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1. Schur’s problems on means of algebraic numbers. Schur [20]
considered several problems for various classes of polynomials with integer
coefficients and zeros restricted to certain sets. For convenience, we introduce
the following notation. Let E be a subset of the complex plane C. Consider
the set Zn(E) of polynomials with integer coefficients of exact degree n and
all zeros in E. We denote the subset of Zn(E) with simple zeros by Zsn(E).
Given M > 0, we write Pn = anz

n + · · · ∈ Zsn(E,M) if |an| ≤ M and
Pn ∈ Zsn(E) (respectively Pn ∈ Zn(E,M) if |an| ≤ M and Pn ∈ Zn(E)).
In particular, Schur [20, §§4–8] studied the limit behavior of the arithmetic
means of zeros for polynomials from Zsn(E,M) as n → ∞, where M > 0
is an arbitrary fixed number. Two of his main results in this direction are
stated below. Let D := {z ∈ C : |z| ≤ 1} be the closed unit disk, and
let R+ := [0,∞). For a polynomial Pn(z) = an

∏n
k=1(z − αk,n), denote the

arithmetic mean of its zeros by An :=
∑n

k=1 αk,n/n.

Theorem A (Schur [20, Satz XI]). If Pn ∈ Zsn(R+,M) is a sequence of
polynomials such that n→∞, then

lim inf
n→∞

An ≥
√
e > 1.6487.(1.1)

Theorem B (Schur [20, Satz XIII]). If Pn ∈ Zsn(D,M) is a sequence of
polynomials such that n→∞, then

lim sup
n→∞

|An| ≤ 1−
√
e/2 < 0.1757.(1.2)

Schur remarked that the lim sup in (1.2) is equal to 0 for monic polynomi-
als from Zn(D) by Kronecker’s theorem [9]. We proved [14] that limn→∞An
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= 0 for any sequence of polynomials from Schur’s class Zsn(D,M), n ∈ N.
This result was obtained as a consequence of the asymptotic equidistribu-
tion of zeros near the unit circle. Namely, if {αk,n}nk=1 are the zeros of Pn,
we define the zero counting measure

τn :=
1

n

n∑
k=1

δαk,n
,

where δαk,n
is the unit point mass at αk,n. Consider the normalized arclength

measure µD on the unit circle, with dµD(eit) := 1
2πdt. If τn converge to µD

in weak∗ topology as n→∞ (written τn
∗→ µD) then

lim
n→∞

An = lim
n→∞

�
z dτn(z) =

�
z dµD(z) = 0.

Thus the sharp version of Schur’s Theorem B immediately follows from
the convergence τn

∗→ µD as n → ∞, which was originally proved in [14],
and generalized in several directions in [15]–[17]. Furthermore, we found
essentially sharp rates of convergence of An to 0 in the setting of Theorem B.
A similar approach via the asymptotic distribution of algebraic numbers and
limiting measures for τn can be used to develop Theorem A, but this problem
is much more complicated because algebraic numbers are contained in the
unbounded set R+.

We give a brief description of the history, referring to [15] for a more
complete account. If Pn(z) = an

∏n
k=1(z −αk,n) is irreducible over the inte-

gers, then {αk,n}nk=1 is called a complete set of conjugate algebraic numbers
of degree n. When an = 1, we refer to {αk,n}nk=1 as algebraic integers. If
α = α1,n is one of the conjugates, then the sum of {αk,n}nk=1 is also called
the trace tr(α) of α over the rationals. Siegel [21] improved Theorem A for
totally positive algebraic integers to

lim inf
n→∞

An = lim inf
n→∞

tr(α)/n > 1.7336105,

by using a refinement of the arithmetic-geometric means inequality that in-
volves the discriminant of αk,n. Smyth [23] introduced a numerical method
of “auxiliary polynomials”, which was used by many authors to obtain im-
provements of the above lower bound. The original papers [22, 23] con-
tain the bound 1.7719. More recent results include the bounds 1.784109 by
Aguirre and Peral [1], and 1.78702 by Flammang [7]. McKee [11] designed
a modification of the method that achieves the bound 1.78839, which is
apparently the best currently known lower bound.

Problem A (The Schur–Siegel–Smyth trace problem [4]). Find the
smallest limit point ` for the set of values of mean traces An for all totally
positive and real algebraic integers.
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It was observed by Schur [20] (see also Siegel [21]) that ` ≤ 2. This
immediately follows by considering the Chebyshev polynomials tn(x) :=
2 cos(n arccos((x − 2)/2)) for the interval [0, 4], whose zeros are symmetric
about the midpoint 2. They have integer coefficients, and tp(x)/(x−2) is irre-
ducible for any prime p, giving the above mentioned upper bound 2 (cf. [20]).

In fact, for the counting measures of zeros we have τn
∗→ dx/(π

√
x(4− x))

as n→∞, so that

lim
n→∞

tr(α)

n
= lim

n→∞

�
x dτn(x) =

4�

0

x dx

π
√
x(4− x)

= 2.

