, 3) and k = 9.

Moreover, we note that no Pisot number of the first type is reciprocal.
Hence we immediately get the following consequence.

Corollary 2.5. Every Pisot number with minimal polynomial P (x) =
x2−ax− b with a ≥ b ≥ 1 is the limit of a sequence of Salem numbers which
are beta numbers.

For Pisot numbers of the second type (i.e. when a ≥ 3 and −a + 2 ≤
b ≤ −1), we will give the complete beta expansion of βk for some particular
cases only, although for the missing cases many other similar results can be
easily stated.

Theorem 2.6. If a ≥ 3 and −[a/2] ≤ b ≤ −1, then
dβk(1) = (a− 1)

(
(a+ b− 1)k−2(a+ 2b)2(a+ b− 1)k−2(a− 2)2

)w
.



Beta expansion of Salem numbers approaching Pisot numbers 113

Proof. We follow the same steps as in Theorem 2.3, so we start by setting

t = c1 : c2, . . . , ck−1, ck, ck+1, ck+2, . . . , c2k−1, c2k, c2k+1(2.2)
= a− 1 : s, . . . , s, a+ 2b, a+ 2b, s, . . . , s, a− 2, a− 2

with s = a+ b− 1. For any integer m ≥ 1 we set

Lm(x) = xm − c1xm−1 − · · · − cm−1x− cm.
It is clear that the conditions of Parry’s criterion follow, for the sequence t,
from the conditions a ≥ 3 and −[a/2] ≤ b ≤ −1. Thus, according to
Lemma 2.1, the unique solution γ > 1 of

x = c1 + c2x
−1 + c3x

−2 + · · ·
has beta expansion t = dγ(1) = c1 : c2, . . . , c2k+1. But the assumed period-
icity of the sequence t implies in particular that Tγ(1) = T 2k+1

γ (1). Conse-
quently, γ is a root > 1 of the polynomial

L2k+1(x)− L1(x) = (xk+2 − axk+1 − bxk − bx2 − ax+ 1)
xk − 1

x− 1
= RQ

with Q(x) = xk−1
x−1 . However, Q is a cyclotomic polynomial, and so βk is the

unique real root > 1 of L2k+1(x)− L1(x). Hence, βk = γ and

dβk(1) = (a− 1)
(
(a+ b− 1)k−2(a+ 2b)2(a+ b− 1)k−2(a− 2)2

)w
.

Remark 2.7. Note that for b = −1, the polynomial P = x2 − ax+ 1 is
reciprocal and its dominant root θ is a quadratic Pisot unit. So βk is never a
Salem number since we will have βk = θ for all integer k ≥ 1. However, the
result of Theorem 2.6 remains true in this case because dβk(1) = dθ(1) =
(a− 1)(a− 2)w.

To construct a sequence of Salem numbers which converge to θ and which
are beta numbers it will be sufficient to perturb slightly the central coefficient
of the polynomial R2k, as shown in the lemma and theorem below.

Lemma 2.8. Let a ≥ 3. For every integer k ≥ 1, the dominant root βk
of the polynomial Hk(x) = x2+2k − ax2k+1 + x2k + xk+1 + x2 − ax + 1 is
a Salem number. Furthermore, the sequence (βk) converges to the reciprocal
Pisot number root of P = x2 − ax+ 1.

Proof. First, we start by showing that, for every integer k ≥ 1, the
dominant root of Hk is a Salem number.

It is clear that the polynomial Hk is reciprocal, and as a ≥ 3 we have
Hk(1) < 0. Hence, Hk has at least two real roots βk > 1 and 1/βk < 1.

On the other hand, we note that

x−(k+1)Hk(x) = xk+1 + x−k−1 − a(xk + x−k) + xk−1 + x−k+1 + 1.

So for x = eit on the unit circle, we have

x−(k+1)Hk(x) = 2 cos (k + 1)t+ 2 cos (k − 1)t+ 1− 2a cos kt
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with
|f(t)| = |2 cos (k + 1)t+ 2 cos (k − 1)t+ 1| ≤ 5 < 6 ≤ 2a.

