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1. Introduction. Let o and § be real algebraic numbers with |a| > 1

and a8 = —1. Then the generalized Fibonacci numbers and Lucas numbers
are expressed, respectively, as

am — Bn
(1.1) Uy=——>+ and V,=a"+p" (n>0).

a—p
If a = (1++/5)/2, we have U,, = F,, and V;, = L,, (n > 0), where {Fu}n>0
and {Ly}n>0 are the sequences of Fibonacci numbers and Lucas numbers
defined, respectively, by Fp1o = Fpy1 + F, (n > 0), Fp =0, F; = 1 and
by Lyny2 = Lpt1 + Ly (n > 0), Lo =2, Ly = 1. Let d > 2 be an integer.
In [2], the second, third, and fourth authors gave necessary and sufficient
conditions for the infinite products

(1.2) ﬁ <1+Uadk> (i=1,...,m)

k=1
Udk 75—(11'
or
(1.3) <1+ ) (i=1,...,m)
kl_Il de
de 75—047;
to be algebraically dependent, where a; are non-zero rational integers. In this
paper, we relax the condition on the non-zero rational integers ai,...,am,

to non-zero real algebraic numbers, which gives new cases where the infinite

products ([1.2)) or (|1.3|) are algebraically dependent.
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The algebraic independence of the infinite products above can be proved
by using Mahler’s method explained in Section [2} thereby, the algebraic de-
pendence of the infinite products with non-zero distinct real algebraic
numbers ay, . . ., @, is reduced to the problem of determining whether the set
of the roots of the quadratic polynomials 22 +a;z+1 (1 <i < m) and 22 +1
includes subsets described by a certain algorithm. If |a;| > 2 (1 <14 < m), the
method used in this paper is essentially similar to that of [2] dealing with the
case where aq, . . ., a,, are rational integers. If a1, . . ., a,, are non-zero distinct
real algebraic numbers including those with |a;| < 2, it can arise that the infi-
nite products which were not treated in [2] are algebraically dependent
(see Examples below). In such a case, we establish the algorithm of se-
lecting dth roots to find subsets mentioned above whose elements distribute
on the unit circle with certain symmetry. For this purpose, Lemmas and
[4:2) play a crucial role. The necessary and sufficient conditions given in Theo-
rems and are useful to obtain explicit algebraic dependence relations
between the infinite products and , whose transcendence degrees
are just one less than the numbers of the infinite products appearing in each
relation (see Examples [1H6).

We introduce the following notation which will be needed throughout this
paper. Let d > 2 be a ﬁxed 1nteger For 7 € Cwith |7|=1andi=0,1,...,
define 2;(1) :={2 € C | 2¥ =7 or 20 = 7}. Here and in what follows, for
any v € C we denote by 7 the complex conjugate of «v. Moreover, for S C C
we denote S := {7 | v € S}. Let ¢, = exp(2my/—1/m). For any fixed integer
k > 1, let Si(7) be a non-empty subset of £2;(7) such that for any v € Si(7)
the numbers (47 and 7 belong to Sk (7). Namely, Sk(7) satisfies

(1.4) Sk(T) = CaSk(r) and  Si(7) = Sk(7).

For example, if k =3, d =2, and 7 = 1, we have 23(1) = {Cg |0< <7}
and we can choose S3(1) = {#(s, £(3}. Note that the following sets are
determined depending only on Si(7):

Ai(r) = (7" |y € S(r)} € 2i(7) (0<i<k-—1),
Li(m)={ye (@) [ € Mia(m)}\Ai(r) (1<i<k—1).
Define
E(r)U{r, 7} if 7 ¢ E(7),
Sk(1), F
<UF )U k(7) o) = { E(T)\{7,7} otherwise.
Note that & (1) = Si(7). The main results of this paper are as follows:

THEOREM 1.1. Let {Uy}n>0 be the sequence defined by (L.1) and d an
integer greater than 1. Let ay, ..., an be non-zero distinct real algebraic num-
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bers. Then the numbers

ﬁ <1+Uadk> (i=1,...,m)

k=0
Udk #—a;

are algebraically dependent if and only if d is odd and there exist 7,7 € C
with 71 # T2, |11 = |12| = 1 and Fi, (11), Fiy (12) with ki, ke > 1 such that
Fiy (T1) N Fiey(12) C {71,771, 72,72} and {ai,...,amn} contains

——50+7)

for all v € (Fr, (11) U Fry (12)) \ {£V/—1}.

