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1. Introduction. Let α and β be real algebraic numbers with |α| > 1
and αβ = −1. Then the generalized Fibonacci numbers and Lucas numbers
are expressed, respectively, as

(1.1) Un =
αn − βn

α− β
and Vn = αn + βn (n ≥ 0).

If α = (1 +
√
5)/2, we have Un = Fn and Vn = Ln (n ≥ 0), where {Fn}n≥0

and {Ln}n≥0 are the sequences of Fibonacci numbers and Lucas numbers
defined, respectively, by Fn+2 = Fn+1 + Fn (n ≥ 0), F0 = 0, F1 = 1 and
by Ln+2 = Ln+1 + Ln (n ≥ 0), L0 = 2, L1 = 1. Let d ≥ 2 be an integer.
In [2], the second, third, and fourth authors gave necessary and sufficient
conditions for the infinite products

(1.2)
∞∏
k=1

U
dk
6=−ai

(
1 +

ai
Udk

)
(i = 1, . . . ,m)

or

(1.3)
∞∏
k=1

V
dk
6=−ai

(
1 +

ai
Vdk

)
(i = 1, . . . ,m)

to be algebraically dependent, where ai are non-zero rational integers. In this
paper, we relax the condition on the non-zero rational integers a1, . . . , am
to non-zero real algebraic numbers, which gives new cases where the infinite
products (1.2) or (1.3) are algebraically dependent.
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The algebraic independence of the infinite products above can be proved
by using Mahler’s method explained in Section 2; thereby, the algebraic de-
pendence of the infinite products (1.3) with non-zero distinct real algebraic
numbers a1, . . . , am is reduced to the problem of determining whether the set
of the roots of the quadratic polynomials z2+aiz+1 (1 ≤ i ≤ m) and z2+1
includes subsets described by a certain algorithm. If |ai| > 2 (1 ≤ i ≤ m), the
method used in this paper is essentially similar to that of [2] dealing with the
case where a1, . . . , am are rational integers. If a1, . . . , am are non-zero distinct
real algebraic numbers including those with |ai| ≤ 2, it can arise that the infi-
nite products (1.3) which were not treated in [2] are algebraically dependent
(see Examples 2–6 below). In such a case, we establish the algorithm of se-
lecting dth roots to find subsets mentioned above whose elements distribute
on the unit circle with certain symmetry. For this purpose, Lemmas 4.1 and
4.2 play a crucial role. The necessary and sufficient conditions given in Theo-
rems 1.1 and 1.3 are useful to obtain explicit algebraic dependence relations
between the infinite products (1.2) and (1.3), whose transcendence degrees
are just one less than the numbers of the infinite products appearing in each
relation (see Examples 1–6).

We introduce the following notation which will be needed throughout this
paper. Let d ≥ 2 be a fixed integer. For τ ∈ C with |τ | = 1 and i = 0, 1, . . . ,

define Ωi(τ) := {z ∈ C | zdi = τ or zdi = τ}. Here and in what follows, for
any γ ∈ C we denote by γ the complex conjugate of γ. Moreover, for S ⊂ C
we denote S := {γ | γ ∈ S}. Let ζm = exp(2π

√
−1/m). For any fixed integer

k ≥ 1, let Sk(τ) be a non-empty subset of Ωk(τ) such that for any γ ∈ Sk(τ)
the numbers ζdγ and γ belong to Sk(τ). Namely, Sk(τ) satisfies

(1.4) Sk(τ) = ζdSk(τ) and Sk(τ) = Sk(τ).

For example, if k = 3, d = 2, and τ = 1, we have Ω3(1) = {ζj8 | 0 ≤ j ≤ 7}
and we can choose S3(1) = {±ζ8,±ζ38}. Note that the following sets are
determined depending only on Sk(τ):

Λi(τ) = {γd
k−i | γ ∈ Sk(τ)} ⊂ Ωi(τ) (0 ≤ i ≤ k − 1),

Γi(τ) = {γ ∈ Ωi(τ) | γd ∈ Λi−1(τ)} \ Λi(τ) (1 ≤ i ≤ k − 1).

Define

Ek(τ) =
(k−1⋃
i=1

Γi(τ)
)
∪ Sk(τ), Fk(τ) =

{
Ek(τ) ∪ {τ, τ} if τ /∈ Ek(τ),
Ek(τ) \ {τ, τ} otherwise.

Note that E1(τ) = S1(τ). The main results of this paper are as follows:

Theorem 1.1. Let {Un}n≥0 be the sequence defined by (1.1) and d an
integer greater than 1. Let a1, . . . , am be non-zero distinct real algebraic num-
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bers. Then the numbers
∞∏
k=0

U
dk
6=−ai

(
1 +

ai
Udk

)
(i = 1, . . . ,m)

are algebraically dependent if and only if d is odd and there exist τ1, τ2 ∈ C
with τ1 6= τ2, |τ1| = |τ2| = 1 and Fk1(τ1),Fk2(τ2) with k1, k2 ≥ 1 such that
Fk1(τ1) ∩ Fk2(τ2) ⊂ {τ1, τ1, τ2, τ2} and {a1, . . . , am} contains

− 1

α− β
(γ + γ)

for all γ ∈ (Fk1(τ1) ∪ Fk2(τ2)) \ {±
√
−1}.

Corollary 1.2. For any integer d ≥ 2 and for any real algebraic number
a 6= 0, the infinite product

∞∏
k=0

U
dk
6=−a

(
1 +

a

Udk

)

is transcendental.

This follows from the fact that the algebraic dependence condition of
Theorem 1.1 requires two non-empty sets Fk1(τ1) and Fk2(τ2). The tran-
scendence of the numbers such as the infinite products in Corollary 1.2 was
shown in [5].

Examples 1–6 below are obtained by using Theorems 1.1 and 1.3 of this
paper. For the details, see [3].

Example 1. Let a be a non-zero real algebraic number. The transcen-
dental numbers

s1 =

∞∏
k=0

F
3k
6=−a

(
1 +

a

F3k

)
and s2 =

∞∏
k=0
F
3k
6=a

(
1− a

F3k

)

are algebraically dependent if and only if a = ±1/
√
5. If a = 1/

√
5, then

s1s
−1
2 = 2 +

√
5.

Theorem 1.3. Let {Vn}n≥0 be the sequence defined by (1.1) and d an
integer greater than 1. Let a1, . . . , am be non-zero distinct real algebraic num-
bers. Then the numbers

(1.5)
∏
k=0

V
dk
6=−ai

∞

(
1 +

ai
Vdk

)
(i = 1, . . . ,m)

are algebraically dependent if and only if at least one of the following three
properties is satisfied:
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(i) d = 2 and the set {a1, . . . , am} contains b1, . . . , bl (l ≥ 3) satisfying

b1 < −2, b2 = −b1, bj = b2j−1− 2 (j = 3, . . . , l− 1), bl = −b2l−1+2.

(ii) d = 2 and there exist τ ∈ C with |τ | = 1 and Fk(τ) with k ≥ 1 such
that {a1, . . . , am} contains −(γ + γ) for all γ ∈ Fk(τ) \ {±

√
−1}.

(iii) d ≥ 4 is even and there exist τ1, τ2 ∈ C with τ1 6= τ2, |τ1| =
|τ2| = 1 and Fk1(τ1),Fk2(τ2) with k1, k2 ≥ 1 such that Fk1(τ1) ∩
Fk2(τ2) ⊂ {τ1, τ1, τ2, τ2} and {a1, . . . , am} contains −(γ + γ) for all
γ ∈ (Fk1(τ1) ∪ Fk2(τ2)) \ {±

√
−1}.

Remark 1.4. If d = 2, setting τ1 = ζ3 = ζ26 , S1(τ1) = {ζ6, ζ26 , ζ46 , ζ56},
τ2 = −1, and S1(τ2) = {

√
−1,−

√
−1}, we have F1(τ1) = {ζ6, ζ56} and

F1(τ2) = {−1,
√
−1,−

√
−1}. Hence, using (ii) of Theorem 1.3 and noting

that −(ζ6 + ζ56 ) = −1 and −(−1 − 1) = 2, we see that the corresponding
infinite products (1.5) are algebraic numbers. Indeed,

∞∏
k=1

(
1− 1

V2k

)
=

α4 − 1

α4 + α2 + 1
and

∞∏
k=1

(
1 +

2

V2k

)
=
α2 + 1

α2 − 1
.

Corollary 1.5. Let d ≥ 2 be an integer and a 6= 0 be a real algebraic
number with (d, a) 6= (2,−1), (2, 2). Then the infinite product

∞∏
k=0

V
dk
6=−a

(
1 +

a

Vdk

)

is transcendental.

