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Lp- and Srp,qB-discrepancy of (order 2) digital nets
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Lev Markhasin (Stuttgart)

1. Introduction and results. Let N be a positive integer and let P
be a point set in the unit cube [0, 1)d with N points. Then the discrepancy
function DP is defined as

DP(x) =
1

N

∑
z∈P

χ[0,x)(z)− x1 · · ·xd(1.1)

for any x = (x1, . . . , xd) ∈ [0, 1)d. By χ[0,x) we mean the characteristic
function of the interval [0, x) = [0, x1)×· · ·× [0, xd), so the term

∑
z χ[0,x)(z)

is equal to the number of points of P in [0, x). This means that DP measures
the deviation of the number of points of P in [0, x) from the fair number
of points N |[0, x)| = Nx1 · · ·xd, which would be achieved by a (practically
impossible) perfectly uniform distribution of the points of P.

Usually one is interested in calculating the norm of the discrepancy func-
tion in some normed space of functions on [0, 1)d to which the discrep-
ancy function belongs. A well known result concerns Lp([0, 1)d)-spaces for
1 < p < ∞. There exists a constant cp,d > 0 such that for every positive

integer N and all point sets P in [0, 1)d with N points, we have

‖DP |Lp([0, 1)d)‖ ≥ cp,d
(logN)(d−1)/2

N
.(1.2)

This was proved by Roth [R54] for p = 2 and by Schmidt [S77] for arbitrary
1 < p <∞. The currently best known value for c2,d can be found in [HM11].
Furthermore, there exists a constant Cp,d > 0 such that for every positive
integer N , there exists a point set P in [0, 1)d with N points such that

‖DP |Lp([0, 1)d)‖ ≤ Cp,d
(logN)(d−1)/2

N
.(1.3)
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This was proved by Davenport [D56] for p = 2, d = 2, by Roth [R80] for
p = 2 and arbitrary d, and finally by Chen [C80] in the general case. The
currently best known value for C2,d can be found in [DP10] and [FPPS10].

There are results for the L1([0, 1)d)- and the star L∞([0, 1)d)-discrepancy
though there are still gaps between lower and upper bounds (see [H81],
[S72], [BLV08]). As general references for studies of the discrepancy function
we refer to the monographs [DP10], [NW10], [M99], [KN74] and surveys
[B11], [Hi13], [M13c]. The problem of point disribution is closely related to
numerical integration; we refer to [KN74, Chapter 2] and [DP10, Section
2.4] for more on this subject.

Roth’s and Chen’s original proofs of (1.3) were probabilistic. Explicit
constructions of point sets with good Lp-discrepancy in arbitrary dimension
have not been known for a long time. Chen and Skriganov [CS02] (see also
[CS08] and [DP10]) gave explicit constructions satisfying the optimal bound
on the L2-discrepancy, and Skriganov [S06] later gave explicit constructions
satisfying the optimal bound on the Lp-discrepancy. The constructions of
Chen and Skriganov are digital nets over Fb with large Hamming weight.
Dick and Pillichshammer [DP14a] gave alternative constructions of order 3
digital nets over F2. They also constructed digital sequences with optimal
bounds on the L2-discrepancy. Dick [D14] gave further constructions which
are order 2 digital nets over F2. Here we generalize Dick’s approach to order 2
digital nets over Fb for every prime number b, as stated in the following
result.

Theorem 1.1. There exists a constant Cd,b,v > 0 such that for every
positive integer n and every order 2 digital (v, n, d)-net Pbn over Fb we have

‖DPbn |L2([0, 1)d)‖ ≤ Cd,b,v
n(d−1)/2

bn
.

Our proof uses an alternative technique to that of Chen and Skriganov
and Dick and Pillichshammer—it relies on Haar bases.

Furthermore, there are results for the discrepancy in other function
spaces, like Hardy spaces, logarithmic and exponential Orlicz spaces, weight-
ed Lp-spaces and BMO (see [B11] for results and further literature).

In this paper, we are interested in Besov (Srp,qB([0, 1)d)), Triebel–Lizorkin

(Srp,qF ([0, 1)d)) and Sobolev (SrpH([0, 1)d)) spaces with dominating mixed
smoothness. Triebel [T10] proved that for all 1 ≤ p, q ≤ ∞ with q < ∞
if p = ∞ and all r ∈ R satisfying 1/p − 1 < r < 1/p, then there exists a
constant cp,q,r,d > 0 such that for every integer N ≥ 2 and all point sets P
in [0, 1)d with N points, we have

‖DP |Srp,qB([0, 1)d)‖ ≥ cp,q,r,dN r−1 (logN)(d−1)/q.(1.4)

With the additional condition that q > 1, if p = ∞ then there exists a
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constant Cp,q,r,d > 0 such that for every positive integer N there exists a
point set P in [0, 1)d with N points such that

‖DP |Srp,qB([0, 1)d)‖ ≤ Cp,q,r,dN r−1(logN)(d−1)(1/q+1−r).

Hinrichs [Hi10] proved for d = 2 that for all 1 ≤ p, q ≤ ∞ and all 0 ≤ r < 1/p
there exists a constant Cp,q,r > 0 such that for every integer N ≥ 2 there
exists a point set P in [0, 1)2 with N points such that

‖DP |Srp,qB([0, 1)2)‖ ≤ Cp,q,rN r−1 (logN)1/q.

Markhasin [M13b] proved that for all 1 ≤ p, q ≤ ∞ and all 0 < r < 1/p
there exists a constant Cp,q,r,d > 0 such that for every integer N ≥ 2 there
exists a point set P in [0, 1)d with N points such that

‖DP |Srp,qB([0, 1)d)‖ ≤ Cp,q,r,dN r−1 (logN)(d−1)/q.(1.5)

The proof in [M13b] relied on explicit constructions. It was shown that the
already mentioned constructions by Chen and Skriganov additionally have
optimal bounds on the Srp,qB-discrepancy. The notion of Srp,qB-discrepancy
will be defined in the next section. For d = 2 also (generalized) Hammersley
point sets can be used (see [Hi10], [M13a]). Our goal is to prove that there
are also other point sets with optimal bounds on the Srp,qB-discrepancy.

Furthermore we prove results for the spaces Srp,qF ([0, 1)d) and SrpH([0, 1)d).

Theorem 1.2. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and 0 < r < 1/p. There
exists a constant Cp,q,r,d,b,v > 0 such that for every integer n and every
order 1 digital (v, n, d)-net Pbn over Fb we have

‖DPbn |S
r
p,qB([0, 1)d)‖ ≤ Cp,q,r,d,b,v bn(r−1) n(d−1)/q.