COROLLARY 1.2. For any integer d > 2 and for any real algebraic number

a # 0, the infinite product
s a
1+ )
I (i
Uj#—a
is transcendental.

This follows from the fact that the algebraic dependence condition of
Theorem requires two non-empty sets Fg, (1) and Fp,(72). The tran-
scendence of the numbers such as the infinite products in Corollary [I.2] was
shown in [5].

Examples below are obtained by using Theorems [I.1] and [I.3] of this
paper. For the details, see [3].

EXAMPLE 1. Let a be a non-zero real algebraic number. The transcen-
dental numbers

s a s a
= 14+ — d = 1— —
we I (egp) e (5
k=0 k=0
ng #—a F3k #a
are algebraically dependent if and only if a = +1/v/5. If a = 1/4/5, then
5152_1 =2+ \/5
THEOREM 1.3. Let {V,}n>0 be the sequence defined by (1.1) and d an
integer greater than 1. Let a1, ..., an be non-zero distinct real algebraic num-
bers. Then the numbers

(1.5) I1 oo<1+‘f;> (i=1,...,m)

k=0
de #—a;

are algebraically dependent if and only if at least one of the following three
properties is satisfied:
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(i) d =2 and the set {a1,...,amn} contains by,..., by (I > 3) satisfying
b1 <=2, by=—by, bj=b>_—2(j=3,....1—1), by = —b}_; +2.

(ii) d =2 and there exist T € C with |7| =1 and Fi(7) with k > 1 such
that {a1,...,am} contains —(y +7) for all v € F(1) \ {£v/—1}.

(ili) d > 4 is even and there exist 11,70 € C with 71 # 7o, |11| =
’7‘2| =1 and fkl(Tl),ka(Tg) with ki,ko > 1 such that fkl(’ﬁ) N
Fiy(12) C {1, 71,72, 72} and {a1,...,an} contains —(y+7) for all

Y € (Fiy (11) U Fiey (72)) \ {==v/— 1}

REMARK 1.4. If d = 2, setting 71 = (3 = (3, Si1(n1) = {6, ¢, (5,31,
7 = —1, and Si(r2) = {V—1,—+/—1}, we have Fi(11) = {(, (3} and
Fi(m) = {~1,v/—1,—+/—1}. Hence, using of Theorem and noting
that —(C + ¢3) = —1 and —(—1 — 1) = 2, we see that the corresponding
infinite products are algebraic numbers. Indeed,

0 4 0 2

1 at—1 2\ a?+1
|| 1l )= — d || 1+— | = .
k1< V2k> attaz+1 L ( +v2k> a? —1

COROLLARY 1.5. Let d > 2 be an integer and a # 0 be a real algebraic
number with (d,a) # (2,—1),(2,2). Then the infinite product

s a
1+ >
Vik#—a

1s transcendental.

This corollary can be deduced from the following discussion: Case ({iii)
of Theorem requires two non-empty sets Fi, (1) and Fy,(72). Hence, if
d > 4, the infinite product in the corollary is transcendental. When
d = 2, case ({ij) of Theorem requires at least three numbers. Therefore
only case has a possibility for the infinite product to be algebraic. If the
number of elements in F(7) \ {#+/—1} is at most two, the infinite prod-
uct is algebraic, as is shown in Remark above. The transcendence of the
numbers such as the infinite products in the corollary was shown in [5].