This corollary can be deduced from the following discussion: Case (iii)
of Theorem 1.3 requires two non-empty sets Fk1(τ1) and Fk2(τ2). Hence, if
d ≥ 4, the infinite product in the corollary is transcendental. When
d = 2, case (i) of Theorem 1.3 requires at least three numbers. Therefore
only case (ii) has a possibility for the infinite product to be algebraic. If the
number of elements in Fk(τ) \ {±

√
−1} is at most two, the infinite prod-

uct is algebraic, as is shown in Remark 1.4 above. The transcendence of the
numbers such as the infinite products in the corollary was shown in [5].

Example 2. Let a 6= ±1,±2 be a real algebraic number. The transcen-
dental numbers

s1 =

∞∏
k=1

L
2k
6=−a

(
1 +

a

L2k

)
and s2 =

∞∏
k=1
L
2k
6=a

(
1− a

L2k

)

are algebraically dependent if and only if a = ±
√
2. If a = ±

√
2, then

s1s2 =
√
5/3.
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Example 3. The transcendental numbers

s1 =

∞∏
k=1

(
1−
√
3

L4k

)
, s2 =

∞∏
k=1

(
1 +

√
3

L4k

)
,

s3 =
∞∏
k=1

(
1− 1

L4k

)
, s4 =

∞∏
k=1

(
1 +

2

L4k

)
satisfy

s1s2s3s
−1
4 =

5

8
,

while trans.degQQ(s1, s2, s3, s4) = 3.

Example 4. The transcendental numbers

s1 =
∞∏
k=1

(
1− 1

L6k

)
, s2 =

∞∏
k=1

(
1 +

1

L6k

)
, s3 =

∞∏
k=1

(
1 +

2

L6k

)
,

s4 =
∞∏
k=1

(
1 +

√
3

L6k

)
, s5 =

∞∏
k=1

(
1−
√
3

L6k

)
satisfy

s1s2s3s
−1
4 s−15 =

√
5

2
,

while trans.degQQ(s1, s2, s3, s4, s5) = 4.

Example 5. The transcendental numbers

si =
∞∏
k=1

(
1 +

ai
L4k

)
(i = 1, . . . , 8),

where

a1 = −(ζ116 + ζ1516 ), a2 = −(ζ516 + ζ1116 ), a3 = −(ζ716 + ζ916), a4 = −(ζ364 + ζ6164 ),

a5 = −(ζ1364 + ζ5164 ), a6 = −(ζ1964 + ζ4564 ), a7 = −(ζ2964 + ζ3564 ), a8 = 2,

satisfy

s1s2 · · · s7s−28 =
25

7(7−
√

2−
√
2)
,

while trans.degQQ(s1, . . . , s8) = 7.

Example 6. The transcendental numbers

si =
∞∏
k=1

(
1 +

ai
L4k

)
(i = 1, . . . , 10),
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where

a1 = −
3

2
, a2 =

√
7

2
, a3 =

3

2
, a4 = −

√
7

2
, a5 =

31

16
,

a6 = −
4√
5
, a7 =

2√
5
, a8 =

4√
5
, a9 = −

2√
5
, a10 =

14

25
,

satisfy

s1s2s3s4s
−1
5 s−16 s−17 s−18 s−19 s10 =

3024

3575
,

while trans.degQQ(s1, . . . , s10) = 9.

The proofs of Theorems 1.1 and 1.3 will be given in Section 5.

2. Functional equations. In this section, we explain the Mahler
method mentioned in the Introduction. Let K be an algebraic number field,
K(z) the field of rational functions over K, and K[[z]] the ring of for-
mal power series with coefficients in K. In what follows, let d be an integer
greater than 1. We define the subgroupHd of the multiplicative groupK(z)×

of non-zero elements of K(z) by

(2.1) Hd :=

{
g(zd)

g(z)

∣∣∣∣ g(z) ∈K(z)×
}
.

The functions c1(z), . . . , cm(z) ∈K(z)× are called multiplicatively dependent
modulo Hd if there exist rational integers e1, . . . , em, not all zero, such that

m∏
i=1

ci(z)
ei ∈ Hd.

If no such rational integers exist, then the functions c1(z), . . . , cm(z) are said
to be multiplicatively independent modulo Hd.

We use the following lemmas for proving the theorems.

Lemma 2.1 (Kubota [1, Corollary 8]). Let f1(z), . . . , fm(z) ∈K[[z]]\{0}
satisfy the functional equations

(2.2) fi(z
d) = ci(z)fi(z), ci(z) ∈K(z)× (i = 1, . . . ,m).

Then f1(z), . . . , fm(z) are algebraically independent over K(z) if and only
if the rational functions c1(z), . . . , cm(z) are multiplicatively independent
modulo Hd.

Lemma 2.2 (Kubota [1], see also Nishioka [4, Theorem 3.6.4]). Suppose
that f1(z), . . . , fm(z) ∈ K[[z]] converge in |z| < 1 and satisfy the functional
equations (2.2) with ci(0) 6= 0. Let γ be an algebraic number with 0 < |γ| < 1

such that ci(γd
k
) are defined and non-zero for all k ≥ 0. If f1(z), . . . , fm(z)

are algebraically independent over K(z), then the values f1(γ), . . . , fm(γ)
are algebraically independent.
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Let {Rn}n≥0 be the sequence {Un}n≥0 or {Vn}n≥0 defined by (1.1). Then
for any non-zero real algebraic numbers a1, . . . , am, we set

Φi(z) =
∞∏
k=0

(
1 +

piz
dk

1 + bz2dk

)
(i = 1, . . . ,m),

where

(2.3) (pi, b) =

{
((α− β)ai,−(−1)d) if Rn = Un,

(ai, (−1)d) if Rn = Vn.

Taking an integer N ≥ 1 such that |Rdk | > max{|a1|, . . . , |am|} for all k ≥ N
and noting that αβ = −1, we get

Φi(α
−dN ) =

∞∏
k=N

(
1 +

piα
−dk

1 + bα−2dk

)
=

∞∏
k=N

(
1 +

pi

αdk + b(−1)dkβdk
)

=

∞∏
k=N

(
1 +

ai
Rdk

)
(i = 1, . . . ,m)

so that

(2.4)
∞∏
k=0

R
dk
6=−ai

(
1+

ai
Rdk

)
= Φi(α

−dN )

N−1∏
k=0

R
dk
6=−ai

(
1+

ai
Rdk

)
(i = 1, . . . ,m).

Suppose that the numbers (2.4) are algebraically dependent. Then so
are the values Φ1(α

−dN ), . . . , Φm(α
−dN ). Since Φ1(z), . . . , Φm(z) satisfy the

functional equations

(2.5) Φi(z
d) = ci(z)Φi(z), ci(z) =

1 + bz2

1 + piz + bz2
(i = 1, . . . ,m),

the functions Φ1(z), . . . , Φm(z) are algebraically dependent over K(z) by
Lemma 2.2 with K = Q(α, a1, . . . , am). Then by Lemma 2.1 the ratio-
nal functions c1(z), . . . , cm(z) are multiplicatively dependent modulo Hd,
so there exist integers e1, . . . , em, not all zero, and g(z) ∈ K(z)× such that∏m
i=1 ci(z)

ei = g(zd)/g(z). Then, renumbering the pi, we may assume that
there exist coprime polynomials A(z), B(z) ∈K[z] \ {0} such that

(2.6) A(zd)B(z)

k∏
i=1

Pi(z)
ei = (1 + bz2)eA(z)B(zd)

l∏
i=k+1

Pi(z)
ei ,

where k, ei, e are integers with k, ei ≥ 1, e ≥ 0 and Pi(z) = 1 + piz + bz2.
We note that

∑k
i=1 ei = e+

∑l
i=k+1 ei.
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We consider the functional equation (2.7) below, which is more gen-
eral than (2.6). Let P (z), Q(z) ∈ C[z] \ {0} be coprime polynomials with
degP (z)Q(z) > 0 satisfying

(2.7) A(zd)B(z)P (z) = A(z)B(zd)Q(z),

where d ≥ 2 is an integer and A(z), B(z) ∈ C[z]\{0} are coprime. Note that
the degrees of P (z) and Q(z) are not necessarily the same.

Let θ be a complex number and {θn}n≥1 a sequence of non-real numbers.
We call {θn}n≥1 a compatible non-real sequence of roots of θ if θd1 = θ,
θdn+1 = θn for any n ≥ 1, and the set {θn | n ≥ 1} is infinite. In particular,
θd

n

n = θ for any n ≥ 1.

Lemma 2.3. Assume that P (z) and Q(z) satisfy (2.7). Let θ ∈ C.