More generally, if a sequence of totally positive algebraic numbers satisfies
τn
∗→ µ as n→∞, then

lim inf
n→∞

tr(α)

n
= lim inf

n→∞

�
x dτn(x) ≥

�
x dµ(x).

This brings us to the problem of minimizing the centroids (first moments) of
measures arising as weak∗ limits for counting measures of totally positive al-
gebraic numbers. We develop and generalize this approach so that it applies
to a wide range of problems on symmetric and convex means of algebraic
numbers. It may also be useful for other types of problems on algebraic
numbers.

The Schur–Siegel–Smyth trace problem remains a difficult open question
despite all efforts. As a partial result towards its solution, we gave the sharp
lower bound lim infn→∞An ≥ 2 for sets of algebraic numbers whose poly-
nomials do not grow exponentially fast on compact sets of R+ of capacity
(transfinite diameter) 1: see [15, Corollary 2.6] and Theorem 2.6 here.

We use the generalized Mahler measure to measure the size of integer
polynomials over a certain set. The classical Mahler measure of a polynomial
Pn(z) = an

∏n
k=1(z − αk,n), an 6= 0, is defined by

M(Pn) := exp

(
1

2π

2π�

0

log |Pn(eit)| dt
)

= |an|
n∏
k=1

max(1, |αk,n|),

where the last equality is a consequence of Jensen’s formula. The Mahler
measure was generalized to compact sets of capacity 1 by Rumely [19]. We
employ a similar generalization, which was introduced in [15] to obtain an
“if and only if” theorem on the equidistribution of algebraic numbers near
arbitrary compact sets in the plane.

Consider an arbitrary compact set E ⊂ C with logarithmic capacity
cap(E) = 1 (see [24, p. 55]). In particular, cap(D) = 1 and the capacity of
an interval is equal to one quarter of its length [24, p. 84]. Let µE be the
equilibrium measure of E [24, p. 55], which is a unique probability mea-
sure expressing the steady state distribution of charge on the conductor E.
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Note that µE is supported on the boundary of the unbounded connected
component ΩE of C \ E by [24, p. 79]. Two important examples for us are
dµD(eit) = 1

2πdt and

dµ[0,4](x) =
dx

π
√
x(4− x)

, x ∈ (0, 4).

Consider the Green function gE(z,∞) for ΩE with pole at ∞ (cf. [24,
p. 14]), which is a positive harmonic function in ΩE \ {∞}. Note that

gD(z,∞) = log |z|, |z| > 1, and g[0,4](z,∞) = log |z − 2 +
√
z2 − 4z| − log 2,

z ∈ C \ [0, 4]. A natural generalization of the Mahler measure for Pn(z) =
an
∏n
k=1(z − αk,n), an 6= 0, on an arbitrary compact set E of capacity 1 is

given by

ME(Pn) := |an| exp
( ∑
αk,n∈ΩE

gE(αk,n,∞)
)
.(1.3)

If no αk,n is in ΩE then we assume that the above (empty) sum is zero.
It is clear that ME(Pn) ≥ |an| ≥ 1 for any Pn with integer coefficients
and an 6= 0. If ME(Pn) does not grow fast as n → ∞, which is specifically
expressed by condition (2.9), then the roots of Pn are equidistributed in E,

meaning that τn
∗→ µE . This allows us to obtain the lower bound (2.10) of

Theorem 2.6 for the symmetric means of such algebraic numbers.

The elementary symmetric functions in the roots of a polynomial Pn(z) =
an
∏n
k=1(z − αk,n) =

∑n
k=0 akz

k are expressed through the coefficients by

(1.4) σm :=
∑

j1<···<jm

αj1,n · · ·αjm,n = (−1)m
an−m
an

.

Thus the Schur–Siegel–Smyth problem is equivalent to a question about
the growth of |an−1| with n, and it is natural to consider higher symmetric
functions σm and the asymptotic behavior of the coefficients an−m for a
fixed m ∈ N when n→∞.

2. Symmetric means of algebraic numbers. For motivation and
clarity of presentation, we first restrict ourselves to monic polynomials,
following Siegel [21]. Thus we assume for a moment that Pn(z) = zn +
an−1,nz

n−1 + · · · + a0,n ∈ Zsn(R+, 1). Observe that each σm has
(
n
m

)
prod-

ucts in the defining sum (1.4). Thus it is natural to consider the symmetric
means

Sm(x1, . . . , xn) :=

(
n

m

)−1 ∑
j1<···<jm

xj1 · · ·xjm , m ∈ N.
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The inequalities of Maclaurin (cf. [8, Section 52]) give fundamental relations
between symmetric means of nonnegative numbers {xi}ni=1:

(Sn)1/n ≤ · · · ≤ (S2)
1/2 ≤ S1.(2.1)

Note that equality holds in (2.1) if and only if all numbers xi are equal.
Thus in the context of Schur’s problems and their generalizations we always
have strict inequalities in (2.1). Furthermore, (2.1) shows for totally positive
algebraic integers that

Sm ≥ (Sn)m/n =
( n∏
k=1

αk,n

)m/n
= |a0|m/n ≥ 1, 1 ≤ m ≤ n.