EXAMPLE 2. Let a # 1,42 be a real algebraic number. The transcen-
dental numbers

> a > a
S1 = H <1+L2k> and sy = H <1_L2k>

k=1 k=1
L,x#—a L, #a

are algebraically dependent if and only if a = +v/2. If @ = +v/2, then
51892 = \/g / 3.
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ExXAMPLE 3. The transcendental numbers

) )

k=1 k=1
(o] (o)
1 2
a=M(-,) =T+ 7))

satisfy
.5
81828384 = g,
while trans.degg Q(s1, s2, 53, 54) = 3.

EXAMPLE 4. The transcendental numbers

o0

1 o 1 o 2
= 1—- = = 14+ — = 14+ —
a=l(-gy) =1 gy) »=1(0+15)

k=1
o0
3
84=H(1+£/;>7 S5 =
6

k=1
satisfy

313233321551 =
while trans.degg Q(s1, s2, 53, 54, 85) = 4.

ExaMPLE 5. The transcendental numbers

[o¢]
a; .
Si:H<1+L;) (i=1,...,8),
k

=1

where
a1 = —(Clg + ¢1§), az = —(Cls + Clg), as = —(Clg + (6)s aa = —(Coy + ),
as = —((gi + 1)y as = —(Ggi + C63)s ar = —(G§4 + ¢83), as = 2,

satisfy

5152...575§2: s

7(7—V2—-2)
while trans.degg Q(s1,...,s8) = 7.
EXAMPLE 6. The transcendental numbers

G a; )
=TT(1 —1,....10),
s H< +L4k) (7 0)

k=1
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where
3 VT 3 VT 31
a :—5, a2 = Ta a3 = 5, a4——7, as _E’
4 2 4 2 14
ag = ——— ar = — ar — —— Qa —_—— a _—
6 \/57 7 \/g’ 8 \/5’ 9 \/g’ 10 257
satisfy
_1 3024

-1.-1_-1_-1
8182838485 36 87 88 39 S10 — ﬁ’

while trans.degg Q(s1, .- .,510) = 9.
The proofs of Theorems [I.1] and [I.3] will be given in Section [f]

2. Functional equations. In this section, we explain the Mahler
method mentioned in the Introduction. Let K be an algebraic number field,
K (z) the field of rational functions over K, and K|[[z]] the ring of for-
mal power series with coefficients in K. In what follows, let d be an integer
greater than 1. We define the subgroup Hy of the multiplicative group K (z)*
of non-zero elements of K (z) by

Zd
(2.1) Hy = {Z((z)) g(z) € K(z)X}.

The functions ¢1(2), ..., cm(z) € K(2)* are called multiplicatively dependent
modulo Hg if there exist rational integers eq, ..., ey, not all zero, such that

m
H Ci(Z)ei € H,.
=1

If no such rational integers exist, then the functions ¢1(z2),. .., ¢n(2) are said
to be multiplicatively independent modulo Hy.
We use the following lemmas for proving the theorems.

LEMMA 2.1 (Kubota [T, Corollary 8|). Let fi(2),..., fm(z) € K[[z]]\{0}
satisfy the functional equations

(2.2) fi(2Y = ci(2)fi(2), ci(z) e K(z)* (i=1,...,m).
Then f1(z),..., fm(z) are algebraically independent over K (z) if and only

if the rational functions c¢1(z),...,cm(2) are multiplicatively independent
modulo Hy.

LEMMA 2.2 (Kubota [I], see also Nishioka [4, Theorem 3.6.4]). Suppose
that fi(z), ..., fm(z) € K][[2]] converge in |z| < 1 and satisfy the functional
equations with ¢;(0) # 0. Let v be an algebraic number with 0 < |y| < 1
such that ¢;(v%") are defined and non-zero for all k > 0. If f1(2), ..., fm(2)
are algebraically independent over K (z), then the values fi(7),..., fm(7)
are algebraically independent.
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Let { R, }n>0 be the sequence {U,, } >0 or {V;, }n>0 defined by (1.1)). Then

for any non-zero real algebraic numbers ai, ..., a;, we set
o0 pzdk
J— 1 s
@i(z)—H<1+1+b22dk> (i=1,...,m),
k=0
where

((a = B)ai, —(=1)) if Ry = Un,

(2.3) (pi’b) = {(%’7 (—l)d) if R, = V,.