(i) Suppose that there exists a compatible non-real sequence {θn}n≥1 of
roots of θ satisfying Q(θn) 6= 0 (resp. P (θn) 6= 0) for any n ≥ 1.
Then A(θ) 6= 0 (resp. B(θ) 6= 0).

(ii) Let l be a positive integer. Assume that Q(θd
n
) 6= 0 for any n with

1 ≤ n ≤ l and that B(θd) = 0. Then B(θd
n
) = 0 for any n with

1 ≤ n ≤ l + 1.
(iii) Suppose Q(θd

n
) 6= 0 for any n ≥ 1 and the set {θdn | n ≥ 1} is

infinite. Then B(θd) 6= 0.

Proof. For the proof of (i) we only check the case of

(2.8) Q(θn) 6= 0 (n ≥ 1)

since that of P (θn) 6= 0 (n ≥ 1) is proved by the symmetry of (2.7). Suppose
on the contrary that A(θ) = 0. By (2.8) and the fact that A(z) and B(z)
are coprime, B(θ)Q(θ1) 6= 0. Thus, substituting z = θ1 into (2.7), we get
A(θ1) = 0 because θd1 = θ. Next suppose that A(θn) = 0 for some n ≥ 1.
In the same way as above, B(θn)Q(θn+1) 6= 0. Since θdn+1 = θn, putting
z = θn+1 into (2.7), we see that A(θn+1) = 0. Hence A(θn) = 0 for any
n ≥ 1, which is impossible since the set {θn | n ≥ 1} is infinite and A(z) is
a polynomial. This completes the proof of (i).

Next we show (ii) by induction on n. The case of n = 1 is trivial. Suppose
that B(θd

n
) = 0 for some n with 1 ≤ n ≤ l. Then A(θdn)Q(θd

n
) 6= 0 since

A(z) and B(z) are coprime. Thus, substituting z = θd
n into (2.7), we get

B(θd
n+1

) = 0, and (ii) is proved.
Statement (iii) follows from (ii) since B(z) is a polynomial.

3. The case where P (z) and Q(z) are products of quadratic poly-
nomials. Let K ⊂ R be an algebraic number field. In this section, we con-
sider the special case of P (z) and Q(z) involving (2.6), namely, P (z), Q(z)
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are expressed as

P (z) =
s∏
i=1

(1 + piz + bz2), Q(z) =
t∏

j=s+1

(1 + qjz + bz2)(3.1)

with b = ±1 and pi 6= qj for all i, j and P (z), Q(z) satisfy the functional
equation (2.7) with A(z), B(z) ∈ K[z] \ {0}. Note that p1, . . . , ps are not
necessarily distinct and neither are qs+1, . . . , qt. First we show b = 1 in
Lemma 3.2 below, and then we investigate the properties of P (z) and Q(z)
in different situations (see Subsections 3.1 and 3.2).

Suppose that P (z)Q(z) has real roots. Let α1 be one of these with the
largest absolute value, so α1 ∈ R satisfies P (α1)Q(α1) = 0 and

(3.2) |α1| = max{|γ| | γ ∈ R, P (γ)Q(γ) = 0}.

Then, exchanging A(z) and B(z) in (2.7) if necessary, we may assume that

P (α1) = 0.

By (3.1), β1 := (bα1)
−1 satisfies P (β1) = 0 and the absolute value of β1

is the smallest among those of the real roots of P (z)Q(z). Comparing the
orders at z = 1 of both sides of (2.7), we obtain P (1)Q(1) 6= 0, which yields
α1, β1 6= 1.

Lemma 3.1. Let P (z) and Q(z) be polynomials of the form (3.1) which
satisfy (2.7). If the roots of P (z)Q(z) are real, then A(z)B(z) has no negative
root.

Proof. For any negative number θ, there exists a compatible non-real
sequence {θn}n≥1 of roots of θ. We see that P (θn)Q(θn) 6= 0 for any n ≥ 1
by the assumption of the lemma. Thus A(θ)B(θ) 6= 0 by Lemma 2.3(i). Since
θ is any negative number, the lemma is proved.

Lemma 3.2. If b = −1, then there are no polynomials A(z) and B(z) of
the form (3.1) which satisfy (2.7).

Proof. Since b < 0, the roots of P (z)Q(z) are real. By the definition of
α1 and β1, we have α1β1 = −1. Hence α1 < −1 or −1 < β1 < 0 because
α1, β1 6= 1. Suppose that α1 < −1. Then Q(αd

n

1 ) 6= 0 for any n ≥ 1 by
(3.2). Substituting z = α1 into (2.7), we get A(α1)B(αd1) = 0, which is
a contradiction since A(α1) 6= 0 by Lemma 3.1 and B(αd1) 6= 0 by Lemma
2.3(iii). Similarly we deduce a contradiction in the case of −1 < β1 < 0, using
the fact that |β1| is the smallest modulus among the roots of P (z)Q(z).

By Lemma 3.2, we have b = 1. Hence we need only consider the equation

(3.3) A(zd)B(z)P (z) = A(z)B(zd)Q(z),
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where A(z), B(z) ∈K[z] \ {0} are coprime and

P (z) =
s∏
i=1

(1 + piz + z2), Q(z) =
t∏

j=s+1

(1 + qjz + z2)

with pi 6= qj for all i, j.

3.1. The case where d = 2 and P (z)Q(z) has real roots. In this
subsection, we consider equation (3.3) where d = 2 and P (z)Q(z) has real
roots.

Lemma 3.3. Let P (z) and Q(z) be polynomials satisfying (3.3) with
d = 2. Suppose that P (z)Q(z) has a real root α1 < 0 with (3.2). Then
α1 = −1.

Proof. First we note that the non-real roots of P (z)Q(z) are of ab-
solute value 1, since P (z)Q(z) is the product of quadratic self-reciprocal
polynomials. Assume that α1 6= −1. Since α1 < 0 and β1 = α−11 , we get
|α1| > 1 > |β1|, and so Q(α2n

1 ) 6= 0 for any n ≥ 0 by (3.2) and the fact
that P (z) and Q(z) are coprime. Substituting z = α1 into (3.3), we get
A(α1) = 0, because B(α2

1) 6= 0 by Lemma 2.3(iii).
On the other hand, there exists a compatible non-real sequence {θn}n≥1

of roots of α1 because α1 < 0. Hence we see that Q(θn) 6= 0 for any n ≥ 1
by |θn| > 1. By Lemma 2.3(i) we get A(α1) 6= 0, which is a contradiction.
Therefore α1 = β1 = −1.

Lemma 3.4. Let P (z) and Q(z) be polynomials satisfying (3.3) with
d = 2. Suppose that P (z)Q(z) has a real root α1 > 0 with (3.2). Then there
exist k ≥ 1 and α, β ∈ R with α1 = α2k and β = α−1 such that P (z), Q(z),
and A(z) are divisible respectively by

(3.4)
(z − α2k)(z − β2k), (z − α)(z − β)

k−1∏
i=0

(z + α2i)(z + β2
i
), and

k∏
i=1

(z − α2i)(z − β2i).

Proof. Consider the positive 2jth roots α2−j

1 , β2
−j

1 for any integer j ≥ 1.
Note that α1 > 1. We first show that A(−α2−j

1 ) 6= 0 for any j ≥ 1. Suppose
on the contrary that A(−α2−j

1 ) = 0 for some j ≥ 1. Then there exists an
integer l ≥ 1 such that, for θ := (−α2−j

1 )2
−l ∈ C \ R, we have A(θ2) = 0

and A(θ) 6= 0 since A(z) is a polynomial. Substituting z = θ into (3.3) with
d = 2, we obtain Q(θ) = 0, which is impossible with |θ| > 1, since Q(z)
is the product of quadratic self-reciprocal polynomials, and so its non-real
roots are of absolute value 1.



Explicit algebraic dependence formulae 171

If there exists an integer i ≥ 1 satisfying Q(α2−i

1 ) = 0, we denote the
minimal such i by k. Otherwise, we let k =∞. We verify

A(α2−j

1 ) = 0 (0 ≤ j ≤ k − 1)

by induction on j, which implies that k <∞ since A(z) is a polynomial. For
j = 0 we substitute z = α1 into (3.3) with d = 2. Then A(α1) = 0 because
B(α2

1) 6= 0 by (3.2) and Lemma 2.3(iii). Next we show that A(α2−j

1 ) = 0 for
1 ≤ j ≤ k−1 under the assumption that A(α2−(j−1)

1 ) = 0. Then B(α2−j+1

1 ) 6=
0 and by the minimality of k we have Q(α2−j

1 ) 6= 0. Substituting z = α2−j

1

into (3.3), we obtain A(α2−j

1 ) = 0.
We see that k is the minimal integer such that Q(β2

−k

1 ) = 0 because
β1 = α−11 and Q(z) is self-reciprocal. In the same way as in the preceding
paragraph, we obtain A(β2

−j

1 ) = 0 for 0 ≤ j ≤ k − 1. Letting α := α2−k

1

and β := α−1 = β2
−k

1 , we see that P (z) and A(z) are divisible by the
corresponding polynomials in (3.4). For any 1 ≤ j ≤ k, substituting z =

−α2−j

1 into (3.3), we get Q(−α2−j

1 ) = 0 since A(α2−j+1

1 ) = 0, B(α2−j+1

1 ) 6=0,

and A(−α2−j

1 ) 6= 0 by the first paragraph of the proof. Observing that
Q(α2−k

1 ) = 0 and that β1 = α−11 and Q(z) is self-reciprocal, we have verified
the lemma.

