ACTA ARITHMETICA
168.2 (2015)

L,- and S; B-discrepancy of (order 2) digital nets
by
LEV MARKHASIN (Stuttgart)
1. Introduction and results. Let N be a positive integer and let P

be a point set in the unit cube [0, l)d with N points. Then the discrepancy
function Dp is defined as

1
(1.1) Dp(z) = N ZX[O,LIJ)(Z) — 1T
z€P
for any 2 = (21,...,24) € [0,1)%. By X[0,;) We mean the characteristic

function of the interval [0, x) = [0,21) X - - - X [0, 24), so the term ) _ X[0,2)(2)
is equal to the number of points of P in [0, x). This means that Dp measures
the deviation of the number of points of P in [0,z) from the fair number
of points N|[0,z)] = Nz - - - x4, which would be achieved by a (practically
impossible) perfectly uniform distribution of the points of P.

Usually one is interested in calculating the norm of the discrepancy func-
tion in some normed space of functions on [0,1)% to which the discrep-
ancy function belongs. A well known result concerns L,([0, 1)%)-spaces for
1 < p < o0. There exists a constant ¢, 4 > 0 such that for every positive
integer N and all point sets P in [0,1)¢ with N points, we have

log N (d-1)/2
(1.2 D5 | L4101 2 epa BT

This was proved by Roth [R54] for p = 2 and by Schmidt [S77] for arbitrary
1 < p < oo. The currently best known value for ¢ 4 can be found in [HMI11].
Furthermore, there exists a constant C), 4 > 0 such that for every positive
integer N, there exists a point set P in [0,1)¢ with N points such that

(log N) (d—1)/2

(13) 1D | Ly([0, 1)) < Cpa 2=
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This was proved by Davenport [D56] for p = 2, d = 2, by Roth [R80] for
p = 2 and arbitrary d, and finally by Chen [C80] in the general case. The
currently best known value for Cy 4 can be found in [DPI10] and [FPPSI10].

There are results for the L1 ([0, 1)%)- and the star L ([0, 1)¢)-discrepancy
though there are still gaps between lower and upper bounds (see [H8I],
[S72], [BLVOS|). As general references for studies of the discrepancy function
we refer to the monographs [DP10], [NW10], [M99], [KN74] and surveys
[B11], [Hil3], [M13c]. The problem of point disribution is closely related to
numerical integration; we refer to [KN74, Chapter 2] and [DPI10, Section
2.4] for more on this subject.

Roth’s and Chen’s original proofs of were probabilistic. Explicit
constructions of point sets with good L,-discrepancy in arbitrary dimension
have not been known for a long time. Chen and Skriganov [CS02] (see also
[CS08] and [DP10]) gave explicit constructions satisfying the optimal bound
on the Lo-discrepancy, and Skriganov [S06] later gave explicit constructions
satisfying the optimal bound on the L,-discrepancy. The constructions of
Chen and Skriganov are digital nets over I, with large Hamming weight.
Dick and Pillichshammer [DP14a] gave alternative constructions of order 3
digital nets over Fy. They also constructed digital sequences with optimal
bounds on the Lo-discrepancy. Dick [D14] gave further constructions which
are order 2 digital nets over Fo. Here we generalize Dick’s approach to order 2
digital nets over F; for every prime number b, as stated in the following
result.

THEOREM 1.1. There exists a constant Cqp,, > 0 such that for every
positive integer n and every order 2 digital (v,n,d)-net P2 over Fy, we have

pld=1)/2

bn

Our proof uses an alternative technique to that of Chen and Skriganov
and Dick and Pillichshammer—it relies on Haar bases.

Furthermore, there are results for the discrepancy in other function
spaces, like Hardy spaces, logarithmic and exponential Orlicz spaces, weight-
ed Ly-spaces and BMO (see [B11] for results and further literature).

In this paper, we are interested in Besov (S, , B([0, 1)4)), Triebel-Lizorkin
(Sp  F([0,1)4)) and Sobolev (S;H([0,1)%)) spaces with dominating mixed
smoothness. Triebel [T10] proved that for all 1 < p,q¢ < co with ¢ < oo
if p = 0o and all r € R satisfying 1/p — 1 < r < 1/p, then there exists a
constant ¢, 44 > 0 such that for every integer N > 2 and all point sets P
in [0,1)% with N points, we have

(1.4) 1Dp | S B0, DD > pgra N7 (log N)@-D/a,
With the additional condition that ¢ > 1, if p = oo then there exists a

1Dps [ Lo([0, 1)) < Capo
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constant Cj, 44 > 0 such that for every positive integer N there exists a
point set P in [0,1)? with N points such that

1D | Sy B([0, 1)) < Cpgra N~ (log N D/at1=n),

Hinrichs [Hil0] proved for d = 2 that forall 1 < p,g < ocoand all0 <r < 1/p
there exists a constant Cp 4, > 0 such that for every integer N > 2 there
exists a point set P in [0,1)? with N points such that

1Dp | 57,4 B([0. 1)*)]| < Cpgr N™~" (log N)4.