Taking an integer N > 1 such that |Rg | > max{|ai|,...,|am|} forall k > N
and noting that af = —1, we get

k

[e's] o —d 0 )
I | [ (R~ I | (R——
(&™) H( 11 ba2d kgv T + b(—1)d* g

k=N

i a; .

= 1 =1,...
II(1+ ) =t

k=N
so that
00 a . N-—1 w
CR | (1+R;k> o) I (1+R;k> (i=1,....m).
k=0 k=0
de 7570'1' de 75704

Suppose that the numbers (2.4)) are algebraically dependent. Then so
are the values @1 (a=@"), ..., ®m(a~®"). Since ®1(2),...,Pm(z) satisfy the
functional equations

1+ bz?

(25)  Di(z%) = ci(2)®i(2), Ci(2>=m

(i=1,...,m),

the functions @1(z),...,P,,(2) are algebraically dependent over K(z) by
Lemma with K = Q(a,ai,...,ay). Then by Lemma the ratio-
nal functions c¢i(z),...,cn(2) are multiplicatively dependent modulo Hg,
so there exist integers ey, ..., en, not all zero, and g(z) € K(z)* such that
T2, ci(2)% = g(2%)/g(2). Then, renumbering the p;, we may assume that
there exist coprime polynomials A(z), B(z) € K|[z] \ {0} such that

l

k
(2.6) AYB() [[ Pi(2)" = (1 +b2°)°A(2)B(z") [ Pi(2)%,
=1 i=k+1

where k, e;, e are integers with k,e; > 1, ¢ > 0 and P;(z) = 1 + p;z + bz2.
We note that Zle ei=e+ Zi:k-yl €.
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We consider the functional equation (2.7) below, which is more gen-
eral than (2.6). Let P(z),Q(z) € C[z] \ {0} be coprime polynomials with
deg P(2)Q(z) > 0 satisfying

(2.7) A(z")B(2)P(2) = A(z)B(z")Q(2),

where d > 2 is an integer and A(z), B(z) € C[z]\ {0} are coprime. Note that
the degrees of P(z) and Q(z) are not necessarily the same.

Let 6 be a complex number and {6, },>1 a sequence of non-real numbers.
We call {0,}n,>1 a compatible non-real sequence of roots of 6 if 9? = 0,
02,1 = 0, for any n > 1, and the set {6, | n > 1} is infinite. In particular,
64" = 0 for any n > 1.

LEMMA 2.3. Assume that P(z) and Q(z) satisfy (2.7). Let § € C.

(1) Suppose that there exists a compatible non-real sequence {0y }n>1 of
roots of 0 satisfying Q(6,) # 0 (resp. P(6,) # 0) for any n > 1.
Then A(0) # 0 (resp. B(0) # 0).

(ii) Let I be a positive integer. Assume that Q(6%") # 0 for any n with
1 < n <1 and that B(0%) = 0. Then B(#*") = 0 for any n with
1<n<I+1.

(iii) Suppose Q(0?") # 0 for any n > 1 and the set {6 | n > 1} is
infinite. Then B(6%) # 0.

Proof. For the proof of (il) we only check the case of

(2.8) Q) #0 (n=1)

since that of P(6,) # 0 (n > 1) is proved by the symmetry of . Suppose
on the contrary that A(f) = 0. By and the fact that A(z) and B(z)
are coprime, B(0)Q(01) # 0. Thus, substituting z = 6; into , we get
A(#1) = 0 because 0 = 0. Next suppose that A(f,) = 0 for some n > 1.
In the same way as above, B(6,)Q(0,+1) # 0. Since 9g+1 = 0, putting
2z = BOp41 into , we see that A(0,+1) = 0. Hence A(6,,) = 0 for any
n > 1, which is impossible since the set {6, | n > 1} is infinite and A(z) is
a polynomial. This completes the proof of .