Remark 3.5. Let P (z) and Q(z) be polynomials satisfying (3.3) with
d = 2 and let α, β be as in Lemma 3.4. Then P (z) and Q(z) are divisible by

z2 + bk+2z + 1 and
k+1∏
i=1

(z2 + biz + 1),

respectively, where k ≥ 1 and

b1 = −(α+ β) < −2
√
αβ = −2,

b2 = α+ β = −b1,
bi = α2i−2

+ β2
i−2

= (α2i−3
+ β2

i−3
)2 − 2 = b2i−1 − 2 (3 ≤ i ≤ k + 1),

bk+2 = −(α2k + β2
k
) = −b2k+1 + 2.

3.2. The case where d ≥ 3 or P (z)Q(z) has no real roots. First we
consider equation (3.3) in the case where P (z)Q(z) has no real roots. Since
P (z)Q(z) is the product of quadratic self-reciprocal polynomials, the roots
of P (z)Q(z) are in the set

(3.5) M := {ω ∈ C | |ω| = 1, ω 6= 1}.
In the case of d ≥ 3 we have the following:

Lemma 3.6. Let P (z) and Q(z) be polynomials satisfying (3.3). If d ≥ 3,
then the roots of P (z)Q(z) are inM.
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Proof. Suppose that P (z)Q(z) has real roots and let α1 (6= 1) be a real
root of P (z) as in (3.2). Assume that α1 6= −1. Then |α1| > 1 > |β1|. As
in the proof of Lemma 3.3, we deduce a contradiction for d ≥ 3 since there
exists a compatible non-real sequence {θn}n≥1 of roots of α1.

In any case stated above, the roots of P (z)Q(z) are continued in M.
In the next section we investigate such a case for more general polynomials
P (z) and Q(z).

4. The case where P (z)Q(z) has roots in M. Let P (z) and Q(z)
be non-zero coprime polynomials with complex coefficients satisfying (2.7).
We note that P (z) and Q(z) are not necessarily products of quadratic poly-
nomials. In this section, assume that P (z)Q(z) has roots inM. Let α ∈ C
with |α| = 1 be the root of P (z)Q(z) having the smallest positive argu-
ment among its roots in M. Without loss of generality, we may assume
that P (α) = 0 and Q(α) 6= 0. Substituting z = α into (2.7), we get
A(α)B(αd) = 0. Taking a compatible non-real sequence {θn}n≥1 of roots
of α satisfying 0 < arg(θn) < arg(α) for any n ≥ 1, we get Q(θn) 6= 0, and
so A(α) 6= 0 by Lemma 2.3(i). Therefore

(4.1) B(αd) = 0.

In this section we calculate the factors of B(z), P (z), and Q(z). First we
consider the case where Q(αd

m
) = 0 for some m ≥ 1, which corresponds

to Lemma 4.1 below. Next we treat the case where Q(αd
m
) 6= 0 for any

integer m ≥ 1, which corresponds to Lemma 4.2. We introduce the following
notation. For τ ∈ C with |τ | = 1, set

Θi(τ) := {γ ∈ C | γdi = τ} (i = 0, 1, . . .).

We note that if ±1 ∈ Θi(τ) for some i ≥ 0, then τ = ±1.
Let k ≥ 1 be an integer and Mk(τ) a subset of Θk(τ) satisfying Mk(τ) =

ζdMk(τ). For any given Mk(τ) the following sets are uniquely determined:

Ni(τ) = {γd
k−i | γ ∈Mk(τ)} ⊂ Θi(τ) (0 ≤ i ≤ k − 1),

Mi(τ) = {γ ∈ Θi(τ) | γd ∈ Ni−1(τ)} \Ni(τ) (1 ≤ i ≤ k − 1),

Ẽk(τ) =
k⋃
i=1

Mi(τ), F̃k(τ) =

{
Ẽk(τ) ∪ {τ} if τ /∈ Ẽk(τ),
Ẽk(τ) \ {τ} otherwise.

We observe that

(4.2) N0(τ) = {τ}.
Moreover, we use the notation

N
1/d
i (τ) := {γ ∈ C | γd ∈ Ni(τ)}

in the proof of Lemmas 4.1 and 4.2.
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Let F (τ)(z) be a polynomial defined by

F (τ)(z) =
∏

γ∈M1(τ)

(z − γ) · · ·
∏

γ∈Mk(τ)

(z − γ).

Lemma 4.1. Let P (z) and Q(z) satisfy (2.7). Let α ∈ C with |α| = 1
be the root of P (z)Q(z) with the smallest positive argument among its roots
in M. Assume that P (α) = 0 and Q(αd

m
) = 0 for some integer m ≥ 1.

Then there exist k ≥ 1, τ ∈ C with |τ | = 1, and Mk(τ) with τ /∈ Ẽk(τ) such
that P (z) and Q(z) are divisible by F (τ)(z) and z − τ , respectively.

Proof. Let s ≥ 1 be an integer such that Q(αd
s
) = 0 and Q(αd

j
) 6= 0 for

j = 0, 1, . . . , s − 1. Then B(αd
j+1

) = 0 for j = 0, 1, . . . , s − 1 by (4.1) and
Lemma 2.3(ii). Setting τ = αd

s , we have |τ | = 1, B(τ) = 0, and A(τ) 6= 0.
We give an algorithm to find Mk(τ), defining Mi(τ) and Ni(τ) below for
i = 1, . . . , k inductively.

Let

B1(z) :=
B(z)

z − τ
∈ C[z] and Q1(z) :=

Q(z)

z − τ
∈ C[z].

Then

(4.3) A(zd)B1(z)P (z) = (zd − τ)A(z)B1(z
d)Q1(z).

Define

N1(τ) := {γ ∈ Θ1(τ) | B1(γ) = 0} and M1(τ) := {γ ∈ Θ1(τ) | B1(γ) 6= 0}.
Note that Θ1(τ) = N1(τ) ∪ M1(τ) and N1(τ) ∩ M1(τ) = ∅. Substituting
z = γ ∈ Θ1(τ) into (4.3), we get B1(γ)P (γ) = 0 because A(γd) = A(τ) 6= 0.
Hence, letting

B2(z) :=
B1(z)∏

γ∈N1(τ)
(z − γ)

and P1(z) :=
P (z)∏

γ∈M1(τ)
(z − γ)

∈ C[z],

we see that

(4.4) A(zd)
(
B2(z)

∏
γ∈N1(τ)

(z − γ)
)(
P1(z)

∏
γ∈M1(τ)

(z − γ)
)

= (zd − τ)A(z)
(
B2(z

d)
∏

γ∈N1(τ)

(zd − γ)
)
Q1(z).

Noting that ∏
γ∈N1(τ)

(z − γ)
∏

γ∈M1(τ)

(z − γ) = zd − τ

and dividing both sides of (4.4) by zd − τ , we get

(4.5) A(zd)B2(z)P1(z) = A(z)B2(z
d)Q1(z)

∏
γ∈N1(τ)

(zd − γ).
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If N1(τ) = ∅, then Θ1(τ) =M1(τ), and hence M1(τ) = ζdM1(τ). Other-
wise, for any γ ∈ N1/d

1 (τ), we have B1(γ
d) = 0, and hence A(γd) 6= 0. Then,

substituting z = γ ∈ N1/d
1 (τ) into (4.5), we get B2(γ)P1(γ) = 0. Define

N2(τ) := {γ ∈ N1/d
1 (τ) | B2(γ) = 0},

M2(τ) := {γ ∈ N1/d
1 (τ) | B2(γ) 6= 0}.

We note that N1/d
1 (τ) = N2(τ) ∪M2(τ) and N2(τ) ∩M2(τ) = ∅. Hence,

setting

B3(z) :=
B2(z)∏

γ∈N2(τ)
(z − γ)

and P2(z) :=
P1(z)∏

γ∈M2(τ)
(z − γ)

∈ C[z],

we have

(4.6) A(zd)
(
B3(z)

∏
γ∈N2(τ)

(z − γ)
)(
P2(z)

∏
γ∈M2(τ)

(z − γ)
)

= A(z)
(
B3(z

d)
∏

γ∈N2(τ)

(zd − γ)
)
Q1(z)

∏
γ∈N1(τ)

(zd − γ).