For any sequence of polynomials Pn(z) =
∑n

k=0 akz
k ∈ Zsn(R+, 1), we obtain

lim inf
n→∞

|an−m,n|(
n
m

) = lim inf
n→∞

σm(
n
m

) = lim inf
n→∞

Sm ≥ 1,

where we assume that m ∈ N is fixed. This suggests a generalization of the
Schur–Siegel–Smyth trace problem:

Problem B. Given a fixed m ∈ N, find the smallest limit point `m for
the symmetric means Sm of roots of polynomials Pn ∈ Zsn(R+, 1).

Clearly, `1 = `. We shall investigate relations between `m, m ≥ 2, and
` in the present paper. An immediate consequence of (2.1) is that `m ≤
(`k)

m/k ≤ `m for m ≤ k ≤ 1. On the other hand, Theorem 2.7 of [17]
suggests the conjecture `m = `m, m ∈ N. Below we give more evidence in
support of this conjecture.

We continue developing the approach to extremal problems on means
of algebraic numbers via the integrals of limiting measures (for counting
measures of those numbers). Any sequence of zero counting measures τn has
a weak∗ convergent subsequence by Helly’s selection theorem. While the
classical version of Helly’s theorem requires the measures to be supported
in a fixed compact set, we can apply the result on each closed disk {z :
|z| ≤ n}, n ∈ N, and construct nested subsequences to obtain a subsequence
of measures weak∗ convergent on the union of expanding disks that fills
the whole plane C. Details of this argument may be found, for example, in
[10, §1]. Note that the limiting measure τ obtained in this way may have
unbounded support and may have total mass τ(C) < 1. One of our main
goals is to understand the properties of such weak∗ limits that shed new
light on difficult problems related to algebraic numbers. A natural class of
limiting measures for these problems is described below.

Define the logarithmic energy of a measure µ by

I[µ] :=
� �

log
1

|z − t|
dµ(z) dµ(t)
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(see [24, p. 54]). We state our first result under the general assumption that
algebraic numbers have bounded Weil height (absolute Mahler measure).

Theorem 2.1. Suppose that Pn(z) = an
∏n
k=1(z−αk,n) ∈ Zsn(C), n ∈ N,

is a sequence of polynomials with τn
∗→ τ along a subsequence N ⊂ N. If

H := lim sup
N3n→∞

(M(Pn))1/n <∞(2.2)

then τ is a unit measure with finite logarithmic energy. Furthermore,�
log+ |z| dτ(z) ≤ logH(2.3)

and the restriction τR := τ |DR
, where DR := {z : |z| < R}, satisfies

−log 2− 2τ(DR) logH ≤ I[τR] ≤ (1− τ(DR)) log 4 + 2 logH(2.4)

for all but countably many R > 1.

Thus no loss of mass for the limiting measure occurs in this case, even
though some algebraic numbers may tend to infinity as the degree n in-
creases. Furthermore, finiteness of the energy I[τ ] carries information on
the distribution of algebraic numbers. In particular, it implies that τ has no
point masses, reflecting the fact that the algebraic numbers are well spaced.
We remark that (2.2) is equivalent to

lim sup
N3n→∞

|an|1/n <∞ and lim sup
N3n→∞

( n∏
k=1

max(1, |αk,n|)
)1/n

<∞.(2.5)

Theorem 2.1 has immediate applications to problems on symmetric means
of algebraic numbers.

Corollary 2.2. If (2.2) is replaced with

lim sup
N3n→∞

|an|1/n <∞ and lim sup
N3n→∞

Sm(|α1,n|, . . . , |αn,n|) <∞(2.6)

for a fixed m ∈ N, and if all other assumptions of Theorem 2.1 hold, then
τ is a unit measure with finite logarithmic energy.

On the other hand, we show that omitting assumptions may lead to
essentially arbitrary limiting distribution of algebraic numbers.

Theorem 2.3. Given any positive Borel measure µ, 0 ≤ µ(C) ≤ 1, that
is symmetric about real line, there is a sequence of complete sets of conjugate
algebraic integers such that their counting measures τn converge weak∗ to µ.

The above irregular behavior of algebraic numbers may only occur when
the height grows superexponentially and some of the conjugates escape to
infinity as the degree increases, according to Theorem 2.1. As an example
of conjugate algebraic integers with counting measures converging to the
identically zero measure in the weak∗ topology, we mention the roots of
Pp(z) = zp − p! for prime p.
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If all algebraic numbers are uniformly bounded for all n ∈ N, then we
can prove the conjectured relation between the limits of symmetric means.

Theorem 2.4. If the numbers {zk,n}nk=1 ⊂ C are uniformly bounded,

and their counting measures satisfy τn
∗→ τ for n ∈ N ⊂ N, then

lim
N3n→∞

Sm(z1,n, . . . , zn,n) = lim
N3n→∞

(S1(z1,n, . . . , zn,n))m(2.7)

=
( �
z dτ(z)

)m
, m ∈ N.