Next we show by induction on n. The case of n = 1 is trivial. Suppose
that B(#?") = 0 for some n with 1 < n < I. Then A(#%")Q(69") # 0 since
A(z) and B(z) are coprime. Thus, substituting z = #%" into (2.7, we get
B(O¥"") =0, and is proved.

Statement follows from since B(z) is a polynomial. =

3. The case where P(z) and Q(z) are products of quadratic poly-
nomials. Let K C R be an algebraic number field. In this section, we con-
sider the special case of P(z) and Q(z) involving (2.6)), namely, P(z),Q(z)
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are expressed as

s t
31) PR =][0+pz+02*), Q)= ] (1+q¢z+0b2%)

i=1 j=s+1
with b = +1 and p; # g; for all 4,5 and P(z),Q(z) satisfy the functional
equation with A(z), B(z) € K|z] \ {0}. Note that pi,...,ps are not
necessarily distinct and neither are gg41,...,¢:. First we show b = 1 in
Lemma [3.2| below, and then we investigate the properties of P(z) and Q(z)
in different situations (see Subsections and .

Suppose that P(z)Q(z) has real roots. Let a; be one of these with the

largest absolute value, so a1 € R satisfies P(a1)Q(aq) = 0 and

(3.2) 1| = max{[y| | y € R, P(7)Q(y) = 0}.
Then, exchanging A(z) and B(z) in (2.7)) if necessary, we may assume that
P(Cm) =0.

By (3.1] . By := (bay)~! satisfies P(B1) = 0 and the absolute value of 31
is the smallest among those of the real roots of P(z)Q(z). Comparing the
orders at z = 1 of both sides of (2.7)), we obtain P(1)Q(1) # 0, which yields

041)61 7é L.

LEMMA 3.1. Let P(z) and Q(z) be polynomials of the form (3.1]) which
satisfy (2.7). If the roots of P(2)Q(z) are real, then A(z)B(z) has no negative
T00t.

Proof. For any negative number 6, there exists a compatible non-real
sequence {0, },>1 of roots of §. We see that P(6,)Q(6,) # 0 for any n > 1
by the assumption of the lemma. Thus A(6)B(f) # 0 by Lemmal[2.3)i). Since

@ is any negative number, the lemma is proved. m

LEMMA 3.2. If b= —1, then there are no polynomials A(z) and B(z) of
the form (3.1) which satisfy (2.7]).

Proof. Since b < 0, the roots of P(2)Q(z) are real. By the definition of
a1 and B1, we have a181 = —1. Hence a3 < —1 or —1 < 1 < 0 because
1,81 # 1. Suppose that a; < —1. Then Q(ad") # 0 for any n > 1 by

(3.2). Substituting z = «; into , we get A(ap)B(af) = 0, which is
a contradiction since A(ay) # 0 by Lemma and B(af) # 0 by Lemma
2.3|(iii). Similarly we deduce a contradiction in the case of —1 < 51 < 0, using
the fact that |51] is the smallest modulus among the roots of P(2)Q(z). =

By Lemma we have b = 1. Hence we need only consider the equation

(3-3) A(2")B(2)P(2) = A(2)B(z")Q(2),
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where A(z), B(z) € K|[z] \ {0} are coprime and

Pz) =[O +pz+2%), Q@) = [] A+gz+2?)
i=1 j=s+1

with p; # ¢; for all 4, 5.

3.1. The case where d = 2 and P(z)Q(z) has real roots. In this
subsection, we consider equation (3.3) where d = 2 and P(z)Q(z) has real
roots.

LEMMA 3.3. Let P(z) and Q(z) be polynomials satisfying (3.3) with
d =2. Suppose that P(z)Q(z) has a real root oy < 0 with (3.2)). Then
o] = —1.

Proof. First we note that the non-real roots of P(z)Q(z) are of ab-
solute value 1, since P(z)Q(z) is the product of quadratic self-reciprocal
polynomials. Assume that a; # —1. Since a3 < 0 and B = afl, we get
la1] > 1 > |B1], and so Q(a2") # 0 for any n > 0 by and the fact
that P(z) and Q(z) are coprime. Substituting z = a; into (3.3), we get
A(aq) = 0, because B(a?) # 0 by Lemma (iii).