Markhasin [M13b] proved that for all 1 < p,g < occand all 0 < r < 1/p
there exists a constant C), ;4 > 0 such that for every integer N > 2 there
exists a point set P in [0,1)? with N points such that

(1.5) 1Dp | S5 B([0, 1)) < Cpgra N"! (log N)@=D/4,

The proof in [M13b] relied on explicit constructions. It was shown that the
already mentioned constructions by Chen and Skriganov additionally have
optimal bounds on the Sy  B-discrepancy. The notion of S; A B-discrepancy
will be defined in the next sectlon For d = 2 also (generahzed) Hammersley
point sets can be used (see [Hil0], [M13a]). Our goal is to prove that there
are also other point sets with optimal bounds on the S} ,B-discrepancy.
Furthermore we prove results for the spaces S7  F([0,1)%) and S5 H([0,1)%).

THEOREM 1.2. Let 1 < p < o0, 1 <qg<o00oand 0 <r < 1/p. There
exists a constant Cpqrape > 0 such that for every integer n and every
order 1 digital (v,n,d)-net P over Fy we have

D5y 1574 B0 < Cpgra b0~ nld 00

THEOREM 1.3. Let 1 < p,g< o0 (g >1ifp=o00) and 0 <r < 1/p.
There exists a constant Cp gy apv > 0 such that for every positive integer n
and every order 2 digital (v,n,d)-net P2 over Fy we have

1Dps | S5, B0, )| < Cp g 70D nld=1/a,

Applying embeddings between Besov and Triebel-Lizorkin spaces that
we will state later, we obtain the following results.

COROLLARY 1.4. Let 1 < p,q < o0 and 0 < r < 1/max(p,q). There
exists a constant Cp g r.ap0 > 0 such that for every positive integer n and
every order 1 digital (v,n,d)-net P2 over Fy we have

1Dy | S5 F (0, 1)) < Copgimaapn b0 nlE0/1,

COROLLARY 1.5. Let 1 < p,q < o0 and 0 < r < 1/max(p,q). There
exists a constant Cp g rap0 > 0 such that for every positive integer n and
every order 2 digital (v,n,d)-net P2 over Fy we have

HDPZ | S;,QF([()? 1)d)H < Cp,q,r,d,b,v bn(ril) n(dil)/q.
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The following results are just special cases of the last corollaries.

COROLLARY 1.6. Let 1 <p < oo and 0 <r < 1/max(p,2). There ezists
a constant Cp,qpo > 0 such that for every positive integer n and every
order 1 digital (v,n,d)-net P2 over Fy, we have

1Dy | SEH ([0, 1)) < Cpro 070 n@D/2,

COROLLARY 1.7. Let 1 <p < oo and 0 <r < 1/max(p,2). There exists
a constant Cp ., qpo > 0 such that for every positive integer n and every
order 2 digital (v,n,d)-net P over Fy we have

1Dps | SyH ([0, 1)) < Cpra o "D (=072,

COROLLARY 1.8. Let 1 < p < oo. There exists a constant Cp, qp, > 0
such that for every positive integer n and every order 2 digital (v,n,d)-net
Pb over Fy we have

(d-1)/2

bn

The difference in the results of Theorem and Theorem seems to
be small. But the point is that an order 2 digital net is also an order 1
digital net, so assuming a stronger condition we enlarge the range of the
parameter r, namely adding the case » = 0, which is essential to obtain
results for L,-spaces.

We state the results with implicit constants depending on v, though we
get this dependence explicitly. The readers interested in the v-dependence
can find it in the proofs of the theorems, namely in f.

We point out that obviously Theorem is a consequence of Corol-
lary Nevertheless, we will prove them independently, so that readers
without a background in function spaces with dominating mixed smoothness
(which is required for the proof of Corollary will be able to understand
the proof of the Ls-bound.

Theorems and are consistent with older results. The proofs in
[M13b] only relied on order 1 digital (v, n,d)-net properties of the Chen—
Skriganov point sets and not the large Hamming weight, so the weeker result
was obtained, while (generalized) Hammersley point sets used by Hinrichs
and Markhasin are order 2 digital (0, n, 2)-nets and yielded a stronger result.

The bounds on the discrepancy in Besov spaces are closely connected
with the integration error. We refer to [T10], [M13c, Chapter 5] and [U14]
for more information on this connection and for error bounds in Besov,
Triebel-Lizorkin and Sobolev spaces with dominating mixed smoothness.

1Dpy | Lp(10, 1)%)]| < Cpapo

2. Function spaces with dominating mixed smoothness. We define
the spaces S ,B([0, D9, S, F ([0, 1)%) and SpH ([0, 1)%) according to [T10].
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Let S(RY) denote the Schwartz space and S’'(RY) the space of tempered
distributions on R?. For ¢ € S(R?%) we denote by F¢ the Fourier transform
of ¢ and extend it to S'(R?) in the usual way: for f € S’(R?) the Fourier
transform is given as Ff(¢) = f(Fp), ¢ € S(R?). Analogously we proceed
with the inverse Fourier transform F—!