In the case of unbounded numbers, we prove the following lower bound
for their symmetric means. It is convenient to consider numbers located in
closed sectors Vm := {z ∈ C : |Arg z| ≤ π/(2m)}, where m ∈ N.

Theorem 2.5. For m ∈ N, let the sets {zk,n}nk=1 ⊂ Vm be symmetric
about the real line for all n ∈ N ⊂ N. If the corresponding counting measures
satisfy τn

∗→ τ , n ∈ N , where τ(C) = 1, then

lim inf
N3n→∞

Sm(z1,n, . . . , zn,n) ≥
( �
z dτ(z)

)m
.(2.8)

It is clear from weak∗ convergence that τ is symmetric about the real
axis, and is supported in Vm by inheritance. Therefore,

	
z dτ(z) ≥ 0. Note

that (2.8) holds for all m ∈ N when all {zk,n}nk=1 belong to R+.
Let νm be a weak∗ limit of counting measures for algebraic integers that

produce the smallest limit point `m of the symmetric means Sm, m ∈ N. We
have

`m ≥
( �
x dνm(x)

)m
, m ∈ N,

by (2.8). It is plausible that equality holds above for all m ∈ N, but we
have not been able to prove this. Furthermore, if ` =

	
x dνm(x) then the

above inequality and (2.1) give `m = `m. While we cannot show this holds
in general, we can handle an important case of totally positive algebraic
numbers with relatively small generalized Mahler measure (low height).

Theorem 2.6. Let Pn(x) = an
∏n
k=1(x− αk,n) ∈ Zsn(R+), n ∈ N ⊂ N,

be a sequence of polynomials, and let E ⊂ R+ be a compact set of logarithmic
capacity 1. If

lim
N3n→∞

(ME(Pn))1/n = 1(2.9)

then

lim inf
N3n→∞

Sm(α1,n, . . . , αn,n) ≥ 2m, m ∈ N.(2.10)

Equality holds in (2.10) for the roots of tn(x) = 2 cos(n arccos((x− 2)/2)).

The key fact used in the proof of this result is that the roots of Pn
are equidistributed in E under assumption (2.9), that is, τn

∗→ µE by [15,
Theorem 2.1].
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3. Convex means of totally positive algebraic numbers. Suppose
that φ : R+ → R is a convex strictly increasing function. We now consider
the convex φ-means of numbers {xk}nk=1 ⊂ R+ defined by

Cφn(x1, . . . , xn) :=
1

n

n∑
k=1

φ(xk).(3.1)

Another interesting question generalizing the original Schur–Siegel–Smyth
problem is to find the smallest limit point of such convex φ-means for totally
positively algebraic integers. This problem for means of squares of algebraic
numbers was already considered in the original paper of Schur [20], and
means for φ(x) = xm were studied in the papers of Smyth [22], [23]. Since
φ is convex increasing, one immediately finds that

lim inf
n→∞

Cφn(α1,n, . . . , αn,n) ≥ lim inf
n→∞

φ

(
1

n

n∑
k=1

αk,n

)
≥ φ(`)(3.2)

for any sequence of complete sets of totally positive conjugate algebraic
integers {αk,n}nk=1, n ∈ N. The following result was proved in [15, Corollary
2.6]. It is based on the equidistribution of algebraic numbers in E expressed
by τn

∗→ µE , and the lower bound for the centroid of equilibrium measure
µE found in Baernstein, Laugesen and Pritsker [2, Theorem 1].

Theorem 3.1. Let Pn(z) = an
∏n
k=1(z−αk,n) ∈ Zsn(R+) be a sequence of

polynomials. Suppose that E ⊂ R+ is a compact set of capacity 1. Moreover
assume that φ : R+ → R+ and φ(x2) is convex on R. If

lim
n→∞

(ME(Pn))1/n = 1

then

lim inf
n→∞

1

n

n∑
k=1

φ(αk,n) ≥
4�

0

φ(x) dx

π
√
x(4− x)

.

In particular for φ(x) = xm, m ∈ N,

lim inf
n→∞

1

n

n∑
k=1

αmk,n ≥
4�

0

xm dx

π
√
x(4− x)

= 2m
1 · 3 · . . . · (2m− 1)

m!
.

Equalities hold in the above inequalities for the roots of tn(x) =
2 cos(n arccos((x− 2)/2)).

From a more general perspective, we show that the limiting measures
for algebraic numbers with bounded convex means have finite energy, as a
consequence of Corollary 2.2.

Theorem 3.2. Let Pn(z) = an
∏n
k=1(z − αk,n) ∈ Zsn(C), n ∈ N, be a

sequence of polynomials with τn
∗→ τ along a subsequence N ⊂ N. Suppose
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that φ : R+ → R is a convex strictly increasing function. If

lim sup
N3n→∞

|an|1/n <∞ and lim sup
N3n→∞

Cφn(|α1,n|, . . . , |αn,n|) <∞,(3.3)

then τ is a unit measure with finite logarithmic energy.