Theorem 1.3. Let 1 ≤ p, q ≤ ∞ (q > 1 if p = ∞) and 0 ≤ r < 1/p.
There exists a constant Cp,q,r,d,b,v > 0 such that for every positive integer n
and every order 2 digital (v, n, d)-net Pbn over Fb we have

‖DPbn |S
r
p,qB([0, 1)d)‖ ≤ Cp,q,r,d,b,v bn(r−1) n(d−1)/q.

Applying embeddings between Besov and Triebel–Lizorkin spaces that
we will state later, we obtain the following results.

Corollary 1.4. Let 1 ≤ p, q < ∞ and 0 < r < 1/max(p, q). There
exists a constant Cp,q,r,d,b,v > 0 such that for every positive integer n and
every order 1 digital (v, n, d)-net Pbn over Fb we have

‖DPbn |S
r
p,qF ([0, 1)d)‖ ≤ Cp,q,r,d,b,v bn(r−1) n(d−1)/q.

Corollary 1.5. Let 1 ≤ p, q < ∞ and 0 ≤ r < 1/max(p, q). There
exists a constant Cp,q,r,d,b,v > 0 such that for every positive integer n and
every order 2 digital (v, n, d)-net Pbn over Fb we have

‖DPbn |S
r
p,qF ([0, 1)d)‖ ≤ Cp,q,r,d,b,v bn(r−1) n(d−1)/q.
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The following results are just special cases of the last corollaries.

Corollary 1.6. Let 1 ≤ p <∞ and 0 < r < 1/max(p, 2). There exists
a constant Cp,r,d,b,v > 0 such that for every positive integer n and every
order 1 digital (v, n, d)-net Pbn over Fb we have

‖DPbn |S
r
pH([0, 1)d)‖ ≤ Cp,r,d,b,v bn(r−1) n(d−1)/2.

Corollary 1.7. Let 1 ≤ p <∞ and 0 ≤ r < 1/max(p, 2). There exists
a constant Cp,r,d,b,v > 0 such that for every positive integer n and every
order 2 digital (v, n, d)-net Pbn over Fb we have

‖DPbn |S
r
pH([0, 1)d)‖ ≤ Cp,r,d,b,v bn(r−1) n(d−1)/2.

Corollary 1.8. Let 1 ≤ p < ∞. There exists a constant Cp,d,b,v > 0
such that for every positive integer n and every order 2 digital (v, n, d)-net
Pbn over Fb we have

‖DPbn |Lp([0, 1)d)‖ ≤ Cp,d,b,v
n(d−1)/2

bn
.

The difference in the results of Theorem 1.2 and Theorem 1.3 seems to
be small. But the point is that an order 2 digital net is also an order 1
digital net, so assuming a stronger condition we enlarge the range of the
parameter r, namely adding the case r = 0, which is essential to obtain
results for Lp-spaces.

We state the results with implicit constants depending on v, though we
get this dependence explicitly. The readers interested in the v-dependence
can find it in the proofs of the theorems, namely in (5.3)–(5.5).

We point out that obviously Theorem 1.1 is a consequence of Corol-
lary 1.8. Nevertheless, we will prove them independently, so that readers
without a background in function spaces with dominating mixed smoothness
(which is required for the proof of Corollary 1.8) will be able to understand
the proof of the L2-bound.

Theorems 1.2 and 1.3 are consistent with older results. The proofs in
[M13b] only relied on order 1 digital (v, n, d)-net properties of the Chen–
Skriganov point sets and not the large Hamming weight, so the weeker result
was obtained, while (generalized) Hammersley point sets used by Hinrichs
and Markhasin are order 2 digital (0, n, 2)-nets and yielded a stronger result.

The bounds on the discrepancy in Besov spaces are closely connected
with the integration error. We refer to [T10], [M13c, Chapter 5] and [U14]
for more information on this connection and for error bounds in Besov,
Triebel–Lizorkin and Sobolev spaces with dominating mixed smoothness.

2. Function spaceswith dominatingmixed smoothness. We define
the spaces Srp,qB([0, 1)d), Srp,qF ([0, 1)d) and SrpH([0, 1)d) according to [T10].
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Let S(Rd) denote the Schwartz space and S ′(Rd) the space of tempered
distributions on Rd. For ϕ ∈ S(Rd) we denote by Fϕ the Fourier transform
of ϕ and extend it to S ′(Rd) in the usual way: for f ∈ S ′(Rd) the Fourier
transform is given as Ff(ϕ) = f(Fϕ), ϕ ∈ S(Rd). Analogously we proceed
with the inverse Fourier transform F−1.

Let ϕ0 ∈ S(R) satisfy ϕ0(x) = 1 for |x| ≤ 1 and ϕ0(x) = 0 for |x| > 3/2.
Let ϕk(x) = ϕ0(2−kx) − ϕ0(2−k+1x) where x ∈ R, k ∈ N and ϕk̄(x) =

ϕk1(x1) · · ·ϕkd(xd) where k̄ = (k1, . . . , kd) ∈ Nd0 and x = (x1, . . . , xd) ∈ Rd.
The functions ϕk̄ are a dyadic resolution of unity since∑

k̄∈Nd0

ϕk(x) = 1

for all x ∈ Rd. The functions F−1(ϕk̄Ff) are entire analytic functions for
every f ∈ S ′(Rd).

Let 0 < p, q ≤ ∞ and r ∈ R. The Besov space with dominating mixed
smoothness Srp,qB(Rd) consists of all f ∈ S ′(Rd) with finite quasi-norm

‖f |Srp,qB(Rd)‖ =
(∑
k̄∈Nd0

2r(k1+···+kd)q‖F−1(ϕk̄Ff) |Lp(Rd)‖q
)1/q

,(2.1)

with the usual modification if q =∞.

Let 0 < p < ∞, 0 < q ≤ ∞ and r ∈ R. The Triebel–Lizorkin space with
dominating mixed smoothness Srp,qF (Rd) consists of all f ∈ S ′(Rd) with
finite quasi-norm

‖f |Srp,qF (Rd)‖ =
∥∥∥(∑

k̄∈Nd0

2r(k1+···+kd)q|F−1(ϕk̄Ff)(·)|q
)1/q ∣∣∣ Lp(Rd)∥∥∥,

(2.2)

with the usual modification if q =∞.