On the other hand, there exists a compatible non-real sequence {6, }n>1
of roots of a; because a; < 0. Hence we see that Q(6,) # 0 for any n > 1
by |6, > 1. By Lemma [2.3{i) we get A(ay) # 0, which is a contradiction.
Therefore a1 = 1 = —1. n

LEMMA 3.4. Let P(z) and Q(z) be polynomials satisfying with

d = 2. Suppose that P(z)Q(z) has a real root a; > 0 with . Then there

exist k > 1 and o, 8 € R with aq = 2" and B = a1t such that P(z), Q(z),
and A(z) are divisible respectively by

k

(z=a”)(z=8%), (z=a)z=B) [[(z+0a”)(z+8%). and

Gy x '

[1Gz-a*)=-5%).

=1

I
—

@
i
o

Proof. Consider the positive 2/th roots a2 ’, 82’ for any integer j > 1.
Note that a; > 1. We first show that A(—a? ’) # 0 for any j > 1. Suppose
on the contrary that A(—a2 ') = 0 for some j > 1. Then there exists an
integer I > 1 such that, for 6 := (—a2’)2”" € C\ R, we have A(62) = 0
and A(6) # 0 since A(z) is a polynomial. Substituting z = 6§ into with
d = 2, we obtain Q(6) = 0, which is impossible with |#] > 1, since Q(z)
is the product of quadratic self-reciprocal polynomials, and so its non-real
roots are of absolute value 1.
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If there exists an integer ¢ > 1 satisfying Q(a%ﬂ') = 0, we denote the
minimal such ¢ by k. Otherwise, we let k = co. We verify

Ale?)=0 (0<j<k-1)

by induction on j, which implies that & < oo since A(z) is a polynomial. For
j =0 we substitute z = o into (3.3) with d = 2. Then A(a;) = 0 because

B(a?) # 0 by (3.2) and Lemma i) Next we show that A(a?’) =0 for
1<j<k-1 under the assumptlon that A(a? o 1)) = 0. Then B(a?" JH) #+

0 and by the minimality of k we have Q(a?" ) # 0. Substituting z = a%_j

into (3.3), we obtain A(a?’) = 0.

We see that k is the minimal integer such that Q(82 ") = 0 because
61 = al_l and Q(z) is self-reciprocal. In the same way as in the preceding

paragraph, we obtain A( %ﬁ) =0 for 0 < j <k — 1. Letting a := a%fk
and B := o~} B%ik, we see that P(z) and A(z) are divisible by the

correspondmg polynomlals in lb For any 1 < j < k, substituting z =
—a?”’ 1nto , we get Q(—a? ’) =0 since A(a? ) =0, B(a? ) #£0,
and A(—« ) % 0 by the ﬁrst paragraph of the proof. Observing that
Qa2 k) = O and that f; = o' and Q(z) is self-reciprocal, we have verified
the lemma. =
REMARK 3.5. Let P(z) and Q(z) be polynomials satisfying (3.3) with
d =2 and let o, 3 be as in Lemma[3.4] Then P(z) and Q(z) are divisible by
k+1
22 4+ byi9z+1 and l—I(z2 +biz+ 1),
i=1
respectively, where k > 1 and
—(a+p) < —2\/ap =—
by =a+ = b,
bi=a® 487 =¥ 4T —2=02 -2 (3<i<k+1),
biso = — (0 + 8%) = —bi1 + 2
3.2. The case where d > 3 or P(z)Q(z) has no real roots. First we
consider equation (3.3) in the case where P(2)Q(z) has no real roots. Since

P(2)Q(z) is the product of quadratic self-reciprocal polynomials, the roots
of P(2)Q(z) are in the set

(3.5) M={weCl||wl=1w#1}.
In the case of d > 3 we have the following:

LEMMA 3.6. Let P(z) and Q(z) be polynomials satisfying (3.3)). If d > 3,
then the roots of P(2)Q(z) are in M.
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Proof. Suppose that P(z)Q(z) has real roots and let ay (# 1) be a real
root of P(z) as in (3.2). Assume that oy # —1. Then |aq]| > 1 > |B1]. As
in the proof of Lemma [3.3] we deduce a contradiction for d > 3 since there
exists a compatible non-real sequence {6, },>1 of roots of ;. m

In any case stated above, the roots of P(z)Q(z) are continued in M.
In the next section we investigate such a case for more general polynomials

P(z) and Q(2).

4. The case where P(z)Q(z) has roots in M. Let P(z) and Q(z)
be non-zero coprime polynomials with complex coefficients satisfying .
We note that P(z) and Q(z) are not necessarily products of quadratic poly-
nomials. In this section, assume that P(z)Q(z) has roots in M. Let a € C
with |a] = 1 be the root of P(z)Q(z) having the smallest positive argu-
ment among its roots in M. Without loss of generality, we may assume
that P(a) = 0 and Q(a) # 0. Substituting z = « into (2.7), we get
A(a)B(a?) = 0. Taking a compatible non-real sequence {6, },>1 of roots
of a satisfying 0 < arg(6,,) < arg(«) for any n > 1, we get Q(6,) # 0, and
so A(a) # 0 by Lemma [2.3(i). Therefore
(4.1) B(a®) = 0.
In this section we calculate the factors of B(z), P(z), and Q(z). First we
consider the case where Q(a?") = 0 for some m > 1, which corresponds
to Lemma below. Next we treat the case where Q(a?") # 0 for any
integer m > 1, which corresponds to Lemma[f.2] We introduce the following
notation. For 7 € C with |7| =1, set

Oi(r):={yeC|y¥ =7} (i=0,1,...).

We note that if £1 € ©;(7) for some ¢ > 0, then 7 = £1.

Let k > 1 be an integer and My (7) a subset of O (7) satisfying M (1) =
CaMy (7). For any given My(7) the following sets are uniquely determined:

Ni(r) = {3 |y € Mi(7)} € 64(r) (0<i<k-1),

Mi(r) ={y € 0i(7) |y € Ni_a(n)}\ Ni(r) (1 <i<k-1),
s : G ULT} if ¢ &),
Ex(T) = (1), T) =1 .

k(7) Z:leM( ) Filr) {gk(T)\{T} otherwise.

We observe that
(4.2) No(1) ={7}.
Moreover, we use the notation

Nl/d(T) ={yeC|y* e Ni(r)}

7

in the proof of Lemmas and
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Let F(7)(z) be a polynomial defined by

FO = ] =7 [[ G-

YEM1(T) YEM(T)

LEMMA 4.1. Let P(z) and Q(z) satisfy [2.7). Let a € C with |a| = 1
be the root of P(z)Q(z) with the smallest positive argument among its roots
in M. Assume that P(a) = 0 and Q(a?") = 0 for some integer m > 1.
Then there exist k > 1, 7 € C with |7| = 1, and My(7) with T ¢ E,(T) such
that P(z) and Q(z) are divisible by F7)(z) and z — T, respectively.

Proof. Let s > 1 be an integer such that Q(a?") = 0 and Q(a®) # 0 for
j=0,1,...,s — 1. Then B(adjﬂ) =0forj=0,1,...,5s—1 by and
Lemma (ii). Setting 7 = a’, we have |7| = 1, B(7) = 0, and A(1) # 0.
We give an algorithm to find My(7), defining M;(7) and N;(7) below for
i =1,...,k inductively.