4. Means of algebraic numbers located in sectors. It is also pos-
sible to obtain lower bounds for the means of zeros for polynomials with
integer coefficients and zeros in sectors Wγ := {z ∈ C : |Arg z| ≤ γ}, where
γ < π/2. For the arithmetic means S1, one can easily give the following
bound:

1

n

n∑
k=1

αk,n =
1

n

n∑
k=1

<(αk,n) ≥ 1

n

n∑
k=1

|αk,n| cos γ ≥
(
|a0|
|an|

)1/n
cos γ ≥ cos γ

|an|1/n
.

If (2.6) is satisfied, then we have a positive lower bound in the above in-
equality. Flammang [6] applied Smyth’s method of auxiliary functions to
bound the smallest limit points of mean trace for algebraic integers located
in sectors, and obtained many explicit results. In fact, [6] gives exact values
of smallest limit points for some sectors.

Note that Theorems 2.1, 2.4 and 2.5, as well as Corollary 2.2, are clearly
applicable here. In particular, combining Corollary 2.2 with Theorem 2.5,
we obtain the following result on the smallest limit points of means.

Theorem 4.1. Let Pn(z) = an
∏n
k=1(z − αk,n) ∈ Zsn(Wγ), n ∈ N ⊂ N,

be any sequence of polynomials, and let γ < π/2. If (2.6) holds then

lim inf
N3n→∞

Sm(α1,n, . . . , αn,n) ≥
(�
z dτ(z)

)m
> 0, γ ≤ π/(2m),(4.1)

where each τ is a unit measure with finite logarithmic energy, which may be
different for different m ∈ N.

Considering the whole family of monic polynomials from Zsn(Wγ), we can
always select a subsequence whose symmetric means provide the smallest
limit point, and for which τn

∗→ τ . Then (2.6) is satisfied and (4.1) gives us
a (theoretic) lower bound for that limit point.

5. Proofs

Proof of Theorem 2.1. For notational convenience, we assume that τn
converges to τ in the weak∗ topology along the whole sequence N. Our first
step is to prove that τ is a unit measure. If τ(C) = λ < 1 then

lim sup
n→∞

τn(DR) ≤ τ(DR) ≤ λ
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for any disk DR := {z : |z| < R}, by the weak∗ convergence properties of [3,
Theorem 2.1, p. 16]. Hence

lim inf
n→∞

τn(C \DR) ≥ 1− λ > 0 for all R > 0.

Moreover, for any ε > 0 and any R > 1 there is N ∈ N such that

M(Pn) ≥
n∏
k=1

max(1, |αk,n|) ≥
∏

|αk,n|>R

|αk,n| ≥ Rn(1−λ−ε), n ≥ N.

The latter inequality is clearly incompatible with (2.2) when R → ∞, so
that τ(C) = 1 follows. Note that τ may have unbounded support.

Our goal now is to show that the restriction of τ to every disk has finite
energy. Given R > 1, we define

τ̂n := τn|DR
=

1

n

∑
|αk,n|≤R

δαk,n
.

Note that τ̂n
∗→ τR := τ |DR

as n→∞ for any R > 0 such that τ(∂DR) = 0,

by [10, Theorem 0.5′, p. 10]. Hence τ̂n
∗→ τR for all but countably many

R > 1, and we consider only such R below. Furthermore, it is sufficient to
consider R with τ(DR) > 0, for otherwise I[τR] = 0 and (2.4) holds trivially.
Let ∆(Pn) = a2n−2n (V (Pn))2 be the discriminant of Pn, where

V (Pn) :=
∏

1≤j<k≤n
(αj,n − αk,n)

is the Vandermonde determinant. Since Pn has integer coefficients, ∆(Pn)
is an integer (see [13, p. 24]). As Pn has simple roots, we obtain ∆(Pn) 6= 0
and |∆(Pn)| ≥ 1. We now order αk,n as follows:

|α1,n| ≤ · · · ≤ |αmn,n| ≤ R < |αmn+1,n| ≤ · · · ≤ |αn,n|.

Let P̂n(z) := an
∏mn
k=1(z−αk,n) and V (P̂n) =

∏
1≤j<k≤mn

(αj,n−αk,n). Hence

(5.1)

1 ≤ |∆(Pn)| = |an|2n−2|V (Pn)|2 = |an|2n−2|V (P̂n)|2
∏

1≤j<k
mn<k≤n

|αj,n − αk,n|2

≤ |an|2n−2|V (P̂n)|2
∏

mn<k≤n
(2|αk,n|)2(n−1)

≤ |V (P̂n)|24(n−1)(n−mn)
(
|an|

∏
mn<k≤n

|αk,n|
)2(n−1)

,

where we have used |αj,n − αk,n| ≤ 2 max(|αj,n|, |αk,n|) = 2|αk,n|. Equation
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(2.2) implies that

lim sup
n→∞

(
|an|

∏
mn<k≤n

|αk,n|
)1/n

≤ lim sup
n→∞

(M(Pn))1/n = H <∞.(5.2)

Note that lim infn→∞mn/n = lim infn→∞ τn(DR) = τ(DR) by [3, Theorem
2.1], as τ(∂DR) = 0. Thus we deduce from (5.1)–(5.2) that

lim inf
n→∞

|V (P̂n)|
2

(n−1)n ≥ 4τ(DR)−1 lim inf
n→∞

(
|an|

∏
mn<k≤n

|αk,n|
)−2/n

(5.3)

≥ 4τ(DR)−1H−2.