Let o € S(R) satisfy ¢o(z) =1 for |x| < 1 and ¢o(x) = 0 for |z| > 3/2.
Let pr(x) = wo(27%z) — po(27%*'z) where » € R, k € N and oz (z) =
Ok, (21) -+ - r, (v4) where k = (ki,...,kq) € N& and z = (21,...,74) € R
The functions ¢y are a dyadic resolution of unity since

Z er(z) =
kend
for all # € R%. The functions F~!(pzFf) are entire analytic functions for
every f € §'(RY).
Let 0 < p,g < 0o and r € R. The Besov space with dominating mized
smoothness S, B (R9) consists of all f € S'(RY) with finite quasi-norm

1
(21)  [1£185,B@E)| = (32 24509 7 g7 ) | L, ®D)7)
kend
with the usual modification if ¢ = co
Let 0 < p < o00,0< q<ooandr e R. The Triebel-Lizorkin space with
dominating mized smoothness Sy F(R?) consists of all f € S'(R?) with
finite quasi-norm

(2.2)
17185, P @) = [[( 3 2trkonz (g mnof) | L@

keNg

with the usual modification if ¢ = oo

Let D([0,1)9) consist of all complex-valued infinitely differentiable func-
tions on R? with compact support in the interior of [0,1)%, and let ’(]0, 1)%)
be its dual space of all distributions in [0,1)¢. The Besov space with dom-
inating mized smoothness S}, ,B([0,1)%) consists of all f € D'([0,1)?) with
finite quasi-norm

(2.3)
1£1Sp,B(0, 1)) = inf{llg| S} ,BRY)|| : g € S ,BRY), gljg.1ya = f}-

The Triebel-Lizorkin space with dommatmg mized smoothness Sy, ,F ([0, 1)%)
consists of all f € D’'(]0,1)?) with finite quasi-norm
(2.4)

1185, 70, D)) = inf{lg| Sh,FRY)| - g € S5, FRD, glio e = F
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The spaces Sy ,B(RY), 57 F(RY), 57 B([0,1)%) and Sy, ,F([0,1)?) are quasi-
Banach spaces. We define the Sobolev space with dominating mized smooth-
ness as

(2.5) SyH([0,1)%) = S} ,F([0,1)%).

If r € Ng then (2.5) is denoted by S;W([0,1)?) and is called the classical
Sobolev space with dominating mized smoothness. An equivalent norm for

STW([0,1)%) is
> DY IL([0, 1))

aGNg,OSaiST
Of special interest is the case r = 0 since
SpH([0,1)7) = L,([0,1)7).

The Besov and Triebel-Lizorkin spaces can be embedded in each other
(see [T10] or [M13c, Corollary 1.13]). We point out that the following em-
bedding is a combination of well known results and might look odd at first
glance.

LEMMA 2.1. Let 0 < p,q < oo and r € R. Then

S:nax(p,q),qB([()? 1)d) — S;,qF([Oﬂ 1)d) — S:nin(p,q),qB([O’ 1)d)

The reader interested in function spaces is referred to [H10], [ST87] and
[T10] and the references given there.

A goal of this paper is to analyze the discrepancy function in the spaces
Sy B([0,1)%), Sy F([0,1)%) and SpH([0,1)%). We define S5 B([0,1)4)-di-
screpancy as

inf | Dp | 55, B(10, 1))

where the infimum is taken over all point sets with N points. Analogously
we define 5] F([0,1)%)-discrepancy and S;H ([0, 1)?)-discrepancy.

3. Haar and Walsh bases. We write N_; = No U {—1}. Let b > 2
be an integer. We write D; = {0,1,...,6’ — 1} and B; = {1,...,b — 1}
for j € Ng and D_; = {0} and B_; = {1}. For j = (j1,...,Jjq) € N¢ let
Dj =Dj, x---xDj, and B; =B, x---xB;,. For a real number a we write
ay = max(a,0) and for j € N?, we write |j|+ = j1+ + - + jar-

For j € Ng and m € D; we call

Lim = [b7/m, b7 (m + 1))

the mth b-adic interval in [0,1) at level j. We set I_19 = [0,1) and call

it the Oth b-adic interval in [0,1) at level —1. For any k = 0,1,...,b—1
let Ijlfm = Ijt1pmsk- We set 1:11,0 =110=10,1). For j € N¢, and m =
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(m1,...,mq) € D;j we call
Lim = Ljymy X -+ X Ljymy,

the mth b-adic interval in [0,1) at level j. We call the number |j|, the
order of I ,. The volume of I, is bl

Let j € No, m € Dj and [ € B;. Let hj,,; be the function on [0,1)
with support in I;,, and the constant value e(2m/b)k o I; k for any k =
0,1,...,b—1. We set h_101 = X1_,, on [0,1), the characterlstlc function
of the interval I 1.

Let j € Nfl, m € D; and | = (I1,...,lq) € B;. The function hj,,; given
as the tensor product

hjvm,l(x) = Ny (z1) - Rjama,la (zq)
for x = (z1,...,14) € [0,1)% is called a b-adic Haar function on [0,1)%. The

set of functlons {h] mi: j €N meDy, I €B;}is called the b-adic Haar

basis on [0,1)?. We can use the Haar basis for calculating the norms of the
discrepancy function.
The following result is a tool for calculating the Lo-discrepancy.

THEOREM 3.1 (]M13c, Theorem 2.1]). The system
{b‘j‘+/2hj7m7l 1] € N‘il, m € ]D)j, l e BJ}

is an orthonormal basis of L2([0,1)?), an unconditional basis of L,(]0,1)%)
for 1 < p < oo and a conditional basis of L1([0,1)%). For any function
f € L2(]0,1)%) we have

1F 1 L2(0,D)DP = D7 o >~ [(fhyma)
]eN‘i mED]’,ZGBj
The next result is a tool for calculating the Sy , B-discrepancy.