Dividing both sides of (4.6) by∏
γ∈N2(τ)

(z − γ)
∏

γ∈M2(τ)

(z − γ) =
∏

γ∈N1(τ)

(zd − γ),

we get
A(zd)B3(z)P2(z) = A(z)B3(z

d)Q1(z)
∏

γ∈N2(τ)

(zd − γ).

If N2(τ) = ∅, then N
1/d
1 (τ) = M2(τ), and hence ζdM2(τ) = M2(τ).

Otherwise, in the same way as above, we have

A(zd)B4(z)P3(z) = A(z)B4(z
d)Q1(z)

∏
γ∈N3(τ)

(zd − γ).

We repeat this process, which terminates in a finite number of steps since
B(z) is a polynomial. Namely, there exists k ≥ 1 such that Nk(τ) = ∅, and
so N1/d

k−1(τ) =Mk(τ). This implies Mk(τ) = ζdMk(τ) and

A(zd)Bk+1(z)Pk(z) = A(z)Bk+1(z
d)Q1(z).

Since P (z) and Q(z) are coprime and Q(τ) = 0, we deduce that τ /∈ Ẽk(τ).
This completes the proof of Lemma 4.1.

Lemma 4.2. Let P (z) and Q(z) satisfy (2.7). Let α ∈ C with |α| = 1
be the root of P (z)Q(z) with the smallest positive argument among its roots
inM. Assume that P (α) = 0 and Q(αd

m
) 6= 0 for any integer m ≥ 1. Then
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there exist k ≥ 1, τ ∈ C with |τ | = 1, and Mk(τ) with τ ∈ Ẽk(τ) such that
P (z) is divisible by F (τ)(z)/(z − τ).

Proof. We give an algorithm to find Mk(τ), defining Mi(τ) and Ni(τ)
below for i = 1, . . . , k inductively. We see that B(αd

m
) = 0 for any m ≥ 1 by

(4.1) and Lemma 2.3(ii). Hence there exist integers r, s with 1 ≤ r < s such
that αdr = αd

s , sinceB(z) is a polynomial. We take the smallest l = s−r ≥ 1.
Note that B(αd

r+1
) = B(αd

r+2
) = · · · = B(αd

s
) = 0. Set τ := αd

r
= αd

s .
Since Q(τ) 6= 0, we need the following discussion different from the proof of
Lemma 4.1.

Set

B0(z) := B(z), B1(z) :=
B(z)

z − τ
∈ C[z], and P †0 (z) := (z − τ)P (z).

For i = 1, . . . , l− 1 we define the sets Ni(τ),Mi(τ) ⊂ Θi(τ) and the polyno-
mials Bi+1(z) and P

†
i (z), which are factors of B(z) and (z− τ)P (z), respec-

tively. Hence A(z) and Bi(z) are coprime for i = 0, 1, . . . , l. To proceed with
the induction, we simultaneously check the following for i = 0, 1, . . . , l − 1:

(i) For any γ ∈ Ni(τ) we have

(4.7) Bi(γ) = 0.

(ii) We have

(4.8) αd
s−i ∈ Ni(τ).

In particular, Ni(τ) 6= ∅.
(iii) It follows that

(4.9) A(zd)Bi+1(z)P
†
i (z) = A(z)Bi+1(z

d)Q(z)
∏

γ∈Ni(τ)

(zd − γ).

First, (4.7) and (4.8) with i = 0 are clear by (4.2). From (2.7) we have

A(zd)B1(z)P
†
0 (z) = A(z)B1(z

d)Q(z)(zd − τ),
which implies (4.9) with i = 0.

Suppose that there exists an integer j with 1 ≤ j ≤ l−1 such that Ni(τ),
Bi+1(z), and P

†
i (z) satisfy (4.7)–(4.9) for i = 0, 1, . . . , j − 1. Set

Nj(τ) := {γ ∈ N1/d
j−1(τ) | Bj(γ) = 0},

Mj(τ) := {γ ∈ N1/d
j−1(τ) | Bj(γ) 6= 0}.

Then (4.7) holds for i = j. Since N1/d
j−1(τ) ⊂ Θj(τ) by Nj−1(τ) ⊂ Θj−1(τ),

we get Nj(τ),Mj(τ) ⊂ Θj(τ). For any γ ∈ N1/d
j−1(τ), we have Bj−1(γd) = 0

by (4.7) with i = j − 1, and so A(γd) 6= 0 since Bj−1(z) and A(z) are
coprime. Thus, substituting z = γ ∈ N1/d

j−1(τ) into (4.9) with i = j − 1, we



176 H. Kaneko et al.

get Bj(γ)P
†
j−1(γ) = 0. In particular, all the elements of the set Mj(τ) are

the roots of P †j−1(z). Define

Bj+1(z) :=
Bj(z)∏

γ∈Nj(τ)
(z − γ)

∈ C[z],

P †j (z) :=
P †j−1(z)∏

γ∈Mj(τ)
(z − γ)

∈ C[z].

Note that αds−j ∈ N1/d
j−1(τ) by (4.8) with i = j − 1 and

Bj(z) =
B(z)∏j−1

i=0

∏
γ∈Ni(τ)

(z − γ)
.

Recall that B(αd
s−j

) = 0. For the proof of (4.8) with i = j, it suffices to
show that αds−j 6∈ Nh(τ) for any h = 0, 1, . . . , j−1. Suppose on the contrary
that αds−j ∈ Nh(τ) ⊂ Θh(τ). Then αd

s−j+h
= τ = αd

s , which contradicts
the minimality of l. Hence we showed (4.8) with i = j. We rewrite (4.9) with
i = j − 1 as

A(zd)
(
Bj+1(z)

∏
γ∈Nj(τ)

(z − γ)
)(
P †j (z)

∏
γ∈Mj(τ)

(z − γ)
)

= A(z)
(
Bj+1(z

d)
∏

γ∈Nj(τ)

(zd − γ)
)
Q(z)

∏
γ∈Nj−1(τ)

(zd − γ).

Dividing both sides of this equality by∏
γ∈Nj(τ)

(z − γ)
∏

γ∈Mj(τ)

(z − γ) =
∏

γ∈Nj−1(τ)

(zd − γ),

we get

A(zd)Bj+1(z)P
†
j (z) = A(z)Bj+1(z

d)Q(z)
∏

γ∈Nj(τ)

(zd − γ),

which implies (4.9) with i = j. Therefore, we have defined Ni(τ),Mi(τ),
Bi+1(z), and P

†
i (z) for i = 1, . . . , l − 1.

We show that z − τ divides both
∏
γ∈Nl−1(τ)

(zd − γ) and

P †l−1(z) =
(z − τ)P (z)∏l−1

i=1

∏
γ∈Mi(τ)

(z − γ)
.

First by (4.8) with i = l − 1 we have

(4.10) τd = αd
r+1

= αd
s−(l−1) ∈ Nl−1(τ).

Hence z − τ divides
∏
γ∈Nl−1(τ)

(zd − γ). Next if P †l−1(τ) 6= 0, then we have
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τ ∈ Mi(τ) ⊂ Θi(τ) for some i with 1 ≤ i ≤ l − 1, and so τdi = τ , which
contradicts the minimality of l. Dividing both sides of (4.9) with i = l − 1

by z − τ , and letting Pl−1(z) := P †l−1(z)/(z − τ), we get

(4.11) A(zd)Bl(z)Pl−1(z) = A(z)Bl(z
d)Q(z)

∏
γ∈Nl−1(τ)

(zd − γ)
z − τ

.

Define

Nl(τ) := {γ ∈ N
1/d
l−1(τ) \ {τ} | Bl(γ) = 0},

Ml(τ) := {γ ∈ N
1/d
l−1(τ) \ {τ} | Bl(γ) 6= 0} ∪ {τ}.

If γ ∈ N1/d
l−1(τ) \ {τ}, then A(γ

d) 6= 0 by (4.7) with i = l − 1. Substituting
z = γ into (4.11), we get Bl(γ)Pl−1(γ) = 0. Hence, setting

Bl+1(z) :=
Bl(z)∏

γ∈Nl(τ)
(z − γ)

∈ C[z], Pl(z) :=
Pl−1(z)∏

γ∈Ml(τ)\{τ}(z − γ)
∈ C[z]

and dividing both sides of (4.11) by∏
γ∈Nl(τ)

(z − γ)
∏

γ∈Ml(τ)\{τ}

(z − γ) =
∏
γ∈Nl−1(τ)

(zd − γ)
z − τ

,

we obtain

(4.12) A(zd)Bl+1(z)Pl(z) = A(z)Bl+1(z
d)Q(z)

∏
γ∈Nl(τ)

(zd − γ).