Let KM (z, t) := min(−log |z − t|,M). It is clear that KM (z, t) is a continu-
ous function in z and t on C×C, and that KM (z, t) increases to −log |z− t|
as M → ∞. Using the monotone convergence theorem and the weak∗ con-
vergence of τ̂n × τ̂n to τR × τR, we find for the energy of τR that

I[τR] = −
� �

log |z − t| dτR(z) dτR(t)

= lim
M→∞

(
lim
n→∞

� �
KM (z, t) dτ̂n(z) dτ̂n(t)

)
= lim

M→∞

(
lim
n→∞

(
2

n2

∑
1≤j<k≤mn

KM (αj,n, αk,n) +
M

n

))

≤ lim
M→∞

(
lim inf
n→∞

2

n2

∑
1≤j<k≤mn

log
1

|αj,n−αk,n|

)
= lim inf

n→∞

2

n2
log

1

|V (P̂n)|

≤ (1− τ(DR)) log 4 + 2 logH,

where (5.3) has been used in the last estimate. This gives the upper bound
in (2.4).

We continue with the same notation to prove (2.3). Note that

�
log+ |z| dτ̂n =

1

n
log

mn∏
k=1

max(1, |αk,n|) ≤ log (M(Pn))1/n .

Extending log+ |z| from DR to a continuous nonnegative function with com-

pact support in C, we use the weak∗ convergence τ̂n
∗→ τR and (2.2) to obtain

�
log+ |z| dτR = lim

n→∞

�
log+ |z| dτ̂n ≤ lim sup

n→∞
log (M(Pn))1/n = logH.

Thus (2.3) follows from the above inequality by letting R→∞.
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The lower bound of (2.4) is a consequence of (2.3) and of the estimate

I[τR] = −
� �

log |z − t| dτR(z) dτR(t)

≥ −
� �

log(2 max(|z|, |t|)) dτR(z) dτR(t)

≥ −log 2− 2
�( �

|z|≥|t|

log |z| dτR(z)
)
dτR(t)

≥ −log 2− 2
�( �

|z|≥max(1,|t|)

log |z| dτR(z)
)
dτR(t)

≥ −log 2− 2
�
logH dτR(t) = −log 2− 2τR(DR) logH,

where we also use |z − t| ≤ 2 max(|z|, |t|) and τR(DR) ≤ 1.

Proof of Corollary 2.2. We arrange the numbers αk,n as follows:

|α1,n| ≥ · · · ≥ |αKn,n| ≥ 1 > |αKn+1,n| ≥ · · · ≥ |αn,n|.

Starting with the case m = 1, we apply the arithmetic-geometric mean
inequality to obtain

(5.4)
(Kn∏
k=1

|αk,n|
)1/n

≤
(

1

Kn

Kn∑
k=1

|αk,n|
)Kn/n

≤
(
n

Kn

)Kn/n( 1

n

n∑
k=1

|αk,n|
)Kn/n

≤ e1/e
(

1

n

n∑
k=1

|αk,n|
)Kn/n

,

where we have also used the fact maxx∈[0,∞) x
1/x = e1/e with x = n/Kn.

Hence

lim sup
N3n→∞

(M(Pn))1/n ≤ lim sup
N3n→∞

|an|1/n lim sup
N3n→∞

(Kn∏
k=1

|αk,n|
)1/n

<∞

by the assumptions and (5.4), so that (2.2) holds. The conclusion of this
corollary for m = 1 now follows from Theorem 2.1.

If the symmetric means in the assumptions are bounded for a fixed
m ≥ 2, then we consider two different cases. Suppose first that m ≤ Kn ≤ n.
We argue similarly to (5.4), and apply (2.1) to estimate(Kn∏
k=1

|αk,n|
)1/n

≤ (Sm(|α1,n|, . . . , |αKn,n|))Kn/(mn)

≤
((

n

m

)/(
Kn

m

))Kn/(mn)

(Sm(|α1,n|, . . . , |αn,n|))Kn/(mn).
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Note that((
n

m

)/(Kn

m

))Kn/(mn)

≤
(

n

Kn −m+ 1

)Kn/n

≤
(
n

Kn

)Kn/n Kn

Kn −m+ 1

≤ e1/em.

Hence lim supn→∞ (M(Pn))1/n <∞ as before, and we apply Theorem 2.1.

The remaining case is when Kn < m ≤ n. We can assume that the
constant terms a0 in the polynomials Pn are nonzero, for otherwise we can
replace Pn with Pn(z)/z. Thus we assume that |a0| ≥ 1, which implies that

n∏
k=Kn+1

|αk,n| =
|a0|

|an|
∏Kn
k=1 |αk,n|

≥ 1

|an|
∏Kn
k=1 |αk,n|

.(5.5)

For n ≥ 2m, we have

n∏
k=Kn+1

|αk,n| =
m∏

k=Kn+1

|αk,n|
n∏

k=m+1

|αk,n| ≤
( m∏
k=Kn+1

|αk,n|
)2
.