THEOREM 3.2 ([MI13c, Theorem 2.11]). Let 0 < p,q < oo (¢ > 1 if
p=o00)and 1/p—1 < r < min(1/p,1). Let f € D'([0,1)%). Then f is in
S, B([0, )4 if and only if it can be represented as
(3.1) F= 0N i m

jEN‘il mG]D)j,ZEIB%j

for some sequence (jm,) satisfying

32) (3 ey |Mj,m,l|p>q/P)1/q<oo.

jeNtil mED]’,leBJ’

The convergence of is unconditional in D'([0,1)?) and also in any
SP¢B([0,1)%) with p < r. The representation of f is unique with the
b-adic Haar coefficients j1jm 1 = (f, hjm,). The expression s an equiv-
alent quasi-norm in S,  B([0, 9.
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A weight from [D07] will be useful. For @ € N with b-adic expansion
o= ﬁal_lbal_l + -+ [3%_16“”_1 with 0 < a1 < as < --- < a, and digits
Bar—1y -+ Pa,—1 €{1,...,b— 1}, a weight of order o € N is given by

Qa(a) =ay+ay-1+ -+ Amax(v—o+1,1)-
Furthermore, o,(0) = 0. It is a generalization of g1, first introduced in [N87].

For a = (ay,...,aq) € N&, the weight of order o is given by

Qo(a) = Qo(al) +ot Qa(ad)'
Let o € N. The ath b-adic Walsh function wal,, : [0,1) — C is given by

waly (z) = o(2m1/0)(Bay —12a; +++++Bay —1%a,)

for 2 € [0,1) with b-adic expansion & = 216~ + 29b=2 + - - - . Furthermore,
Walg = X[O,l)-

Let o = (a1,...,a4) € Nd. Then wal, on [0,1)? is given as the tensor
product

waly () = waly, (z1) - - - waly, (%)

for v = (x',...,2%) € [0,1)¢ where by 2 we mean the coordinates of x. The

set of functions {wal, : o € N@} is called the b-adic Walsh basis on [0,1).
The function wal, is constant on b-adic intervals I, (
every m € I

o1(a1),...,(e1(aq)),m for

o1(a1),..,(e1(q))"

LemMA 3.3 ([DP10, Theorem A.11]). The system {wal, : o € N&} is an
orthonormal basis of L2([0,1)%).

4. Digital (v, n,d)-nets. Digital nets go back to Niederreiter [N87]. We
also refer to [NP0O1] and [DP10]. Here we use the more general order o digital
nets first introduced in [DO7] and [DO8], see also [DP14al, [DP14b] and [D14].
In the case where ¢ = 1 Niederreiter’s original definition is obtained.

We quote from [DO8, Definitions 4.1, 4.3] to describe the digital con-
struction method and properties of the resulting digital nets.

For a prime number b let [, denote the finite field of order b identified
with the set {0,1,...,b— 1} equipped with arithmetic operations modulo b.
For s,n € N with s > n let C1,...,Cyq be s X n matrices with entries
from Fy. For v € {0,1,...,0" — 1} with the b-adic expansion v = vy +
vib+4- -+ v,_1b" ! with digits vo, v1, ..., vp-1 € {0,1,...,b—1}, the b-adic
digit vector v is given as v = (v, vy, ..., I/n_l)T € Fy. Then we compute
Civ=(xip1,..., xi,y,s)T € Fj for 1 <14 < d. Finally we define

xivy = xivyzlb_l + e + xiﬂ/ysb_s E [07 ]‘)

and ¥, = (¥1,,...,24,). We call the point set P2 = {z¢,21,...,2pn_1}
a digital net over IFy,.
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Now let 0 € N and suppose s > on. Let 0 < v < on be an integer. For
every 1 < i < d we write C; = (¢, .- ,ci,s)T where ¢;1,...,¢;s € F} are
the row vectors of C;. If for all 1 < A1 < --- < A\iy, <5, 1 <0 < d, with

)\1,1 +- Al,min(nl,a) 4+ )‘d,l + Ad,min(nd,a') <on-—v
the vectors ¢1 5 153 Cl Ay -5 CdAgrs - -+ CdAg ny ATe linearly indepen-
dent over Fy, then P? is called an order o digital (v,n,d)-net over Fy.

LeEMMA 4.1 ([DO7, Theorem 3.3]).

(i) Let v < on. Then every order o digital (v,n,d)-net over Fy is an
order o digital (v+ 1,n,d)-net over Fy. In particular every point set
PP constructed with the digital method is a digital (on,n, d)-net over
Fy of order at least o.

(ii) Let 1 < o1 < o9. Then every order oy digital (v,n,d)-net over Fy, is
an order oy digital ([voy/o2], n,d)-net over Fy,.

Considering this we obtain the following geometric property going back
to Niederreiter [N87].

LEMMA 4.2. Let P’ be an order o digital (v,n,d)-net over Fy. Then
every b-adic interval of order n —v contains exactly b points of PL.

Let t € Ny have b-adic expansion t = 79 + 71b + m™b> + - - -. We denote
0=1(0,...,0) € F?. We set t = (10, 71,...,7s—1) ' € F§ and define

D) ={t=(t1,....ta) eEN¢:C/t1 +---+CJ I, =0 € FP}.

LeEmMMA 4.3 ([DO7, Remark 1]). PP is an order o digital (v,n,d)-net over
Fy if and only if 05(t) > on — v for all t € D(€) \ {0}.

LEMMA 4.4 ([DP05, Lemma 2]). Let Pb be an order o digital (v, n, d)-net
over Fy with generating matrices C1,...,Cq. Then

3™ wal(2) - {b" if t€D(e),

0 otherwise.