Notice also that g(t) = 2a cos kt attains alternately each of the values 2a
and −2a, as t goes from 0 to 2π, at the 2k values tj = jπ/k for 0 ≤ j ≤ 2k−1.
Now, as |f(t)| < 2a, the cosine polynomial x−(k+1)Hk(x), for x = eit, will
also alternate in sign at these values.

Thus, by the Intermediate Value Theorem, x−(k+1))Hk(x), and hence
Hk(x) itself, has 2k roots on the unit circle. Thus, βk is a Salem number or
a reciprocal Pisot number.

However, if βk is a reciprocal Pisot number, then it satisfies

β2k − bβk + 1 = 0

for some integer b. Hence

Hk(βk)− (β2kk + 1)(β2k − bβk + 1) = (β2kk + 1)(b− a)βk + βk+1
k = 0.

This gives a − b =
βk
k

β2k
k +1

, and as βk > 1 we get 0 < a − b < 1, which is

impossible since a and b are integers. Thus, βk is a Salem number.
Finally, the fact that a ≥ 3 implies that Hk(a) = a2k + ak+1 +1 > 0 and

Hk(2) = (2−a)22k+1+22k+2k+1−2a+3 < 0 for all k large enough. Hence,
2 < βk < a for all sufficiently large integers k.

Now, if we denote by ` ≥ 2 an accumulation point of the sequence (βk),
using limk→∞Hk(βk)/β

2k
k = 0 we get `2 − a`+ 1 = 0, and so ` = θ. Conse-

quently, (βk) is a bounded sequence having θ as the only possible accumu-
lation point. Thus, (βk) converges to θ.

Theorem 2.9. For every integer a ≥ 3, the dominant root βk of

Hk(x) = x2+2k − ax2k+1 + x2k + xk+1 + x2 − ax+ 1

is a beta number satisfying

dβk(1) = (a− 1)
(
(a− 2)k−1(a− 3)2k(a− 2)k+1

)w
.

Proof. It is clear from the proof of the previous lemma that the poly-
nomial Hk has only one root > 1. Then the proof is similar to the case of
Theorem 2.6, and it will be enough to note that the co-factor is Q = x2k−1

x−1 .

From Lemmas 2.8, 2.2 and Theorems 2.6, 2.9, we directly get the following
consequence:

Corollary 2.10. Every Pisot number with minimal polynomial P (x) =
x2−ax−b with −[a/2] ≤ b ≤ −1 is the limit of a sequence of Salem numbers
which are beta numbers.

According to Lemma 2.2, the only case which remains is when we have
−a+2 ≤ b < −[a/2]. In fact, we think that it is possible to get the complete
beta expansion of βk in the same way. The main difficulty for us was to
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determine a common general form of beta expansion for all values of b when
−a + 2 ≤ b < −[a/2]. Nevertheless, stating similar results for each fixed
value of b in this case remains always possible. As an example, we give here
the following theorem.

Theorem 2.11. Let a ≥ 5, k ≥ 3, and b = −[a/2]− 1. Then

dβk(1) = (a−1)
(
(s−1)k−3(s−2)(2s−1)(2s+ b−1)(2s−2)k−3

× (2s+ b−1)(2s−1)(s−2)(s−1)k−3(a−2)2
)w

where s = b+ a.

Proof. The same proof as for Theorems 2.3 and 2.6, with

Q(x) = xk−1 +
x2k−1 − 1

x− 1
.

Remark 2.12. Note that the missing values (a, b) = (3,−2) and (a, b) =
(4,−3) are excluded according to Lemma 2.2.

2.2. Case of degree 3. In this subsection, we assume that θ > 1 is a
cubic algebraic integer with

Irr(θ) = x3 − ax2 − bx− c.
Pisot numbers of degree 3 are characterised in [Ak] by the following

theorem:

Theorem 2.13. θ is a Pisot number if and only if

|b− 1| < a+ c and c2 − b < sgn(c)(1 + ac).