It follows from (5.5) and the above estimate that

Kn∏
k=1

|αk,n| =
∏m
k=1 |αk,n|∏m

k=Kn+1 |αk,n|
≤
(
|an|

Kn∏
k=1

|αk,n|
)1/2 m∏

k=1

|αk,n|,

and therefore

Kn∏
k=1

|αk,n| ≤ |an|
( m∏
k=1

|αk,n|
)2
≤ |an|

((
n

m

)
Sm(|α1,n|, . . . , |αn,n|)

)2

.

Finally,

lim sup
N3n→∞

(Kn∏
k=1

|αk,n|
)1/n

≤ lim sup
N3n→∞

|an|1/n lim sup
N3n→∞

(Sm(|α1,n|, . . . , |αn,n|))2/n <∞,

so that lim supN3n→∞ (M(Pn))1/n < ∞, and the result follows from Theo-
rem 2.1 again.

Proof of Theorem 2.3. We show how to approximate an arbitrary Borel
measure µ, 0 ≤ µ(C) ≤ 1, by counting measures of algebraic integers in the
weak∗ topology. This is sketched below in several steps of reduction for the
problem. The case µ(C) = 0 is covered by the example given after Theorem
2.3. Thus we assume that µ is supported in a compact set E and µ(E)>0
without loss of generality. Otherwise one can apply the approximations con-
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structed below to the restrictions of µ on a family of expanding disks filling
the plane, exactly as mentioned before Theorem 2.1, and obtain the desired
weak∗ convergent approximations for µ in C.

The first step of our approximation scheme uses the Krein–Milman the-
orem [25, pp. 362–363] to express µ as the weak∗ limit of linear convex
combinations of point masses of the form

J∑
j=1

tjδzj , tj > 0,

J∑
j=1

ti = µ(E) = µ(C) ≤ 1,

where {zj}Jj=1 ⊂ E are symmetric about the real line. The symmetry re-
quirement is achieved by applying the Krein–Milman theorem to the restric-
tion of µ to the upper half-plane, and adding the reflection of the discrete
measure thus obtained to approximate µ in the lower half-plane part of its
support.

The set of coefficients tj ∈ R, j = 1, . . . , J, can be simultaneously ap-
proximated by the rational numbers kj/L < tj with the same denominator
L ∈ N. Therefore, we can select a set of kj points wi,j , i = 1, . . . , kj , on a
sufficiently small circle around zj , for each j = 1, . . . , J, so that the measure

(1/L)
∑kj

i=1 δwi,j gives an arbitrarily close approximation to tjδzj . Further-
more, this can clearly be done so that all points wi,j are distinct and sym-
metric about the real axis. It remains to approximate the resulting discrete
measure

νK =
1

L

J∑
j=1

kj∑
i=1

δwi,j , K :=

J∑
j=1

kj ,

by counting measures for algebraic integers in the third step.

Note that the measure νK is a counting (but not unit) measure for the
points wi,j totalling K < L. Therefore, we can approximate it by a sequence
of counting measures τK+1 for the complete sets of conjugate algebraic inte-
gers {αl,K+1}K+1

l=1 by using the theorem of Motzkin [12] (see also [5] for its
effective version). For any K ∈ N, we approximate each point wi,j as close
as we wish by one of the conjugate algebraic integers αl,K+1, 1 ≤ l ≤ K,
obtained from Motzkin’s theorem, while we let the remaining (K + 1)st
conjugate algebraic integer αK+1,K+1 tend to ∞ as K → ∞ (cf. [12, pp.
160–161] for details). It follows that the resulting measures

τK+1 =
1

L

K+1∑
l=1

δαl,K+1

converge to µ in the weak∗ topology as K →∞.
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Proof of Theorem 2.4. Assume that {zk,n}nk=1 ⊂ DR and that τn
∗→ τ

for a subsequence n ∈ N ⊂ N. The multinomial theorem gives( n∑
j=1

zj,n

)m
=

∑
k1+···+kn=m

(
m

k1, . . . , kn

)
zk11,n · · · z

kn
n,n

= m!σm(z1,n, . . . , zn,n) +
∑

k1+···+kn=m
∃kj≥2

(
m

k1, . . . , kn

)
zk11,n · · · z

kn
n,n.

Note that the sum s of multinomial coefficients in the latter summation can
be found by setting zj,n = 1, j = 1, . . . , n, in the above formula, which gives

nm = m!

(
n

m

)
+ s =

m−1∏
j=0

(n− j) + s.

It follows that s = O
(
nm−1

)
as n→∞, and∣∣∣( n∑

j=1

zj,n

)m
−m!σm(z1,n, . . . , zn,n)

∣∣∣ ≤ RmO(nm−1) as n→∞.