We consider the Walsh series expansion of the function x| ),

(4.1) X0 ®) =Y _ Rjo,0)(n) waly(y)
n=0

where for n € Ny the nth Walsh coeflicient is given by
1 T

X0.0) (1) = | Xjo,0) (W) wal, (y) dy = | wal, (y) dy.
0 0
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LEMMA 4.5. Let P2 be an order o digital (v,n,d)-net over Fy with gen-
erating matrices C1,...,Cy. Then

Dpy(z) = Y X))
€D (€)\{0}
Proof. For t = (t1,...,t3) € Nd and x = (21,...,24) € [0,1)¢, we have
X0.2) (1) = X[0.21) (t1) -+ - X[0,20) (La)-
Applying Lemma [1.4] we get

Z Z X()x Walt( ) )A([O,x)((ov"'ao))

2€PY t1,..,tq=0

s N 1 N
= > X0.0)(t) 1 dowali(z) = Y. Row(t). =
t1,000tg=0 2€P te®(€)\{0}

(t1,..,ta)#(0,...,0)

Order o digital (v,n,d)-nets can be constructed from order 1 digital
(w, n,od)-nets using a method called digit interlacing (see [DP14b] and [D14]
for details and examples). Constructions of order 1 digital nets are well
known. A good quality parameter v that does not depend on n can be
obtained.

5. Proofs of the results. For two sequences a,, and b, we will write
an = by, if there exists a constant ¢ > 0 such that a, < cb, for all n. For
t > 0 with b-adic expansion t = 79 + b+ -+ + Tgl(t),lbgl(t)_l, we set
t= t, + Tgl(t)_lbgl(t)_l.

We start with two easy facts. For the proof of the first one see e.g. [DP10]
proof of Lemma 16.26].

LEMMA 5.1. Letr € Ny and s € N. Then

#{(ala"'aafs) GNS:QI+"'+as:r} < (r+1)s_1

LEMMA 5.2. Let K € N A>1andq,s>0. Then

ZAT —r)irs < AK K8,

where the constant is mdependent of K.

Proof. We have
K-1

ZAT r)irt < AKKS Y ATR(K — )
TKO
= AK Kk ZA*W < AN K’ u
r=1
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LEMMA 5.3 ([M13D, Lemma 5.1]). Let f(z)=x1 - x4 forx=(x1,...,7q)
€[0,1)% Let j €Ny, m € Dj, 1 € B;. Then |[{f,hjmi)| < b2+

LeEMMA 5.4 ([MI3B, Lemma 5.2]). Let z = (21,...,24) € [0,1)? and
g(z) = X[va)(z) for x = (x1,...,24) €0, l)d. Let j € N‘il, m e Dy, | € B;.
Then (g, hjm,) = 0 if z is not in the interior of the b-adic interval I;,,. If
z is in the interior of Ij.m then [{g, hjm.)| < b1+,

LEMMA 5.5 ([MI3b, Lemma 5.9]). Let j € N4, m € Dj, | € B; and
(NS Ng. Then

|(hjmt, walg)| < b1
If 01(cy) # ji + 1 for some 1 < i < d then
(hjm.1, waly) = 0.
LEMMA 5.6 ([M13bl, Lemma 5.10]). Let t,a € Ng. Then
[(X[0, (1), walg)| = b~ max(e1(t),01(a))

Ifa#t and a#t and o/ #t then

(X[0,)(t), waly) = 0.
The following result is a modified version of [DP14al, Lemma 6].

LEMMA 5.7. Let Cy,...,Cq € F*" generate an order 1 digital (v,n,d)-

net over Fy. Let A\1,..., A qg,V1,--.,74 € No. Let wn)‘ﬂli‘;(@) denote the num-

ber of t € D(€) with o1(t;) = i for all 1 < i < d such that either v; < \; or
Ql(t;) =XN. If M,..., A g < s then

w?/q,...,i\d (C) < (b o 1)d b(min()\l,'yl—1)+~~-+min()\d,'yd—1)—n+v)+'
1yeeeyYd =

Proof. Let t = (t1,...,tq) € ©(€) with o1(t;) = v for all 1 < i < d
and either v; < \; or p1(t;) = X;. Let ¢; have b-adic expansion ¢; = 7,9 +
Ti71b + Ti72b2 +---. Let C; = (Ci,lu ... ,Ci75)T, set )\;k = min()\i,’yi — 1) and
Gy = (0,...,0)if 5 > s, 1 <i <d. Then

T T T
(5.1) C1171,0 + -+ CLATLA; -1 tC1y Ty -1
T T T T n
+ Cd.17d,0 + -+ cd,/\:le)\Z—l + Cd g Tdya—1 = (0, - ,0) € Fb'
We set
_ (T T T T X AT+ 4AY)
A_(Cl,l""761,)\T7"'7Cd,17""cd,)\:§)EIFb y

T oAy X1
Y= (T10s- - TIA] =15+ -5 Td0s - - -, TdN5—1) € Fy ,

_ T T mx1
W= —Cl  Tiy—1— """~ C4,Tdyg—1 € Fym.
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Then corresponds to Ay = w and we have

MA@ = #H{(w,w) € BTN X F : Ay = w).