Since τ ∈ N1/d
l−1(τ) by (4.10), if Nl(τ) = ∅, then N

1/d
l−1(τ) = Ml(τ), and

henceMl(τ) = ζdMl(τ). Then we let k = l, which implies the lemma because

Pl(z) =
(z − τ)P (z)∏l

i=1

∏
γ∈Mi(τ)

(z − γ)
∈ C[z].

If Nl(τ) 6= ∅, for i (≥ l + 1), we define inductively

Ni(τ) := {γ ∈ N1/d
i−1(τ) | Bi(γ) = 0},

Mi(τ) := {γ ∈ N1/d
i−1(τ) | Bi(γ) 6= 0},

and

Bi+1(z) :=
Bi(z)∏

γ∈Ni(τ)
(z − γ)

, Pi(z) :=
Pi−1(z)∏

γ∈Mi(τ)
(z − γ)

unless Ni−1(τ) is empty. Note that Bi+1(z), Pi(z) ∈ C[z], since for any γ in
N

1/d
i−1(τ) we have Bi(γ)Pi−1(γ) = 0 by (4.12) and A(γd) 6= 0. In the same

way as above, we have

A(zd)Bl+2(z)Pl+1(z) = A(z)Bl+2(z
d)Q(z)

∏
γ∈Nl+1(τ)

(zd − γ).
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We repeat this process, which terminates in a finite number of steps since
B(z) is a polynomial. Thus there exists an integer k ≥ l such that

A(zd)Bk+1(z)Pk(z) = A(z)Bk+1(z
d)Q(z)

and Nk(τ) = ∅, which implies N1/d
k−1(τ) = Mk(τ), and hence Mk(τ) =

ζdMk(τ).

Remark 4.3. The case where τ = −1 and d is even corresponds to
Lemma 4.1. The cases where τ = −1 and d is odd and where τ = 1 corre-
spond to Lemma 4.2. We also note that the case where −1 ∈ F̃k(τ) occurs
when d is even and τ = ±1.

Let H(τ)(z) be a polynomial defined by

H(τ)(z) =
∏

γ∈Nk−1(τ)

(z − γ) · · ·
∏

γ∈N0(τ)

(z − γ),

where Ni(τ) (0 ≤ i ≤ k − 1) are defined in the proof of either Lemma 4.1
or 4.2.

Lemma 4.4. The polynomial B(z) is divisible by H(τ)(z), and by factor-
ing out we have an equation of the same form as (2.7), namely,

A(zd)B†(z)P †(z) = A(z)B†(zd)Q†(z),

where

P †(z) =
P (z)

F (τ)(z)
, Q†(z) =

Q(z)

z − τ
, B†(z) =

B(z)

H(τ)(z)

if τ /∈ Ẽk(τ), and

P †(z) =
P (z)

F (τ)(z)/(z − τ)
, Q†(z) = Q(z), B†(z) =

B(z)

H(τ)(z)

if τ ∈ Ẽk(τ).

Proof. The fact that B(z) is divisible by H(τ)(z) is shown in the proof
of Lemma 4.1 or 4.2. By the definition of the sets therein, we have

(4.13) F (τ)(z)

=
∏

γ∈Mk(τ)

(z − γ)
∏

γ∈Mk−1(τ)

(z − γ) · · ·
∏

γ∈M1(τ)

(z − γ)

=
∏

γ∈Nk−1(τ)

(zd − γ)
∏

γ∈N1/d
k−2(τ)\Nk−1(τ)

(z − γ) · · ·
∏

γ∈N1/d
0 (τ)\N1(τ)

(z − γ)
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=
∏

γ∈Nk−1(τ)

zd − γ
z − γ

∏
γ∈Nk−2(τ)

(zd − γ)

×
∏

γ∈N1/d
k−3(τ)\Nk−2(τ)

(z − γ) · · ·
∏

γ∈N1/d
0 (τ)\N1(τ)

(z − γ)

=
∏

γ∈Nk−1(τ)

zd − γ
z − γ

∏
γ∈Nk−2(τ)

zd − γ
z − γ

· · ·
∏

γ∈N0(τ)

zd − γ
z − γ

∏
γ∈N0(τ)

(z − γ)

=
H(τ)(zd)

H(τ)(z)
(z − τ).

Hence the lemma is proved by dividing both sides of (2.7) by H(τ)(z)F (τ)(z)
= H(τ)(zd)(z−τ) in the case of Lemma 4.1 and by H(τ)(z)F (τ)(z)/(z−τ) =
H(τ)(zd) in the case of Lemma 4.2.

5. Proof of the theorems

Lemma 5.1 (A special case in Nishioka [4, Lemma 2.3.3]). Let L be a
subfield of C and suppose that

f(z) ∈ C[[z]] ∩L(z).

If f(z) converges at z = α, then f(α) ∈ L(α).

Proof of Theorem 1.3. First we check the necessary conditions for alge-
braic dependence. Assume that the values Φ1(α

−dN ), . . . , Φm(α
−dN ) in Sec-

tion 2 are algebraically dependent. As is mentioned in that section, there
exist integers e ≥ 0 and ei ≥ 1 (1 ≤ i ≤ l), and coprime polynomials
A(z), B(z) ∈ K[z] \ {0} satisfying the functional equation (2.6) with b = 1
by Lemma 3.2. Recall that Pi(z) = 1 + piz + z2. We define

P (z) :=

k∏
i=1

Pi(z)
ei and Q(z) := (1 + z2)e

l∏
i=k+1

Pi(z)
ei ,

and so degP (z) = degQ(z). If γ ∈ C is a zero of P (z)Q(z), then γ = ±
√
−1

or −(γ + γ) ∈ {a1, . . . , am} by (2.3).
First we consider the case of d = 2. If P (z) or Q(z) has a real root, we

take a real root α1 of P (z)Q(z) with the largest absolute value among its
real roots, that is, α1 satisfies (3.2). Exchanging the above definition of P (z)
and Q(z) if necessary, we may assume that P (α1) = 0. If α1 is positive,
then case (i) of Theorem 1.3 holds by Lemma 3.4 and Remark 3.5. If α1

is negative, then we have α1 = −1 by Lemma 3.3, namely, P (−1) = 0.
Thus we see that ai = 2 for some i, and case (ii) of Theorem 1.3 holds (see
Remark 1.4).

Next we suppose that P (z)Q(z) has non-real roots, which are included
in the setM defined by (3.5) as is shown in Subsection 3.2. Exchanging the
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above definitions of P (z) and Q(z) if necessary, we may assume that P (z)
has a non-real root with the smallest positive argument among the roots of
P (z)Q(z) inM. Then the assumptions of either Lemma 4.1 or Lemma 4.2
are satisfied. Setting Ek(τ) := Ẽk(τ) ∪ Ẽk(τ), we have

Ek(τ) = Γ1(τ) ∪ · · · ∪ Γk−1(τ) ∪ Sk(τ),
where Sk(τ) = Mk(τ) ∪Mk(τ), Λi(τ) = Ni(τ) ∪Ni(τ) (0 ≤ i ≤ k − 1), and
Γi(τ) =Mi(τ) ∪Mi(τ) (1 ≤ i ≤ k − 1). Using the conditions on Mi(τ) (1 ≤
i ≤ k), we see that the assumptions on Ek(τ) stated in the Introduction are
satisfied. Now we show that the set of roots of P (z)Q(z) contains Fk(τ).
Note that if γ ∈ C is a zero of P (z) (resp. Q(z)), then γ is also a zero of
P (z) (resp. Q(z)). If the assumptions of Lemma 4.1 are satisfied, then the
set of roots of P (z) (resp. Q(z)) contains Ek(τ) (resp. {τ, τ}). Since P (z)
and Q(z) are coprime, τ 6∈ Ek(τ), and so Fk(τ) = Ek(τ) ∪ {τ, τ}. Thus the
set of the roots of P (z)Q(z) contains Fk(τ) in this case. On the other hand,
if the assumptions of Lemma 4.2 are satisfied, then we get Ek(τ) ⊃ {τ, τ}
and Fk(τ) = Ek(τ) \ {τ, τ}. Moreover, the set of the roots of P (z) contains
Fk(τ). Hence case (ii) of Theorem 1.3 holds in both cases.