Since limn→∞m!
(
n
m

)
/nm = 1, we can divide the above equation by nm and

let n → ∞ to obtain the first equality in (2.7), provided one of the limits
in (2.7) exists. But

lim
N3n→∞

S1(z1,n, . . . , zn,n) =
�
z dτ(z)

is an easy consequence of the weak∗ convergence τn
∗→ τ for n ∈ N .

Proof of Theorem 2.5. Consider the half-plane Ha = {z ∈ C : < z ≤ a}.
Given a fixed a > 0, we arrange each set {zk,n}nk=1 in the order of increasing
real parts:

< z1,n ≤ · · · ≤ < zln,n ≤ a < < zln+1,n ≤ · · · ≤ < zn,n.
Define τ̂n := τn|Ha . It follows that

τ̂n
∗→ τa := τ |Ha , n ∈ N , and lim

N3n→∞
ln/n = τ(Ha)

for any a > 0 such that τ({z : < z = a}) = 0, by [10, Theorem 0.5′] and [3,
Theorem 2.1]. Hence the above equation holds for all but countably many
a > 0, and we consider only such a below.

Observe that Sm(z1,n, . . . , zn,n) ≥ 0 and Sm(z1,n, . . . , zln,n) ≥ 0 for
{zk,n}nk=1 ⊂ Vm because all terms in these sums have positive real parts,
and their imaginary parts cancel due to symmetry of {zk,n}nk=1. For the
same reason, we have σm(z1,n, . . . , zn,n) ≥ σm(z1,n, . . . , zln,n), so that

Sm(z1,n, . . . , zn,n) ≥ Sm(z1,n, . . . , zln,n)

(
ln
m

)/(n
m

)
.
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Since

lim
n→∞

(
ln
m

)/(n
m

)
= lim

n→∞
(ln/n)m = (τ(Ha))

m,

the weak∗ convergence τ̂n
∗→ τa, n ∈ N , and Theorem 2.4 yield

lim inf
N3n→∞

Sm(z1,n, . . . , zn,n) ≥ (τ(Ha))
m lim inf
N3n→∞

Sm(z1,n, . . . , zln,n)

= (τ(Ha))
m
(�
z dτa(z)

)m
.

The concluding step is to let a→∞ in the above inequality, using

lim
a→∞

τ(Ha) = τ(C) = 1 and lim
a→∞

�
z dτa(z) =

�
z dτ(z).

Proof of Theorem 2.6. Equation (2.9) implies that τn
∗→ µE by [15,

Theorem 2.1], where µE is the equilibrium measure of E. Hence

lim inf
N3n→∞

Sm(α1,n, . . . , αn,n) ≥
( �
z dµE(z)

)m
, m ∈ N,

by Theorem 2.5. Lower bounds for the moments of equilibrium measures
were established in [2]. We apply the change of variable x = t2, and define
the compact set K = {t ∈ R : t2 ∈ E}. Then K is symmetric about the
origin, so that

	
t dµK(t) = 0. Furthermore, dµK(t) = dµE(t2), t ∈ K, and

cap(K) = 1 (see [18, p. 134]). It now follows from [2, Theorem 1] that

�
x dµE(x) =

�
t2 dµK(t) ≥

�
t2 dµ[−2,2](t) =

2�

−2

t2 dt

π
√

4− t2
= 2,

so that (2.10) is proved.

We discussed in Section 1 that the Chebyshev polynomials tn(x) :=
2 cos(n arccos((x− 2)/2)) for [0, 4] satisfy the assumptions of this theorem.

Moreover, τn
∗→ µ[0,4] = dx/(π

√
x(4− x)) as n→∞, which gives

lim
n→∞

S1(α1,n, . . . , αn,n) =

4�

0

x dx

π
√
x(4− x)

= 2.

Combining this with (2.1) and (2.10), we immediately see that equality holds
in (2.10) for all m ∈ N.

Proof of Theorem 3.2. Using convexity of φ, we have

lim sup
N3n→∞

φ

(
1

n

n∑
k=1

|αk,n|
)
≤ lim sup
N3n→∞

Cφn(|α1,n|, . . . , |αn,n|) <∞.

Since φ is also strictly increasing, we conclude that limx→∞ φ(x) =∞. Hence



Asymptotic distribution and symmetric means 137

the above inequality yields

lim sup
N3n→∞

1

n

n∑
k=1

|αk,n| <∞.

Thus all assumptions of Corollary 2.2 are satisfied with m = 1, and the
desired conclusion follows.

Proof of Theorem 4.1. Since (2.6) is satisfied, Corollary 2.2 shows that
any weak∗ limit of counting measures τn for our sequence must be a unit
measure with finite logarithmic energy. The inequality γ ≤ π/(2m) ensures
that Wγ ⊂ Vm for each such m ∈ N. Hence all conditions of Theorem 2.5
are satisfied, and (2.8) gives us (4.1), where τ is a weak∗ limit of τn along
a subsequence that attains the value of lim infN3n→∞ Sm(α1,n, . . . , αn,n).
Note that τ is supported in Wγ , and is different from the point mass δ0 at
the origin, because τ has finite energy. Hence

	
z dτ(z) > 0.
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