Let D([0, 1)d) consist of all complex-valued infinitely differentiable func-
tions on Rd with compact support in the interior of [0, 1)d, and let D′([0, 1)d)
be its dual space of all distributions in [0, 1)d. The Besov space with dom-
inating mixed smoothness Srp,qB([0, 1)d) consists of all f ∈ D′([0, 1)d) with
finite quasi-norm

‖f |Srp,qB([0, 1)d)‖ = inf{‖g |Srp,qB(Rd)‖ : g ∈ Srp,qB(Rd), g|[0,1)d = f}.
(2.3)

The Triebel–Lizorkin space with dominating mixed smoothness Srp,qF ([0, 1)d)

consists of all f ∈ D′([0, 1)d) with finite quasi-norm

‖f |Srp,qF ([0, 1)d)‖ = inf{‖g |Srp,qF (Rd)‖ : g ∈ Srp,qF (Rd), g|[0,1)d = f}.
(2.4)
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The spaces Srp,qB(Rd), Srp,qF (Rd), Srp,qB([0, 1)d) and Srp,qF ([0, 1)d) are quasi-
Banach spaces. We define the Sobolev space with dominating mixed smooth-
ness as

SrpH([0, 1)d) = Srp,2F ([0, 1)d).(2.5)

If r ∈ N0 then (2.5) is denoted by SrpW ([0, 1)d) and is called the classical
Sobolev space with dominating mixed smoothness. An equivalent norm for
SrpW ([0, 1)d) is ∑

α∈Nd0, 0≤αi≤r

‖Dαf |Lp([0, 1)d)‖.

Of special interest is the case r = 0 since

S0
pH([0, 1)d) = Lp([0, 1)d).

The Besov and Triebel–Lizorkin spaces can be embedded in each other
(see [T10] or [M13c, Corollary 1.13]). We point out that the following em-
bedding is a combination of well known results and might look odd at first
glance.

Lemma 2.1. Let 0 < p, q <∞ and r ∈ R. Then

Srmax(p,q),qB([0, 1)d) ↪→ Srp,qF ([0, 1)d) ↪→ Srmin(p,q),qB([0, 1)d).

The reader interested in function spaces is referred to [H10], [ST87] and
[T10] and the references given there.

A goal of this paper is to analyze the discrepancy function in the spaces
Srp,qB([0, 1)d), Srp,qF ([0, 1)d) and SrpH([0, 1)d). We define Srp,qB([0, 1)d)-di-
screpancy as

inf
P
‖DP |Srp,qB([0, 1)d)‖

where the infimum is taken over all point sets with N points. Analogously
we define Srp,qF ([0, 1)d)-discrepancy and SrpH([0, 1)d)-discrepancy.

3. Haar and Walsh bases. We write N−1 = N0 ∪ {−1}. Let b ≥ 2
be an integer. We write Dj = {0, 1, . . . , bj − 1} and Bj = {1, . . . , b − 1}
for j ∈ N0 and D−1 = {0} and B−1 = {1}. For j = (j1, . . . , jd) ∈ Nd−1 let
Dj = Dj1 × · · ·×Djd and Bj = Bj1 × · · ·×Bjd . For a real number a we write
a+ = max(a, 0) and for j ∈ Nd−1 we write |j|+ = j1+ + · · ·+ jd+.

For j ∈ N0 and m ∈ Dj we call

Ij,m =
[
b−jm, b−j(m+ 1)

)
the mth b-adic interval in [0, 1) at level j. We set I−1,0 = [0, 1) and call
it the 0th b-adic interval in [0, 1) at level −1. For any k = 0, 1, . . . , b − 1
let Ikj,m = Ij+1,bm+k. We set I−1

−1,0 = I−1,0 = [0, 1). For j ∈ Nd−1 and m =
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(m1, . . . ,md) ∈ Dj we call

Ij,m = Ij1,m1 × · · · × Ijd,md
the mth b-adic interval in [0, 1)d at level j. We call the number |j|+ the
order of Ij,m. The volume of Ij,m is b−|j|+ .

Let j ∈ N0, m ∈ Dj and l ∈ Bj . Let hj,m,l be the function on [0, 1)

with support in Ij,m and the constant value e(2πi/b)lk on Ikj,m for any k =
0, 1, . . . , b − 1. We set h−1,0,1 = χI−1,0 on [0, 1), the characteristic function
of the interval I−1,0.

Let j ∈ Nd−1, m ∈ Dj and l = (l1, . . . , ld) ∈ Bj . The function hj,m,l given
as the tensor product

hj,m,l(x) = hj1,m1,l1(x1) · · ·hjd,md,ld(xd)
for x = (x1, . . . , xd) ∈ [0, 1)d is called a b-adic Haar function on [0, 1)d. The
set of functions {hj,m,l : j ∈ Nd−1, m ∈ Dj , l ∈ Bj} is called the b-adic Haar

basis on [0, 1)d. We can use the Haar basis for calculating the norms of the
discrepancy function.

The following result is a tool for calculating the L2-discrepancy.

Theorem 3.1 ([M13c, Theorem 2.1]). The system

{b|j|+/2hj,m,l : j ∈ Nd−1, m ∈ Dj , l ∈ Bj}
is an orthonormal basis of L2([0, 1)d), an unconditional basis of Lp([0, 1)d)
for 1 < p < ∞ and a conditional basis of L1([0, 1)d). For any function
f ∈ L2([0, 1)d) we have

‖f |L2([0, 1)d)‖2 =
∑
j∈Nd−1

b|j|
∑

m∈Dj , l∈Bj

|〈f, hj,m,l〉|2.

The next result is a tool for calculating the Srp,qB-discrepancy.

Theorem 3.2 ([M13c, Theorem 2.11]). Let 0 < p, q ≤ ∞ (q > 1 if
p = ∞) and 1/p − 1 < r < min(1/p, 1). Let f ∈ D′([0, 1)d). Then f is in
Srp,qB([0, 1)d) if and only if it can be represented as

f =
∑
j∈Nd−1

b|j|+
∑

m∈Dj , l∈Bj

µj,m,l hj,m,l(3.1)

for some sequence (µj,m,l) satisfying( ∑
j∈Nd−1

b|j|+(r−1/p+1)q
( ∑
m∈Dj , l∈Bj

|µj,m,l|p
)q/p)1/q

<∞.(3.2)

The convergence of (3.1) is unconditional in D′([0, 1)d) and also in any
Sρp,qB([0, 1)d) with ρ < r. The representation (3.1) of f is unique with the
b-adic Haar coefficients µj,m,l = 〈f, hj,m,l〉. The expression (3.2) is an equiv-
alent quasi-norm in Srp,qB([0, 1)d).
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A weight from [D07] will be useful. For α ∈ N with b-adic expansion
α = βa1−1b

a1−1 + · · · + βaν−1b
aν−1 with 0 < a1 < a2 < · · · < aν and digits

βa1−1, . . . , βaν−1 ∈ {1, . . . , b− 1}, a weight of order σ ∈ N is given by

%σ(α) = aν + aν−1 + · · ·+ amax(ν−σ+1,1).