Since C1,...,Cy generate an order 1 digital (v,n,d)-net, the rank of A is
AT+ A AT 4+ -+ A <n —wv. In this case the solution space of the
homogeneous system Ay = (0,...,0) has dimension 0. If A} +--- + A} >
n — v then rank(A) > n — v and the dimension of the solution space of the
homogeneous system is A} 4 --- + Xj —rank(4) < A\ + -+ A\g —n +v.
This means that for a given w the system Ay = w has at most one solution
if A+ -4+ Ay < n—o and at most b} AT solutions otherwise.
Finally, there are (b — 1)¢ possible choices for w since none of the numbers
Tlyi—1s--+»Tdyy—1 can be 0. =

w

We point out that the condition Aj,...,Ag < s is not necessary. It just
reduces the technicalities but the results would be the same without it. One
would have to define \!* = min(\},s), and in the case where \! > s we
would get an additional factor b ~* compensating the restriction.

LEMMA 5.8. Let P2 be an order 1 digital (v,n,d)-net over Fy and let
jeEN,, meD;, B,

(D) If |jl+ = n—v then [(Dpy, hjma)| = 097" and [(Dpy, hjm)| =

b2l for all but at most b values of m.
(i) IF |7l <n—v then [(Dpg. hymd] < b5+ — v — |j] )41,

Proof. For , let |j|4+ > n — v. Since P? contains exactly b” points,
there are no more than 4" numbers m for which I;,, contains a point of 773,
meaning that at least all but b" intervals contain no points at all. Thus the
second statement follows from Lemmas and The remaining intervals
contain at most b¥ points of P° (Lemma [4.2), so the first statement follows
from Lemmas and 5.4

We now prove (2). Let |j|4+ <n—v and m € D;, | € B;. The function
hjm, can be written (Lemma as

hjmi =Y (hjmi, wals) waly, .
a€eNg
We apply Lemmas and [5.6] to get
(5:2)  KDpphimd)l = [ D0 R0 (B 3 (i wala) waly )|
teD(€)\{0} aeNg

< D Ko (), wala)| [(hym,, wala)|

teD(€)\{0} a€eNg
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<p i3 > R0, wala)]

teD()\{0} aeNd
o1(a;)=7i+1

1<i<d
< p—lil+ Z Z p—max(e1(a1),e1(t1))——max(e1(a1),e1(ta))
teD(€)\{0} a€Ng

a; :t; Vai:ti\/a;:ti
o1(ai)=ji+1,1<i<d

— plil+ § p—max(ji+1,e1(t1))——max(ja+1,01(ta))
teD(€)\{0}
01(t)<gi+1V o1(t))=ji+1
1<i<d
o
— p—lil+ E —max(j1+1,71)——max(ja+1,74) , ,J1+1,....Ja+1
=b b Wy,eva (Q:)
Y1s-¥a=0
o0
— p—lil+ E —max(j1+1,71)——max(ja+1,74) , j1+1,....Ja+1
- b b w"/lv"'?’yd (6)
Y15---,7d=0
Y1+ Fya>n—v
(o]
+p i+ E p~max(itim) = mmax(jatlag) it et (@),
Y1ye-5Yd
Yise-Yd=0

Y14 A <n—v
By Lemma [5.7] we get

T < (0 - DT

since j1 +1,...,jqg+1<n—v<sand j1 + 1+ - +jg+1<|jl+ +d <
n — v + d. We apply this only to the first sum, incorporating this term
into the constant. The second sum vanishes. To see this, we recall that
01(t) > n—wv for all t € ®(¢) \ {0}. This means that w%llf},%”dJrl(Q) =0
whenever v + -+ + v < n — v since g1(t) = v1 + - -+ + 74 and the second
sum vanishes.

For any I C {1,...,d} let I°={1,...,d}\ I. So far we have

o0
(Do, hjm)| = p—lil+ Z p—max(ji+1y1) = —max(ja+1,7a)
717"'77d:0
Y1+ +ya>n—v
. - Z (j»ﬂl"‘l) - Z Vro
— plil+ E p miel Z Z b racIC
Ig{l,,d} OS'YilSjil '7i22ji2+1
el inel®
Y1+-+yg>max(n—v+1, > (jry+1))
ko€l®
The case where I = {1,...,d} is not possible (therefore excluded) because

vi < g; for all 1 <4 < d contradicts v; +---+v4 > n—wvsince j1+---+jq <
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n —v. We perform an index shift to get

= 2 U tD)= X (ra+1)

(Dpy, hjma)| 07V % 7 b e
IC{1,....d}
- Z Vg
X E E b ro€lI® .
0<7i; <jiy Vig 20, i2€1¢
’LlGI E ’YNQZ(H_U_ E Vr1— Z (jK2+1)+1)+
Kko€lI€ k1€l Kko€I€

We apply Lemma to bound the above by
- .K +1 - 'I‘; +1
<b Vv 3T b Ut 2 Ut
IC{1,....d}

X Z Z bfr(r+1)d717#1

OS’YllS]Zl T:(nfvf Z V1 — Z (-7’42+1)+1)+

1€l k1€l Ko €IC
. = 2 Uryt)= X (Jry+1) —n+ot+ 30 Vet 2 (Gegt1)
S b*‘]‘.}. Z b k1€l ! Kko€I€ 2 Z b k1€l ! Kko€I€ 2
1¢{1,...,d} 0<viy <Jiy
i€l
) d—1—#1
X (n—v— Z%l - Z (]K2+1)+1>
k1€l Kko€l€ +
. = 2 (e +1) > Ik
S b—\]\+—n+v Z b K1 €Il ! Z bH1€I !
{10} 0<i, <iiy
el
) d—1
X<n_v_z7m_2(]ng+1)+1>
k1€l Kko€lc€ +