We now consider the case of d ≥ 3. By (2.3) and Lemma 3.2, we get
b = 1, and so d is even. By Lemma 3.6, the roots of P (z)Q(z) are included
in M. By Lemma 4.1 or 4.2, there exist τ1 ∈ C with |τ1| = 1 and Ẽk1(τ1)
with k1 ≥ 1 such that

(i) τ1 /∈ Ẽk1(τ1) and P (z), Q(z) are divisible by F (τ1)(z), z − τ1, respec-
tively, or

(ii) τ1 ∈ Ẽk1(τ1) and P (z) is divisible by F (τ1)(z)/(z − τ1).

Dividing (2.7) by these terms, from Lemma 4.4 we have

A(zd)B†(z)P †(z) = A(z)B†(zd)Q†(z),

which has the same form as (2.7). For convenience, denote η(1)(z) := P †(z)
and ξ(1)(z) := Q†(z). Since the number of the elements in Ẽk1(τ1) is not less
than d > 2, we have deg η(1)(z) < deg ξ(1)(z). In particular, deg η(1)(z)ξ(1)(z)
> 0. Let α(1) ∈ C with |α(1)| = 1 be a root of η(1)(z)ξ(1)(z) having the small-
est positive argument among its roots. If ξ(1)(α(1)) 6= 0, then η(1)(α(1)) = 0.
We apply Lemma 4.4 with P (z) = η(1)(z) and Q(z) = ξ(1)(z). We write
the polynomials corresponding to P †(z) and Q†(z) therein as η(2)(z) and
ξ(2)(z), respectively. Then we see that deg η(2)(z) < deg ξ(2)(z). Repeating
this process, we can define η(i)(z), ξ(i)(z), and α(i) (i = 2, 3, . . .) inductively
whenever ξ(i−1)(α(i−1)) 6= 0. This process terminates in a finite number of
steps since P †(z) is a polynomial.

Thus there exists an integer k ≥ 1 such that ξ(k)(α(k)) = 0. Since η(k)(z)
and ξ(k)(z) are factors of P †(z) and Q†(z), respectively, Lemma 4.1 or 4.2
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implies the following: There exist τ2 ∈ C with |τ2| = 1 and Ẽk2(τ2) with
k2 ≥ 1 such that

(i) τ2 /∈ Ẽk2(τ2) and Q†(z), P †(z) are divisible by F (τ2)(z), z − τ2, re-
spectively, or

(ii) τ2 ∈ Ẽk2(τ2) and Q†(z) is divisible by F (τ2)(z)/(z − τ2).

We note that τ1 6= τ2, since B(τ1) = A(τ2) = 0 and since A(z) and B(z)

are coprime. For j = 1, 2, we set Ekj (τj) := Ẽkj (τj) ∪ Ẽkj (τj). As in the case
where d = 2 and P (z)Q(z) has non-real roots, we see that the set of roots of
P (z) (resp. Q(z)) contains Ek1(τ1) \ {τ1, τ1} (resp. Ek2(τ2) \ {τ2, τ2}) both in
the case of Lemmas 4.1 and 4.2. Since P (z) and Q(z) are coprime, we obtain

(Ek1(τ1) \ {τ1, τ1}) ∩ (Ek2(τ2) \ {τ2, τ2}) = ∅,
and so

Fk1(τ1) ∩ Fk2(τ2) ⊂ (Ek1(τ1) ∩ Ek2(τ2)) ∪ {τ1, τ1, τ2, τ2} ⊂ {τ1, τ1, τ2, τ2}.
Hence we obtain case (iii) of Theorem 1.3.

In what follows, we show that Φ1(α
−dN ), . . . , Φm(α

−dN ) are algebraically
dependent under the assumption that case (i), (ii), or (iii) in Theorem 1.3
holds. Recall by (2.3) that pi = ai (i = 1, . . . ,m) and b = 1 since d is even
in every case. It suffices to show that there exist a non-empty subset I of
{1, . . . ,m} and non-zero integers ei (i ∈ I) satisfying

(5.1)
∏
i∈I

ci(z)
ei =

∏
i∈I

(
z2 + 1

z2 + aiz + 1

)ei
∈ Hd,

whereHd is the subgroup of the multiplicative groupK(z)× defined by (2.1),
or there exists a g(z) ∈K(z)× such that∏

i∈I
ci(z)

ei =
g(zd)

g(z)
.

Here, if z = 0 is a zero or a pole of g(z), then it is a zero or a pole of
g(zd)/g(z), respectively. Hence g(0) 6= 0 because ci(0) = 1 (i ∈ I). Then
we see by (2.5) that F (z) := g(z)−1

∏
i∈I Φi(z)

ei ∈ K[[z]] satisfies F (zd) =
F (z), which holds only if F (z) = λ ∈K. In fact, if l (≥ 1) is the lowest degree
of non-constant terms of F (z), then that of F (zd) is dl, which contradicts
F (zd) = F (z). Hence∏

i∈I
Φi(z)

ei = λg(z) ∈K[[z]] ∩K(z).

By Lemma 5.1 we have ∏
i∈I

Φi(α
−dN )ei ∈K,
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which implies that Φ1(α
−dN ), . . . , Φm(α

−dN ) are algebraically dependent and
thus we have only to prove (5.1).

Note that, for any h ≥ 1 and g(z) ∈K(z)×,

(5.2)
g(zd

h
)

g(z)
=
g(zd)

g(z)

g(zd
2
)

g(zd)
· · · g(z

dh)

g(zdh−1)
∈ Hd.

If d = 2, then for the proof of (5.1) it suffices to check that

(5.3)
∏
i∈I

(z2 + aiz + 1)ei ∈ H2

because

(5.4) z2 + 1 =
z4 − 1

z2 − 1
∈ H2.

First we suppose that case (i) of Theorem 1.3 holds. Since b1 = −b2, we have
(z2 + b1z + 1)(z2 + b2z + 1) = z4 − (b22 − 2)z2 + 1,

and then

(5.5) (z2+b1z+1)(z2+b2z+1)
l−1∏
j=3

(z2
j−1

+bjz
2j−2

+1) = z2
l−1

+blz
2l−2

+1

by bj = b2j−1 − 2 (j = 3, . . . , l − 1) and bl = −b2l−1 + 2. Therefore by (5.2)
and (5.5) we obtain

(z2 + blz + 1)−1
l−1∏
j=1

(z2 + bjz + 1)

=
z2

l−1
+ blz

2l−2
+ 1

z2 + blz + 1

l−1∏
j=3

(
z2 + bjz + 1

z2j−1 + bjz2
j−2 + 1

)
∈ H2,

which implies (5.3).
Here we suspend the proof of the theorem and investigate the properties

of the sets defined in Section 1. For convenience, denote Γk(τ) := Sk(τ).
Then Ek(τ) =

⋃k
i=1 Γi(τ).

Lemma 5.2. Let τ ∈ C with |τ | = 1, k ≥ 1, and Sk(τ) ⊂ Ωk(τ) satisfy
(1.4). Suppose that τ ∈ Ek(τ). Then

Card{i | 1 ≤ i ≤ k, τ ∈ Γi(τ)} = Card{i | 1 ≤ i ≤ k, τ ∈ Γi(τ)} = 1,

where Card denotes cardinality.

Proof. Since Γi(τ) = Γi(τ) for i = 1, . . . , k, it suffices to show that
(5.6) Card{i | 1 ≤ i ≤ k, τ ∈ Γi(τ)} = 1.

For x, y ∈ C, we write x ∼ y if x = y or if x = y. Noting that τ ∈
Ek(τ) ⊂

⋃k
i=1Ωi(τ), we take l := min{i ≥ 1 | τdi ∼ τ} (≤ k). Suppose that

τ ∈ Γj(τ) ⊂ Ωj(τ) for some j ≥ 1. Set j = ql+ r, where q and r are integers
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with q ≥ 0 and 0 ≤ r ≤ l − 1. Then τ ∼ τd
j
= τd

ql+r ∼ τd
r , and so r = 0

by the minimality of l. We take b := min{q ≥ 1 | τ ∈ Γql(τ)}. For the proof
of (5.6), it suffices to show that τ 6∈ Γbl+cl(τ) for any c ≥ 1.

Suppose on the contrary that τ ∈ Γbl+cl(τ). Then τd ∈ Λbl+cl−1(τ).
Note that for any i, j with i ≥ j, if γ ∈ Λi(τ), then γd

i−j ∈ Λj(τ). Thus
τ ∼ τd

cl
= (τd)d

cl−1 ∈ Λbl(τ). Since Λbl(τ) = Λbl(τ), we obtain τ ∈ Λbl(τ),
which contradicts the fact that Γbl(τ) ∩ Λbl(τ) = ∅.

Define

(5.7) gγ(z) = (z − γ)(z − γ)
for γ ∈ C.