Furthermore, %σ(0) = 0. It is a generalization of %1, first introduced in [N87].

For α = (α1, . . . , αd) ∈ Nd0, the weight of order σ is given by

%σ(α) = %σ(α1) + · · ·+ %σ(αd).

Let α ∈ N. The αth b-adic Walsh function walα : [0, 1)→ C is given by

walα(x) = e(2πi/b)(βa1−1xa1+···+βaν−1xaν )

for x ∈ [0, 1) with b-adic expansion x = x1b
−1 + x2b

−2 + · · · . Furthermore,
wal0 = χ[0,1).

Let α = (α1, . . . , αd) ∈ Nd0. Then walα on [0, 1)d is given as the tensor
product

walα(x) = walα1(x1) · · ·walαd(x
d)

for x = (x1, . . . , xd) ∈ [0, 1)d where by xi we mean the coordinates of x. The
set of functions {walα : α ∈ Nd0} is called the b-adic Walsh basis on [0, 1)d.

The function walα is constant on b-adic intervals I(%1(α1),...,(%1(αd)),m for
every m ∈ D(%1(α1),...,(%1(αd)).

Lemma 3.3 ([DP10, Theorem A.11]). The system {walα : α ∈ Nd0} is an
orthonormal basis of L2([0, 1)d).

4. Digital (v, n, d)-nets. Digital nets go back to Niederreiter [N87]. We
also refer to [NP01] and [DP10]. Here we use the more general order σ digital
nets first introduced in [D07] and [D08], see also [DP14a], [DP14b] and [D14].
In the case where σ = 1 Niederreiter’s original definition is obtained.

We quote from [D08, Definitions 4.1, 4.3] to describe the digital con-
struction method and properties of the resulting digital nets.

For a prime number b let Fb denote the finite field of order b identified
with the set {0, 1, . . . , b− 1} equipped with arithmetic operations modulo b.
For s, n ∈ N with s ≥ n let C1, . . . , Cd be s × n matrices with entries
from Fb. For ν ∈ {0, 1, . . . , bn − 1} with the b-adic expansion ν = ν0 +
ν1b+ · · ·+νn−1b

n−1 with digits ν0, ν1, . . . , νn−1 ∈ {0, 1, . . . , b−1}, the b-adic
digit vector ν̄ is given as ν̄ = (ν0, ν1, . . . , νn−1)> ∈ Fnb . Then we compute
Ciν̄ = (xi,ν,1, . . . , xi,ν,s)

> ∈ Fsb for 1 ≤ i ≤ d. Finally we define

xi,ν = xi,ν,1b
−1 + · · ·+ xi,ν,sb

−s ∈ [0, 1)

and xν = (x1,ν , . . . , xd,ν). We call the point set Pbn = {x0, x1, . . . , xbn−1}
a digital net over Fb.
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Now let σ ∈ N and suppose s ≥ σn. Let 0 ≤ v ≤ σn be an integer. For
every 1 ≤ i ≤ d we write Ci = (ci,1, . . . , ci,s)

> where ci,1, . . . , ci,s ∈ Fnb are
the row vectors of Ci. If for all 1 ≤ λi,1 < · · · < λi,ηi ≤ s, 1 ≤ i ≤ d, with

λ1,1 + · · ·+ λ1,min(η1,σ) + · · ·+ λd,1 + · · ·+ λd,min(ηd,σ) ≤ σn− v

the vectors c1,λ1,1 , . . . , c1,λ1,η1
, . . . , cd,λd,1 , . . . , cd,λd,ηd are linearly indepen-

dent over Fb, then Pbn is called an order σ digital (v, n, d)-net over Fb.

Lemma 4.1 ([D07, Theorem 3.3]).

(i) Let v < σn. Then every order σ digital (v, n, d)-net over Fb is an
order σ digital (v+ 1, n, d)-net over Fb. In particular every point set
Pbn constructed with the digital method is a digital (σn, n, d)-net over
Fb of order at least σ.

(ii) Let 1 ≤ σ1 ≤ σ2. Then every order σ2 digital (v, n, d)-net over Fb is
an order σ1 digital (dvσ1/σ2e, n, d)-net over Fb.

Considering this we obtain the following geometric property going back
to Niederreiter [N87].

Lemma 4.2. Let Pbn be an order σ digital (v, n, d)-net over Fb. Then
every b-adic interval of order n− v contains exactly bv points of Pbn.

Let t ∈ N0 have b-adic expansion t = τ0 + τ1b + τ2b
2 + · · · . We denote

~0 = (0, . . . , 0) ∈ Fnb . We set t̄ = (τ0, τ1, . . . , τs−1)> ∈ Fsb and define

D(C) = {t = (t1, . . . , td) ∈ Nd0 : C>1 t̄1 + · · ·+ C>d t̄d = ~0 ∈ Fnb }.

Lemma 4.3 ([D07, Remark 1]). Pbn is an order σ digital (v, n, d)-net over
Fb if and only if %σ(t) > σn− v for all t ∈ D(C) \ {~0}.

Lemma 4.4 ([DP05, Lemma 2]). Let Pbn be an order σ digital (v, n, d)-net
over Fb with generating matrices C1, . . . , Cd. Then∑

z∈Pbn

walt(z) =

{
bn if t ∈ D(C),

0 otherwise.

We consider the Walsh series expansion of the function χ[0,x),

χ[0,x)(y) =
∞∑
η=0

χ̂[0,x)(η) walη(y)(4.1)

where for η ∈ N0 the ηth Walsh coefficient is given by

χ̂[0,x)(η) =

1�

0

χ[0,x)(y)walη(y) dy =

x�

0

walη(y) dy.
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Lemma 4.5. Let Pbn be an order σ digital (v, n, d)-net over Fb with gen-
erating matrices C1, . . . , Cd. Then

DPbn(x) =
∑

t∈D(C)\{~0}

χ̂[0,x)(t).

Proof. For t = (t1, . . . , td) ∈ Nd0 and x = (x1, . . . , xd) ∈ [0, 1)d, we have

χ̂[0,x)(t) = χ̂[0,x1)(t1) · · · χ̂[0,xd)(td).

Applying Lemma 4.4 we get

DP(x) =
1

bn

∑
z∈Pbn

∞∑
t1,...,td=0

χ̂[0,x)(t) walt(z)− χ̂[0,x)((0, . . . , 0))

=

∞∑
t1,...,td=0

(t1,...,td)6=(0,...,0)

χ̂[0,x)(t)
1

bn

∑
z∈P

walt(z) =
∑

t∈D(C)\{~0}

χ̂[0,x)(t).