_ i 1 i\ 1
S b—‘j‘+—n+’l} Z b mlzel(j 1+ )bnlzel(] 1+ )

I¢{1,....d}
d—1
X (n—v— Z(jm +1)_ Z (jn2+1)+1>
k1€l Kko€l€ +

<o — oy — )7 .
LEMMA 5.9. Let PP be an order?2 digital (v,n, d)-net over Fy. Let j€N? ||
m € Dy, | € B;.
() If lil+ > n — [v/2] then |(Dpy,hjmp)| = b0/ and
[(Dpvs hjmi)| = b=2l+ for all but b values of m.
i) If 1jls < n—[0/2] then [(Dpy, hjma)] < b~27(20 — 0 —2[j] )47,
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Proof. According to Lemma PP is an order 1 digital ([v/2], n, d)-net.
Hence (i) follows from Lemma [5.8|

We now prove (ii). Let |j|+ < n — [v/2] and m € Dy, | € B;. We start
at (5.2]), so we have

00

< plil+ E pwax(ittm) = mmax(jatla) it datl (@)

- Y15--5Yd
717"'77d:0

Zle ~i+min(vy;,j;+1)>2n—v
oo
—l7l+ —max(j1+1,71)—-—max(ja+1,7a)  J1+1l,....ja+1

b > (@)

717“'77d:0

4 vitmin(y,,i+1)<2n—v

We argue similarly to the proof of Lemma [5.8] incorporating the term
Wl TloJatl (@) in the first sum into the constant and seeing that the second
sum vanishes. To see the latter we recall that g2(t) > 2n—wv for all t € D(€).
This means that w! 15747 (€) = 0 whenever 1 + min(yy, 71 + 1) 4 -+ +
Ya + min(vg, jg + 1) < 2n — v because p2(t) < vy + min(vy1,j1 + 1) + -+ +
Ya + min(vyg, jg + 1) since p1(t;) = 7; and o1(t) = j; + 1 if v > j; + 1 for
all 1 < i < d. With the same arguments as in the proof of Lemma we
obtain

o0
(Dpb, hjmi)| < p—lil+ Z p—max(j1+1y1) = —max(ja+17a)
717"'7’7(1:0
S yitmin(ys,5i+1)>2n—v
. - Z (jn1+1)
— plil+ Z b m1€l

1${1,..d)

>
X E § b Ko €IC
0<7iy <Jiy Vig 2Jip+1
1€l io€l”

2 3 it X (Tmptisgtl)Zzmax(2n—v+1.2 30 (jry+1))
k1€l Ko€I® Ko€IC

= 2 Us+D)= X (rptD)

= b*|j|+ § b r€l ko€l

I¢{1,....d}
- Z Veo
X E E b recl®
0<7i; <Jiy Yig >0, i2€1¢
i€l 2 g 2(2n—v=2 3 vk =2 3 (Jn2+1)+1)

Ko€IC k1€l Ko €IC
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. = 2 Ur )= X (rot1)
< b_|J|+ Z p riel ! ko €IC 2
I¢{1,...,d}
o0

X Z Z b_r(r—i— 1)d—1—#[

0<7iy <jiy r=(2n—v=2 3 Vo1 =2 X (Jrgt+1)+1)4
i1€l k1€l ko €IC

where we applied Lemma5.1]and several index shifts. The case I ={1,...,d}
contradicts the condition gy(t) > 2n — v since ga(t) < 2j1 + -+ + 2jq <
2n — 2v < 2n — v. We continue the calculation:

[{(Dpy s im0}

it natl —2n4v42 3 ey +2 nytl
<plile 3 b =2 Ut 3 Ut S M2 5 12 2 Gy )
IC{L i) } OS’711SJ11
1€l
d—1—#1
X (2’0—11—227“1 -2 Z (jn2+1)—|—1)
k1€l Kko€l€
- ey +1)+ g +1 9 ;
< b*m+*2n+v Z b nlzejl(] 1) N2z€:IC(j 2+1) Z b REI’Y !
1¢{1,...,d} 0<vi, <jiy
1€l
, d—1
x(2n=0-2Y =2 Y (g + 1) +1)
K1€l Kro€l€
g +1)+ jro+1
S bf‘j‘+72n+'” Z bmlzél(j ! ) ,{226:[(:(] 2 )
I¢{1,....d}
. , d—1
X <2n—v—22(]m+1)—2 Z (],{24_1)4_1)
K1€l Kko€l€

< b7 — v — 25| )4 . .
We are now ready to prove the theorems.