By examining the computational results of the beta expansion of Salem
numbers coming from Pisot numbers of degree 3 and of degree 2 via the
Salem construction, it can be clearly seen that there is a great difference
between the structure of the beta expansion in both cases (see Section 3 for
more details).

One of the main differences between Pisot numbers of degree 2 and of
degree 3 is the finiteness property, which we now recall. For any real number
β > 1, let FIN(β) be the set of non-negative real numbers having finite
β-expansion. Denote by Z[1/β] the minimal ring containing Z and 1/β, and
by Z[1/β]≥0 the set of non-negative elements of Z[1/β].

We say that β has the finiteness property or property (F) if

(F) FIN(β) = Z[1/β]≥0.
This property was first introduced in [FS] where the authors showed that

it implies that β is a Pisot number.
Moreover, according to [FS], all Pisot numbers of degree 2 have the finite-

ness property. But they gave an example to show that this is not true for
degree 3.
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As far as we know, there is no simple algebraic characterisation of Pisot
numbers of degree ≥ 3 having property (F) (in terms of coefficients of mini-
mal polynomials). Nevertheless, we can find a partial answer to this problem
in some particular cases as shown in the following theorem [Ak]:

Theorem 2.14. Let θ be a cubic Pisot unit. Then θ has property (F)
if and only if θ is a root of the polynomial x3 − ax2 − bx − 1 with integer
coefficients a ≥ 0 and −1 ≤ b ≤ a+ 1.

For this case we have the following theorem:

Theorem 2.15. Every cubic Pisot unit with the finiteness property is the
limit of a sequence of Salem numbers which are beta numbers.

This is a direct consequence of Theorem 2.14 and the following lemma:

Lemma 2.16. Let k be a positive integer and βk be the dominant root
of the polynomial R(x) := xkP + P ∗, where P = x3 − ax2 − bx + 1 is an
irreducible Pisot polynomial with property (F). We have:

(1) If 0 ≤ b ≤ a, a ≥ 1 and k ≥ 4, then

dβk(1) = a
(
b, 1, (0)k−4, 1, b, (a− 1)2

)w
.

(2) If b = −1, a ≥ 2 and k ≥ 5, then

dβk(1) = (a− 1)
(
(a− 1), 0, 1, (0)k−5, 1, 0, (a− 1), (a− 2)2

)w
.

(3) If b = a+ 1, k ≥ 6 for a ≥ 1 and k ≥ 9 for a = 0, then

dβk(1) = (a+ 1)
(
(0)2, a, 1, (0)k−6, 1, a, (0)2, 1, 0, (a)2

)w
.

Proof. The proof is similar to the previous ones; it is sufficient to note
that the co-factor is:

(1) Q = 1,
(2) Q = x+ 1,
(3) Q = x2 − x+ 1.

Remark 2.17. The missing values in the last lemma (i.e. a = 0 in (1)
and a = 0 or 1 in (2)) are excluded since the corresponding polynomial P is
not irreducible, so it does not define a cubic Pisot number.

2.3. A particular case of degree ≥ 3. We will try to generalize the
result of Theorem 2.15 to some other Pisot numbers of degree ≥ 3 and with
property (F). Let us first recall the following theorems which we can find
respectively in [FS] and [Ho].

Theorem 2.18 (A). The positive root of the polynomial P = xd −
b1x

d−1 − b2xd−2 − · · · − bd ∈ Z[x] with b1 ≥ · · · ≥ bd > 0 is a Pisot number
with property (F).
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Theorem 2.19 (B). The positive root of the polynomial P = xd −
b1x

d−1 − b2xd−2 − · · · − bd ∈ Z[x] with b1 >
∑d

i=2 bi and bi ≥ 0 (1 ≤ i ≤ d)
is a Pisot number with property (F).

Now, we can state a result similar to Theorem 2.15:

Theorem 2.20. Every Pisot number defined in Theorem (A) or (B) is
the limit of a sequence of Salem numbers which are beta numbers.

Proof. It is clear that in Theorems (A) and (B), the polynomial P is not
reciprocal. Hence the polynomials Rk = xkP+P ∗ define a sequence of Salem
numbers for all k large enough.