Order σ digital (v, n, d)-nets can be constructed from order 1 digital
(w, n, σd)-nets using a method called digit interlacing (see [DP14b] and [D14]
for details and examples). Constructions of order 1 digital nets are well
known. A good quality parameter v that does not depend on n can be
obtained.

5. Proofs of the results. For two sequences an and bn we will write
an � bn if there exists a constant c > 0 such that an ≤ cbn for all n. For
t > 0 with b-adic expansion t = τ0 + τ1b + · · · + τ%1(t)−1b

%1(t)−1, we set

t = t′ + τ%1(t)−1b
%1(t)−1.

We start with two easy facts. For the proof of the first one see e.g. [DP10,
proof of Lemma 16.26].

Lemma 5.1. Let r ∈ N0 and s ∈ N. Then

#{(a1, . . . , as) ∈ Ns0 : a1 + · · ·+ as = r} ≤ (r + 1)s−1.

Lemma 5.2. Let K ∈ N, A > 1 and q, s > 0. Then
K−1∑
r=0

Ar(K − r)qrs � AK Ks,

where the constant is independent of K.

Proof. We have

K−1∑
r=0

Ar(K − r)qrs ≤ AK Ks
K−1∑
r=0

Ar−K(K − r)q

= AK Ks
K∑
r=1

A−rrq � AK Ks.
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Lemma 5.3 ([M13b, Lemma 5.1]). Let f(x)=x1 · · ·xd for x=(x1, . . . , xd)
∈ [0, 1)d. Let j ∈ Nd−1, m ∈ Dj, l ∈ Bj. Then |〈f, hj,m,l〉| � b−2|j|+.

Lemma 5.4 ([M13b, Lemma 5.2]). Let z = (z1, . . . , zd) ∈ [0, 1)d and
g(x) = χ[0,x)(z) for x = (x1, . . . , xd) ∈ [0, 1)d. Let j ∈ Nd−1, m ∈ Dj, l ∈ Bj.
Then 〈g, hj,m,l〉 = 0 if z is not in the interior of the b-adic interval Ij,m. If

z is in the interior of Ij,m then |〈g, hj,m,l〉| � b−|j|+.

Lemma 5.5 ([M13b, Lemma 5.9]). Let j ∈ Nd−1, m ∈ Dj, l ∈ Bj and

α ∈ Nd0. Then

|〈hj,m,l,walα〉| � b−|j|+ .
If %1(αi) 6= ji + 1 for some 1 ≤ i ≤ d then

〈hj,m,l,walα〉 = 0.

Lemma 5.6 ([M13b, Lemma 5.10]). Let t, α ∈ N0. Then

|〈χ̂[0,·)(t),walα〉| � b−max(%1(t),%1(α)).

If α 6= t′ and α 6= t and α′ 6= t then

〈χ̂[0,·)(t),walα〉 = 0.

The following result is a modified version of [DP14a, Lemma 6].

Lemma 5.7. Let C1, . . . , Cd ∈ Fs×nb generate an order 1 digital (v, n, d)-

net over Fb. Let λ1, . . . , λd, γ1, . . . , γd ∈ N0. Let ωλ1,...,λdγ1,...,γd (C) denote the num-
ber of t ∈ D(C) with %1(ti) = γi for all 1 ≤ i ≤ d such that either γi ≤ λi or
%1(t′i) = λi. If λ1, . . . , λd ≤ s then

ωλ1,...,λdγ1,...,γd
(C) ≤ (b− 1)d b(min(λ1,γ1−1)+···+min(λd,γd−1)−n+v)+ .

Proof. Let t = (t1, . . . , td) ∈ D(C) with %1(ti) = γi for all 1 ≤ i ≤ d
and either γi ≤ λi or %1(t′i) = λi. Let ti have b-adic expansion ti = τi,0 +
τi,1b + τi,2b

2 + · · · . Let Ci = (ci,1, . . . , ci,s)
>, set λ∗i = min(λi, γi − 1) and

ci,γi = (0, . . . , 0) if γi > s, 1 ≤ i ≤ d. Then

c>1,1τ1,0 + · · ·+ c>1,λ∗1τ1,λ∗1−1 + c>1,γ1τ1,γ1−1(5.1)

...

+ c>d,1τd,0 + · · ·+ c>d,λ∗d
τd,λ∗d−1 + c>d,γdτd,γd−1 = (0, . . . , 0)> ∈ Fnb .

We set

A = (c>1,1, . . . , c
>
1,λ∗1

, . . . , c>d,1, . . . , c
>
d,λ∗d

) ∈ Fn×(λ∗1+···+λ∗d)

b ,

y = (τ1,0, . . . , τ1,λ∗1−1, . . . , τd,0, . . . , τd,λ∗d−1)> ∈ F(λ∗1+···+λ∗d)×1

b ,

w = −c>1,γ1τ1,γ1−1 − · · · − c>d,γdτd,γd−1 ∈ Fn×1
b .
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Then (5.1) corresponds to Ay = w and we have

ωλ1,...,λdγ1,...,γd
(C) = #{(y, w) ∈ Fλ

∗
1+···+λ∗d
b × Fnb : Ay = w}.

Since C1, . . . , Cd generate an order 1 digital (v, n, d)-net, the rank of A is
λ∗1 + · · ·+ λ∗d if λ∗1 + · · ·+ λ∗d ≤ n− v. In this case the solution space of the
homogeneous system Ay = (0, . . . , 0) has dimension 0. If λ∗1 + · · · + λ∗d >
n− v then rank(A) ≥ n− v and the dimension of the solution space of the
homogeneous system is λ∗1 + · · · + λ∗d − rank(A) ≤ λ1 + · · · + λd − n + v.
This means that for a given w the system Ay = w has at most one solution
if λ∗1 + · · · + λ∗d ≤ n − v and at most bλ

∗
1+···+λ∗d−n+v solutions otherwise.

Finally, there are (b− 1)d possible choices for w since none of the numbers
τ1,γ1−1, . . . , τd,γd−1 can be 0.

We point out that the condition λ1, . . . , λd ≤ s is not necessary. It just
reduces the technicalities but the results would be the same without it. One
would have to define λ∗∗i = min(λ∗i , s), and in the case where λ∗i > s we
would get an additional factor bλ

∗
i−s compensating the restriction.

Lemma 5.8. Let Pbn be an order 1 digital (v, n, d)-net over Fb and let
j ∈ Nd−1, m ∈ Dj, l ∈ Bj.

(i) If |j|+ ≥ n−v then |〈DPbn , hj,m,l〉| � b
−|j|+−n+v and |〈DPbn , hj,m,l〉| �

b−2|j|+ for all but at most bn values of m.
(ii) If |j|+ < n− v then |〈DPbn , hj,m,l〉| � b

−|j|+−n+v(n− v − |j|+)d−1.