Proof of Theorem . Let P% be an order 2 digital (v, n, d)-net over Fy.
We apply Theorem and aim to prove

(5.3) blil+ Doy b )2 < 7200 pd=ly < p=2n pd=1
Pn 7,1,
jeN‘il mEDj,IEBj

We recall that #D; = blil+ and #B; = b — 1. We split the sum over j into
three parts and apply Lemmas (ii) and to get
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Yoo WY (Dps by

jEN‘il mE]D]-,lEIB%j
i+ <n—[v/2]
< Z plil+ plil p=4nt2v (9 — o — 2], )21
jENZ
7]+ <n—Tv/2]
n—v/2—1
< pdnt2v Z b2fi(2n —v— QK)Q(d_I) (/{ + 1)d—1
k=0

. y—dnt20 20— (2n—v—2n+0v+ 2)2(d—1)(n — U/Q)d—l
< b—2n+v nd—l

for big intervals. We also consider middle-sized and small intervals. In the
case of small intervals (|j|+ > n) there are at most b™ intervals containing
a point of P2, while in the case where n > [j|. > n there are even fewer,
namely at most b7+ intervals. We apply Lemma (1) to calculate

> o " (D, hjam )2

jeNfil mE]D)j,ZGIB%j
n>|jly 2n—[v/2]

n—1
~< Z plil+ plil+ p=2lil+—2n+v ~ p—2ntv Z (k4 1)%1
jeNd k=n—[v/2]
n>|jl4 >n—[v/2]
_< b—2’n+l) nd—l v
for medium-sized intervals and
j 2
ST ST (D )|
jeN‘il mGD]',ZG]Bj
lil+>n
< Z plil+ pn p=2lil+—2ntv Z bl (plil+ — pry p=4lil+
jeNd, jeNd,
l7]+=n ljl+=>n

< p—ntv Z pr (FL + 1)d71 + Z b72n (/i + 1)d71 < b72n+v ndfl

K=n K=nN
for small intervals. m

Proof of Theorem . Let Dpy be an order 1 digital (v, n, d)-net over [Fy,.
We apply Theorem and are going to prove
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(5.4) > OIS (D )

jeNcil mED]’,ZGBj

p> q/p

< bn(r—l)q nd—l bue < bn(r—l)q nd—l_

We recall that #D; = blil+ #B; = b— 1. We split the sum over j into three
parts and apply Minkowski’s inequality and Lemmas [5.§](ii) and to get

Z blj\+(r—1/p+l)q< Z |<Dp3,hj,m,z>|p>wp

jENd_l mEDJ',ZGBj
jl+<n—v ‘ . ‘
< Z plal+(r=1/pH1)a plil+a/p p(=lil+—ntv)a(y _ o — |5] )41

jeN,
i+ <n—v
n—v—1
< b(fnJrv)q Z b/ﬂ"q(n —y— K)(clfl)q(lIi + 1)d71

k=0

< b(fnJrv)qb(nfv)rq (Tl — v+ 1)d71 < bn(rfl)qndfl bv(lfr)q

for big intervals. Again we differentiate between small intervals and middle-
sized intervals. We apply Lemma to compute

Z bU\+(T*1/p+1)q( Z (Do, hjm) |p> a/p

jeN?, meD;, 1€B;
n>|jl4 >n—v ' ' '
< E : plil+ (r=1/p+1)q plil+a/p p(=lil+ —ntv)q
jeNd,
n>|jl+2n—v
n—1

< b(fn+v)q Z bm‘q(ﬁ; + 1)d71 < b(fn+v)q prd pd—1 < bn(rfl)q nd—1pva

R=Nn—v

for medium-sized intervals and, considering the range of r,

3 b|j|+<r71/p+1>q< 3 ‘(DPthj,m,al)q/p

jENlil mEDj,ZG]B]-
ljl+=>n ' 4
=< Z plil+(r=1/p+1)q yna/p p(=ljl+ —n+tv)q
JENY,
lil+2n
+ Z plal+(r=1/p+0a plil+ _ pnya/p p=2lil+a
JENY,

l7]+>n



Ly- and Sy, B-discrepancy of (order 2) digital nets 157

< pna/p p(=ntv)e Z per=1/Pa (1 4 1)1 4 Z per=Da (5 4 1)01

< bnq/p b(—n+v)q bn(r—l/p)qnd—l + bn(r—l)q nd—l < bn(r—l)q nd—l pva
for small intervals. m

Proof of Theorem . Let Dpy be an order 2 digital (v, n, d)-net over [Fy,.
The proof is similar to that of Theorem 1.2l We apply Lemma [5.9] instead

of 5.8 to get
. /
(5.5) Z bIJ|+(r—1/p+1)q< Z Kng, hj,m,z>lp>q P

jeNd meD;, leB;
|71+ <n—[v/2]
< Z bl r=1/p)a plil+a/p p(=2ntvia(on _ o — 9| 5| ) (@1
JENL,
L+ <n—Tv/2]
n—v/2-1
< b( 2n+v)q Z bn (r4+1)q —v— 2/@)(d_1)q(:‘€ + 1)d—1

< b(—2n+v)q b(n v/2)(r+1)q (n o ’U/2 + 1)d—1
< bn(rfl)q ndfl bv/2(17r)q < bn(rfl)q ndfl
and analogous results for the other subsums. =

Proof of Corollaries and [1.5. The results for the Triebel-Lizorkin
spaces follow from those for the Besov spaces. We apply Lemma there
is a constant ¢ > 0 such that

||D73fll FH<C||D’Pbl maqu)qBHa
and Corollary follows from Theorem [I.2] while Corollary from The-
orem .

Proof of Corollaries @ and [1.7. We recall that SJH = S} ,F. There-
fore Corollary [1.6] follows from Corollary 1.4 and Corollary 1.7 from Corol-
lary both in the case ¢ = 2. =

Proof of Corollary . We recall that L, = SgH . Therefore the result
follows from Corollary in the case r =0. m
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