Lemma 5.3. Let τ ∈ C with |τ | = 1, k ≥ 1, and Sk(τ) ⊂ Ωk(τ) satisfy
(1.4). Then there exists an integer valued function e on Fk(τ) such that

(5.8) e(γ) = e(γ) 6= 0

for any γ ∈ Fk(τ) and

(5.9)
∏

γ∈Fk(τ)

gγ(z)
e(γ) ∈ Hd,

where Hd is the subgroup of K(z)× defined by (2.1). In particular, there
exists an integer p such that

(5.10) (z2 + 1)p
∏

γ∈Fk(τ)\{±
√
−1}

gγ(z)
e(γ) ∈ Hd.

Proof. It suffices to show (5.9) because g√−1(z) = g−
√
−1(z) = z2 + 1.

Set Λ1/d
i (τ) = {γ ∈ C | γd ∈ Λi(τ)} for i = 0, 1, . . . , k − 2 and

g(Ek(τ); z) =
∏

γ∈Sk(τ)

gγ(z)
∏

γ∈Γk−1(τ)

gγ(z) · · ·
∏

γ∈Γ1(τ)

gγ(z).

In the same way as for (4.13), noting that Sk(τ) = Λ
1/d
k−1(τ) by Sk(τ) =

Mk(τ) ∪Mk(τ), Mk(τ) = N
1/d
k−1(τ), and Λk−1(τ) = Nk−1(τ) ∪ Nk−1(τ), we

see that

g(Ek(τ); z) =
∏

γ∈Λk−1(τ)

gγ(z
d)

∏
γ∈Λ1/d

k−2(τ)\Λk−1(τ)

gγ(z) · · ·
∏

γ∈Λ1/d
0 (τ)\Λ1(τ)

gγ(z)

=
∏

γ∈Λk−1(τ)

gγ(z
d)

gγ(z)

∏
γ∈Λk−2(τ)

gγ(z
d)

×
∏

γ∈Λ1/d
k−3(τ)\Λk−2(τ)

gγ(z) · · ·
∏

γ∈Λ1/d
0 (τ)\Λ1(τ)

gγ(z)
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=
∏

γ∈Λk−1(τ)

gγ(z
d)

gγ(z)

∏
γ∈Λk−2(τ)

gγ(z
d)

gγ(z)
· · ·

∏
γ∈Λ0(τ)

gγ(z
d)

gγ(z)

∏
γ∈Λ0(τ)

gγ(z).

Since Λ0(τ) = {τ, τ}, we obtain

(5.11) g∗(z) := g(Ek(τ); z)
∏

γ∈{τ,τ}

gγ(z)
−1 ∈ Hd.

Note that for γ ∈ C,

(5.12) γ ∈ Ek(τ) if and only if g(Ek(τ); γ) = 0.

Suppose first that τ 6∈ Ek(τ). Then (5.7) and (5.11) imply (5.8) and (5.9)
because Fk(τ) = Ek(τ) ∪ {τ, τ}. Noting that τ 6∈ Ek(τ) by Ek(τ) = Ek(τ),
we get e(γ) 6= 0 for any γ ∈ Fk(τ) by (5.12). Next assume that τ ∈ Ek(τ).
Then Lemma 5.2 implies that g∗(z) is a polynomial with g∗(τ) 6= 0 and
g∗(τ) 6=0. Thus (5.7) and (5.11) imply (5.8) and (5.9) by Fk(τ) = Ek(τ) \
{τ, τ}. Moreover, e(γ) 6= 0 for any γ ∈ Fk(τ) by (5.12).

Continuation of the proof of Theorem 1.3. Suppose that case (ii) of The-
orem 1.3 holds. Then for any γ ∈ Fk(τ) \ {±

√
−1} we have ai(γ) = −(γ+ γ)

for some 1 ≤ i(γ) ≤ m. Using (5.4) and (5.10), we obtain∏
γ∈Fk(τ)\{±

√
−1}

(z2 + ai(γ)z + 1)e(γ) ∈ H2, e(γ) 6= 0,

which implies (5.3) with a non-empty subset I of {1, . . . ,m} and integers ei
(i ∈ I). Note that for γ, η ∈ Fk(τ) \ {±

√
−1}, ai(γ) = ai(η) if and only if

γ ∼ η. Moreover, if γ ∼ η, then e(γ) = e(η) by (5.8). Hence ei 6= 0 for any
i ∈ I.

Next suppose that case (iii) of Theorem 1.3 holds. Then, for any γ ∈
Fk1(τ1) \ {±

√
−1} (resp. γ ∈ Fk2(τ2) \ {±

√
−1}), we have ai(γ) = −(γ + γ)

for some i(γ) (resp. aj(γ) = −(γ + γ) for some j(γ)). Combining (2.5) and
(5.10), we get

(z2 + 1)q1
∏

γ∈Fk1
(τ1)\{±

√
−1}

ci(γ)(z)
e(γ) ∈ Hd,

(z2 + 1)q2
∏

γ∈Fk2
(τ2)\{±

√
−1}

cj(γ)(z)
e′(γ) ∈ Hd,

where q1, q2, e(γ) = e(Fk1(τ1); γ), and e′(γ) = e(Fk2(τ2); γ) are integers with
e(γ), e′(γ) 6= 0.

We show that (5.1) is satisfied with a non-empty subset I of {1, . . . ,m}
and integers ei (i ∈ I). The case where q1 = 0 or q2 = 0 is clear. If q1 6= 0
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and q2 6= 0, then (5.1) follows from∏
γ∈Fk1

(τ1)\{±
√
−1}

ci(γ)(z)
−q2e(γ)

∏
γ∈Fk2

(τ2)\{±
√
−1}

cj(γ)(z)
q1e′(γ) ∈ Hd.

By (5.8), to prove the existence of the subset I such that ei 6= 0 (i ∈ I), we
have only to show that

(5.13) Fk1(τ1) \ {±
√
−1} 6= Fk2(τ2) \ {±

√
−1}.

Suppose on the contrary that

(5.14) Fk1(τ1) \ {±
√
−1} = Fk2(τ2) \ {±

√
−1}.

Then, using (5.14) and the assumptions on Fki(τi) for i = 1, 2, we get

(5.15)
Eki(τi) ⊂ Fki(τi) ∪ {τi, τi} ⊂ (Fk1(τ1) ∩ Fk2(τ2)) ∪ {τi, τi,

√
−1,−

√
−1}

⊂ {τ1, τ1, τ2, τ2,
√
−1,−

√
−1}.

If there exists an i ∈ {1, 2} such that τi 6∈ R, then Eki(τi) contains at least
2d ≥ 8 elements by (1.4). This contradicts (5.15). Hence we see that τ1, τ2 ∈
{1,−1} by |τ1| = |τ2| = 1, and so τh = −1 for some h ∈ {1, 2} by τ1 6= τ2.
Therefore Ekh(−1) ⊂ {1,−1,

√
−1,−

√
−1} by (5.15). Since Ekh(−1) contains

at least d ≥ 4 elements by (1.4), we obtain Ekh(−1) = {1,−1,
√
−1,−

√
−1},

which is impossible because 1 6∈ Ωi(−1) for any i ≥ 1. This completes the
proof of Theorem 1.3.

Proof of Theorem 1.1. If the values Φ1(α
−dN ), . . . , Φm(α

−dN ) in Section
2 are algebraically dependent, then we see that b = 1 and d is odd by (2.3)
and Lemma 3.2. The theorem can be proved in a similar way to Theorem
1.3 only except the following: We show that the sets Fk1(τ1) and Fk2(τ2)
satisfy (5.13). Suppose on the contrary that (5.14) holds. Then, using the
assumptions on Fki(τi) for i = 1, 2, we get

(5.16)
Ski(τi) ⊂ Fki(τi) ∪ {τi, τi} ⊂ (Fk1(τ1) ∩ Fk2(τ2)) ∪ {τi, τi,

√
−1,−

√
−1}

⊂ {τ1, τ1, τ2, τ2,
√
−1,−

√
−1}.

If there exists an i ∈ {1, 2} such that τi 6∈ R, then by the assumptions on
Ski(τi) we see that Ski(τi) contains at least 2d elements. Thus (5.16) implies
that d = 3 and

Ski(τi) = {τ1, τ1, τ2, τ2,
√
−1,−

√
−1}.

Hence
√
−13

ki

= τi or
√
−13

ki

= τi.

Consequently, τi =
√
−1 or τi = −

√
−1, and so 6 ≤ CardSk(τi) ≤ 4 by

(5.16), a contradiction.
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We now assume that τ1, τ2 ∈ R. Since |τ1| = |τ2| = 1, (5.16) implies that,
for i = 1, 2,

Ski(τi) ⊂ {1,−1,
√
−1,−

√
−1},

which contradicts the fact that Ski(τi) = ζdSki(τi) since d is odd. This com-
pletes the proof of (5.13) and Theorem 1.1.
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