Proof. For (1), let |j|+ ≥ n − v. Since Pbn contains exactly bn points,
there are no more than bn numbers m for which Ij,m contains a point of Pbn,
meaning that at least all but bn intervals contain no points at all. Thus the
second statement follows from Lemmas 5.3 and 5.4. The remaining intervals
contain at most bv points of Pbn (Lemma 4.2), so the first statement follows
from Lemmas 5.3 and 5.4.

We now prove (2). Let |j|+ < n − v and m ∈ Dj , l ∈ Bj . The function
hj,m,l can be written (Lemma 3.3) as

hj,m,l =
∑
α∈Nd0

〈hj,m,l,walα〉walα .

We apply Lemmas 4.5, 5.5 and 5.6 to get

(5.2) |〈DPbn , hj,m,l〉| =
∣∣∣〈 ∑

t∈D(C)\{~0}

χ̂[0,·)(t),
∑
α∈Nd0

〈hj,m,l,walα〉walα

〉∣∣∣
≤

∑
t∈D(C)\{~0}

∑
α∈Nd0

|〈χ̂[0,·)(t),walα〉| |〈hj,m,l,walα〉|
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≤ b−|j|+
∑

t∈D(C)\{~0}

∑
α∈Nd0

%1(αi)=ji+1
1≤i≤d

|〈χ̂[0,·)(t),walα〉|

≤ b−|j|+
∑

t∈D(C)\{~0}

∑
α∈Nd0

αi=t
′
i∨αi=ti∨α′i=ti

%1(αi)=ji+1, 1≤i≤d

b−max(%1(α1),%1(t1))−···−max(%1(α1),%1(td))

= b−|j|+
∑

t∈D(C)\{~0}
%1(ti)≤ji+1∨ %1(t′i)=ji+1

1≤i≤d

b−max(j1+1,%1(t1))−···−max(jd+1,%1(td))

= b−|j|+
∞∑

γ1,...,γd=0

b−max(j1+1,γ1)−···−max(jd+1,γd) ωj1+1,...,jd+1
γ1,...,γd

(C)

= b−|j|+
∞∑

γ1,...,γd=0
γ1+···+γd>n−v

b−max(j1+1,γ1)−···−max(jd+1,γd) ωj1+1,...,jd+1
γ1,...,γd

(C)

+ b−|j|+
∞∑

γ1,...,γd=0
γ1+···+γd≤n−v

b−max(j1+1,γ1)−···−max(jd+1,γd) ωj1+1,...,jd+1
γ1,...,γd

(C).

By Lemma 5.7 we get

ωj1+1,...,jd+1
γ1,...,γd

(C) ≤ (b− 1)d bd

since j1 + 1, . . . , jd + 1 ≤ n − v ≤ s and j1 + 1 + · · · + jd + 1 ≤ |j|+ + d <
n − v + d. We apply this only to the first sum, incorporating this term
into the constant. The second sum vanishes. To see this, we recall that
%1(t) > n − v for all t ∈ D(C) \ {~0}. This means that ωj1+1,...,jd+1

γ1,...,γd (C) = 0
whenever γ1 + · · · + γd ≤ n − v since %1(t) = γ1 + · · · + γd and the second
sum vanishes.

For any I ⊂ {1, . . . , d} let Ic = {1, . . . , d} \ I. So far we have

|〈DPbn , hj,m,l〉| � b
−|j|+

∞∑
γ1,...,γd=0

γ1+···+γd>n−v

b−max(j1+1,γ1)−···−max(jd+1,γd)

= b−|j|+
∑

I({1,...,d}

b
−

∑
κ1∈I

(jκ1+1) ∑
0≤γi1≤ji1

i1∈I

∑
γi2≥ji2+1
i2∈Ic

γ1+···+γd≥max(n−v+1,
∑

κ2∈Ic
(jκ2+1))

b
−

∑
κ2∈Ic

γκ2
.

The case where I = {1, . . . , d} is not possible (therefore excluded) because
γi ≤ ji for all 1 ≤ i ≤ d contradicts γ1 + · · ·+γd > n−v since j1 + · · ·+ jd <
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n− v. We perform an index shift to get

|〈DPbn , hj,m,l〉| � b
−|j|+

∑
I({1,...,d}

b
−

∑
κ1∈I

(jκ1+1)−
∑

κ2∈Ic
(jκ2+1)

×
∑

0≤γi1≤ji1
i1∈I

∑
γi2≥0, i2∈Ic∑

κ2∈Ic
γκ2≥(n−v−

∑
κ1∈I

γκ1−
∑

κ2∈Ic
(jκ2+1)+1)+

b
−

∑
κ2∈Ic

γκ2
.

We apply Lemma 5.1 to bound the above by

≤ b−|j|+
∑

I({1,...,d}

b
−

∑
κ1∈I

(jκ1+1)−
∑

κ2∈Ic
(jκ2+1)

×
∑

0≤γi1≤ji1
i1∈I

∞∑
r=(n−v−

∑
κ1∈I

γκ1−
∑

κ2∈Ic
(jκ2+1)+1)+

b−r(r + 1)d−1−#I

≤ b−|j|+
∑

I({1,...,d}

b
−

∑
κ1∈I

(jκ1+1)−
∑

κ2∈Ic
(jκ2+1) ∑

0≤γi1≤ji1
i1∈I

b
−n+v+

∑
κ1∈I

γκ1+
∑

κ2∈Ic
(jκ2+1)

×
(
n− v −

∑
κ1∈I

γκ1 −
∑
κ2∈Ic

(jκ2 + 1) + 1
)d−1−#I

+

≤ b−|j|+−n+v
∑

I({1,...,d}

b
−

∑
κ1∈I

(jκ1+1) ∑
0≤γi1≤ji1

i1∈I

b

∑
κ1∈I

γκ1

×
(
n− v −

∑
κ1∈I

γκ1 −
∑
κ2∈Ic

(jκ2 + 1) + 1
)d−1

+

≤ b−|j|+−n+v
∑

I({1,...,d}

b
−

∑
κ1∈I

(jκ1+1)

b

∑
κ1∈I

(jκ1+1)

×
(
n− v −

∑
κ1∈I

(jκ1 + 1)−
∑
κ2∈Ic

(jκ2 + 1) + 1
)d−1

+

� b−|j|+−n+v(n− v − |j|+)d−1.

Lemma 5.9. Let Pbn be an order 2 digital (v, n, d)-net over Fb. Let j∈Nd−1,
m ∈ Dj, l ∈ Bj.