For k ≥ d+ 1 we set as usual

t = c1 : c2, . . . , cd, cd+1, . . . , ck−1, ck, . . . , cd+k−2, cd+k−1, cd+k(2.3)
= b1 : b2, . . . , bd, 0, . . . , 0, bd, . . . , b2, b1 − 1, b1 − 1

and
Lm(x) = xm − c1xm−1 − · · · − cm−1x− cm.

It is clear that the conditions of Parry’s criterion follow, for the sequence t,
from the condition on (bi)1≤i≤d in both cases (A) and (B). Thus, according
to Lemma 2.1, the unique solution γ > 1 of

x = c1 + c2x
−1 + c3x

−2 + · · ·
has beta expansion t = dγ(1) = c1 : c2, . . . , cd+k. Furthermore, the assumed
periodicity of the sequence t implies that Tβ′(1) = T d+kβ′ (1). Consequently,
γ is a root > 1 of the polynomial Ld+k(x)−L1(x) which obviously coincides
with the polynomial Rk.

However, according to [Sa2, proof of Theorem, p. 30], Rk has a unique
real root βk > 1. Hence, βk = γ and βk is a beta number. Moreover,

dβ(1) = b1
(
b2, . . . , bd, (0)

k−d−1, bd, . . . , b2, (b1 − 1)2
)w
.

3. Some remarks. In this section, we give some examples which show
clearly that there is a great difference between Salem numbers associated to
Pisot numbers of degree 3 and those associated to Pisot numbers of degree 2.
Mainly, in contrast to the case of degree 2:

(1) We note that m can take many values other than 1 and the co-factor
can be non-reciprocal and hence non-cyclotomic.

For instance: The Salem number β ' 6.27303 defined by the polynomial

x8 − 5x7 − 7x6 − 6x5 − 6x3 − 7x2 − 5x+ 1

obtained from the Pisot polynomial P = x3 − 5x2 − 7x − 6 for k = 5 is
a beta number having (m, p) = (7, 15) and as a co-factor, the following
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non-reciprocal polynomial:

x14 − x13 + x12 − x10 + 2x9 − 2x8 + x7 + x6 − 2x5 + 2x4 − x3 + x− 1.

(2) We find many examples of Salem numbers of degree ≥ 8 which have
very large (possibly infinite) orbit size. For such examples, we check numer-
ically that, if the beta expansion is periodic then D(β) exceeds 106. For
example, this is the case of the polynomials listed below:

x8 − 3x7 − 5x6 − 3x5 − 3x3 − 5x2 − 3x+ 1,(3.1)

x10 − 3x9 − 4x8 − 4x7 − 4x3 − 4x2 − 3x+ 1,(3.2)

x12 − 3x11 − x10 + 2x9 + 2x3 − x2 − 3x+ 1, . . . .(3.3)

Moreover, we find some particular Pisot numbers of degree 3 such that
all Salem numbers produced by the Salem construction (for k ≥ 5) have very
large orbit size or are probably non-beta numbers. This holds for example
in the case of

P = x3 − 5x2 + 4x− 3.

We think that these computational results strongly support the conjec-
ture of Boyd concerning the existence of a strictly positive proportion of
Salem numbers of degree greater than eight which are not beta numbers.

On the other hand, these results lead us to believe that it is important to
determine the real cause of this large difference between the beta expansion
of Salem numbers coming from Pisot numbers of degree 2 and those from
Pisot numbers of degree 3.

Remark 3.1. The previous results suggest that if θ is Pisot number
with the finiteness property, then all Salem numbers obtained from θ via the
Salem construction are beta numbers. However, many examples show that
this condition is far from being necessary. For instance, all Salem numbers βk
coming from the Pisot number θ with minimal polynomial x3− 3x2+2x+2
are beta numbers (for k ≥ 6 we have dβk(1) = (2)(1, 0, 2, (0)k−5, 2, 0, (1)3)w,
although here θ does not have property (F).

Acknowledgments. I would like to express my gratitude to the referee
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