(i) If |j|+ ≥ n − dv/2e then |〈DPbn , hj,m,l〉| � b−|j|+−n+v/2 and

|〈DPbn , hj,m,l〉| � b
−2|j|+ for all but bn values of m.

(ii) If |j|+ < n−dv/2e then |〈DPbn , hj,m,l〉| � b
−2n+v(2n−v−2|j|+)d−1.
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Proof. According to Lemma 4.1, Pbn is an order 1 digital (dv/2e, n, d)-net.
Hence (i) follows from Lemma 5.8.

We now prove (ii). Let |j|+ < n − dv/2e and m ∈ Dj , l ∈ Bj . We start
at (5.2), so we have

|〈DPbn , hj,m,l〉|

� b−|j|+
∞∑

γ1,...,γd=0∑d
i=1 γi+min(γi,ji+1)>2n−v

b−max(j1+1,γ1)−···−max(jd+1,γd) ωj1+1,...,jd+1
γ1,...,γd

(C)

+ b−|j|+
∞∑

γ1,...,γd=0∑d
i=1 γi+min(γi,ji+1)≤2n−v

b−max(j1+1,γ1)−···−max(jd+1,γd) ωj1+1,...,jd+1
γ1,...,γd

(C).

We argue similarly to the proof of Lemma 5.8, incorporating the term
ωj1+1,...,jd+1
γ1,...,γd (C) in the first sum into the constant and seeing that the second

sum vanishes. To see the latter we recall that %2(t) > 2n−v for all t ∈ D(C).

This means that ωj1+1,...,jd+1
γ1,...,γd (C) = 0 whenever γ1 + min(γ1, j1 + 1) + · · · +

γd + min(γd, jd + 1) ≤ 2n − v because %2(t) ≤ γ1 + min(γ1, j1 + 1) + · · · +
γd + min(γd, jd + 1) since %1(ti) = γi and %1(t′i) = ji + 1 if γi > ji + 1 for
all 1 ≤ i ≤ d. With the same arguments as in the proof of Lemma 5.8 we
obtain

|〈DPbn , hj,m,l〉| � b
−|j|+

∞∑
γ1,...,γd=0∑d

i=1 γi+min(γi,ji+1)>2n−v

b−max(j1+1,γ1)−···−max(jd+1,γd)

= b−|j|+
∑

I({1,...,d}

b
−

∑
κ1∈I

(jκ1+1)

×
∑

0≤γi1≤ji1
i1∈I

∑
γi2≥ji2+1
i2∈Ic

2
∑
κ1∈I

γκ1+
∑

κ2∈Ic
(γκ2+jκ2+1)≥max(2n−v+1,2

∑
κ2∈Ic

(jκ2+1))

b
−

∑
κ2∈Ic

γκ2

= b−|j|+
∑

I({1,...,d}

b
−

∑
κ1∈I

(jκ1+1)−
∑

κ2∈Ic
(jκ2+1)

×
∑

0≤γi1≤ji1
i1∈I

∑
γi2≥0, i2∈Ic∑

κ2∈Ic
γκ2≥(2n−v−2

∑
κ1∈I

γκ1−2
∑

κ2∈Ic
(jκ2+1)+1)+

b
−

∑
κ2∈Ic

γκ2
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≤ b−|j|+
∑

I({1,...,d}

b
−

∑
κ1∈I

(jκ1+1)−
∑

κ2∈Ic
(jκ2+1)

×
∑

0≤γi1≤ji1
i1∈I

∞∑
r=(2n−v−2

∑
κ1∈I

γκ1−2
∑

κ2∈Ic
(jκ2+1)+1)+

b−r(r + 1)d−1−#I

where we applied Lemma 5.1 and several index shifts. The case I={1, . . . , d}
contradicts the condition %2(t) > 2n − v since %2(t) < 2j1 + · · · + 2jd <
2n− 2v ≤ 2n− v. We continue the calculation:

|〈DPbn , hj,m,l〉|

� b−|j|+
∑

I({1,...,d}

b
−

∑
κ1∈I

(jκ1+1)−
∑

κ2∈Ic
(jκ2+1) ∑

0≤γi1≤ji1
i1∈I

b
−2n+v+2

∑
κ1∈I

γκ1+2
∑

κ2∈Ic
(jκ2+1)

×
(

2n− v − 2
∑
κ1∈I

γκ1 − 2
∑
κ2∈Ic

(jκ2 + 1) + 1
)d−1−#I

≤ b−|j|+−2n+v
∑

I({1,...,d}

b
−

∑
κ1∈I

(jκ1+1)+
∑

κ2∈Ic
(jκ2+1) ∑

0≤γi1≤ji1
i1∈I

b
2

∑
κ1∈I

γκ1

×
(

2n− v − 2
∑
κ1∈I

γκ1 − 2
∑
κ2∈Ic

(jκ2 + 1) + 1
)d−1

≤ b−|j|+−2n+v
∑

I({1,...,d}

b

∑
κ1∈I

(jκ1+1)+
∑

κ2∈Ic
(jκ2+1)

×
(

2n− v − 2
∑
κ1∈I

(jκ1 + 1)− 2
∑
κ2∈Ic

(jκ2 + 1) + 1
)d−1

� b−2n+v(2n− v − 2|j|+)d−1.

We are now ready to prove the theorems.

Proof of Theorem 1.1. Let Pbn be an order 2 digital (v, n, d)-net over Fb.
We apply Theorem 3.1 and aim to prove∑

j∈Nd−1

b|j|+
∑

m∈Dj , l∈Bj

|〈DPbn , hj,m,l〉|
2 � b−2n+v nd−1 v � b−2n nd−1.(5.3)

We recall that #Dj = b|j|+ and #Bj = b − 1. We split the sum over j into
three parts and apply Lemmas 5.9(ii) and 5.2 to get
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j∈Nd−1

|j|+<n−dv/2e

b|j|+
∑

m∈Dj , l∈Bj

|〈DPbn , hj,m,l〉|
2

�
∑
j∈Nd−1

|j|+<n−dv/2e

b|j|+ b|j|+ b−4n+2v(2n− v − 2|j|+)2(d−1)

≤ b−4n+2v

n−v/2−1∑
κ=0

b2κ(2n− v − 2κ)2(d−1)(κ+ 1)d−1

≤ b−4n+2v b2n−v (2n− v − 2n+ v + 2)2(d−1)(n− v/2)d−1

� b−2n+v nd−1

for big intervals. We also consider middle-sized and small intervals. In the
case of small intervals (|j|+ ≥ n) there are at most bn intervals containing
a point of Pbn, while in the case where n > |j|+ ≥ n there are even fewer,
namely at most b|j|+ intervals. We apply Lemma 5.9(i) to calculate∑

j∈Nd−1

n>|j|+≥n−dv/2e

b|j|+
∑

m∈Dj , l∈Bj

|〈DPbn , hj,m,l〉|
2

�
∑
j∈Nd−1

n>|j|+≥n−dv/2e

b|j|+ b|j|+ b−2|j|+−2n+v ≤ b−2n+v
n−1∑

κ=n−dv/2e

(κ+ 1)d−1

� b−2n+v nd−1 v

for medium-sized intervals and∑
j∈Nd−1

|j|+≥n

b|j|+
∑

m∈Dj , l∈Bj

|〈DPbn , hj,m,l〉|
2

�
∑
j∈Nd−1

|j|+≥n

b|j|+ bn b−2|j|+−2n+v +
∑
j∈Nd−1

|j|+≥n

b|j|+ (b|j|+ − bn) b−4|j|+

≤ b−n+v
∞∑
κ=n

b−κ (κ+ 1)d−1 +

∞∑
κ=n

b−2κ (κ+ 1)d−1 � b−2n+v nd−1

for small intervals.

Proof of Theorem 1.2. Let DPbn be an order 1 digital (v, n, d)-net over Fb.
We apply Theorem 3.2 and are going to prove



156 L. Markhasin

(5.4)
∑
j∈Nd−1

b|j|+(r−1/p+1)q
( ∑
m∈Dj , l∈Bj

|〈DPbn , hj,m,l〉|
p
)q/p

� bn(r−1)q nd−1 bvq � bn(r−1)q nd−1.

We recall that #Dj = b|j|+ , #Bj = b− 1. We split the sum over j into three
parts and apply Minkowski’s inequality and Lemmas 5.8(ii) and 5.2 to get∑
j∈Nd−1

|j|+<n−v

b|j|+(r−1/p+1)q
( ∑
m∈Dj , l∈Bj

|〈DPbn , hj,m,l〉|
p
)q/p

�
∑
j∈Nd−1

|j|+<n−v

b|j|+(r−1/p+1)q b|j|+q/p b(−|j|+−n+v)q(n− v − |j|+)(d−1)q

≤ b(−n+v)q
n−v−1∑
κ=0

bκrq(n− v − κ)(d−1)q(κ+ 1)d−1

≤ b(−n+v)qb(n−v)rq (n− v + 1)d−1 � bn(r−1)qnd−1 bv(1−r)q

for big intervals. Again we differentiate between small intervals and middle-
sized intervals. We apply Lemma 5.8(1) to compute∑

j∈Nd−1

n>|j|+≥n−v

b|j|+(r−1/p+1)q
( ∑
m∈Dj , l∈Bj

|〈DPbn , hj,m,l〉|
p
)q/p

�
∑
j∈Nd−1

n>|j|+≥n−v

b|j|+(r−1/p+1)q b|j|+q/p b(−|j|+−n+v)q

≤ b(−n+v)q
n−1∑

κ=n−v
bκrq(κ+ 1)d−1 � b(−n+v)q bnrq nd−1 ≤ bn(r−1)q nd−1 bvq

for medium-sized intervals and, considering the range of r,∑
j∈Nd−1

|j|+≥n

b|j|+(r−1/p+1)q
( ∑
m∈Dj , l∈Bj

|〈DPbn , hj,m,l〉|
p
)q/p

�
∑
j∈Nd−1

|j|+≥n

b|j|+(r−1/p+1)q bnq/p b(−|j|+−n+v)q

+
∑
j∈Nd−1

|j|+≥n

b|j|+(r−1/p+1)q (b|j|+ − bn)q/p b−2|j|+q
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≤ bnq/p b(−n+v)q
∞∑
κ=n

bκ(r−1/p)q (κ+ 1)d−1 +

∞∑
κ=n

bκ(r−1)q (κ+ 1)d−1

� bnq/p b(−n+v)q bn(r−1/p)qnd−1 + bn(r−1)q nd−1 � bn(r−1)q nd−1 bvq

for small intervals.

Proof of Theorem 1.3. Let DPbn be an order 2 digital (v, n, d)-net over Fb.
The proof is similar to that of Theorem 1.2. We apply Lemma 5.9 instead
of 5.8 to get

(5.5)
∑
j∈Nd−1

|j|+<n−dv/2e

b|j|+(r−1/p+1)q
( ∑
m∈Dj , l∈Bj

|〈DPbn , hj,m,l〉|
p
)q/p

�
∑
j∈Nd−1

|j|+<n−dv/2e

b|j|+(r−1/p+1)q b|j|+q/p b(−2n+v)q(2n− v − 2|j|+)(d−1)q

≤ b(−2n+v)q

n−v/2−1∑
κ=0

bκ(r+1)q(2n− v − 2κ)(d−1)q(κ+ 1)d−1

≤ b(−2n+v)q b(n−v/2)(r+1)q (n− v/2 + 1)d−1

� bn(r−1)q nd−1 bv/2(1−r)q � bn(r−1)q nd−1

and analogous results for the other subsums.

Proof of Corollaries 1.4 and 1.5. The results for the Triebel–Lizorkin
spaces follow from those for the Besov spaces. We apply Lemma 2.1: there
is a constant c > 0 such that

‖DPbn |S
r
p,qF‖ ≤ c ‖DPbn |S

r
max(p,q),qB‖,

and Corollary 1.4 follows from Theorem 1.2, while Corollary 1.5 from The-
orem 1.3.

Proof of Corollaries 1.6 and 1.7. We recall that SrpH = Srp,2F . There-
fore Corollary 1.6 follows from Corollary 1.4, and Corollary 1.7 from Corol-
lary 1.5, both in the case q = 2.

Proof of Corollary 1.8. We recall that Lp = S0
pH. Therefore the result

follows from Corollary 1.7 in the case r = 0.
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[U14] T. Ullrich, Optimal cubature in Besov spaces with dominating mixed smoothness

on the unit square, J. Complexity 30 (2014), 72–94.

Lev Markhasin
Institut für Stochastik und Anwendungen
Universität Stuttgart
Pfaffenwaldring 57
70569 Stuttgart, Germany
E-mail: lev.markhasin@mathematik.uni-stuttgart.de

Received on 28.4.2014
and in revised form on 23.1.2015 (7784)

http://dx.doi.org/10.1016/j.jco.2013.04.007
http://dx.doi.org/10.1007/BF01294651
http://dx.doi.org/10.4064/aa97-2-5
http://dx.doi.org/10.1112/S0025579300000541
http://dx.doi.org/10.1016/j.jco.2013.09.001



	1 Introduction and results
	2 Function spaces with dominating mixed smoothness
	3 Haar and Walsh bases
	4 Digital (v,n,d)-nets
	5 Proofs of the results
	References