Let
Bi(z) = ZBE:)_ € Clz] and Q(z):= fﬁi)_ € C[z].
Then
(4.3) A(z)Bi(2)P(2) = (2 = 1) A(2) Bi(z1)Q1(2).
Define

Ni(7) = {7 € O1(7) | Bi(y) = 0} and M (7) := {y € O1(7) | Bi(7) # 0}.
Note that ©1(7) = Ni(7) U My(7) and Ny(7) N M;i(7) = 0. Substituting

z =~ € O1(7) into (4.3)), we get By (y)P(y) = 0 because A(y%) = A(1) # 0.
Hence, letting

P(z)

P e M T = €
we see that
(44 ACH(Ba») I -2) (P II -)
~YEN1(T) YEM; (T)
= (= 1A (BN [T '-7)@i).
~YEN1(T)
Noting that
[T G- I G-n=2"-7
YEN1(7) YEM:(T)

and dividing both sides of by 2% — T, we get
(4.5) A(zNBa(2)Pi(2) = A(2)Ba () Qu(2) [ "=

YEN1(T)
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If Ny(7) =0, then ©1(r) = M1(7), and hence My (1) = (4M;(7). Other-
wise, for any v € Nll/d(T), we have Bi(y?) = 0, and hence A(y%) # 0. Then,
substituting z = v € Nll/d(T) into 1’ we get Ba(y)Pi(y) = 0. Define

No(r) := {y € N{/*(r) | Ba(v) = 0},

My(r) = {y € N/*(r) | Ba(7) # 0}.

We note that Nll/d(T) = Na(7) U Ma(7) and Na(7) N Ma(7) = 0. Hence,

setting

Z) = B2(Z) an zZ) = Pl(Z) z
B3< ) H7€N2(T)(Z — 'Y) d P2( ) : HryeMz(T)(Z — ,Y) S C[ ]7
we have
(46)  ACY(Bs2) IT =) (R I =)
YEN2(T) yEM>(T)
=A@ (B I =)@ T "=,
~YEN2(T) ~YEN1(T)

Dividing both sides of (4.6) by
II G- II G-»= I -,
YEN2(7) YEM>(7) YEN1(T)
we get

AN By (2) Pa(2) = A(2)Ba(zNQi(z) [ (=" =)

YEN2(7)

If No(7) = 0, then Ni/%(r) = My(r), and hence (4Ma(r) = Ma(7).
Otherwise, in the same way as above, we have

A(2%)Bu(2) P3(2) = A(2) Ba(z)Q1(2) H (2% = 7).
YEN3(T)

We repeat this process, which terminates in a finite number of steps since
B(2) is a polynomial. Namely, there exists k > 1 such that Ni(7) = (), and

so N\/4(7) = My (7). This implies M. (1) = (4Mj,(r) and

A(2%)Br1(2)Pr(2) = A(2) B (29) Qu(2)-
Since P(z) and Q(z) are coprime and Q(7) = 0, we deduce that 7 ¢ (7).
This completes the proof of Lemma 4.1. u

LEMMA 4.2. Let P(z) and Q(z) satisfy (2.7). Let « € C with |a] =1
be the root of P(2)Q(z) with the smallest positive argument among its roots
in M. Assume that P(a) = 0 and Q(a®") # 0 for any integer m > 1. Then
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there exist k > 1, 7 € C with |7| = 1, and My (1) with 7 € E(T) such that
P(2) is divisible by F7(2)/(z — 7).

Proof. We give an algorithm to find My (1), defining M;(7) and N;(7)
below for i = 1, ...,k inductively. We see that B(a®") = 0 for any m > 1 by
and Lemma [2.3(ii). Hence there exist integers r, s with 1 <r < s such
that a?” = o’ since B(z) is a polynomial. We take the smallest | = s—r > 1.
Note that B(a® ") = B(a?"™) = --- = B(a®) = 0. Set 7 := a?" = o
Since Q(7) # 0, we need the following discussion different from the proof of
Lemma 1]

Set

B()(Z) = B(Z), B1<z) =

Fori=1,...,l—1 we define the sets N;(7), M;(7) C ©;(7) and the polyno-
mials B;;1(z) and P;(z), which are factors of B(z) and (z — 7)P(z), respec-
tively. Hence A(z) and B;(z) are coprime for i = 0,1,...,[. To proceed with
the induction, we simultaneously check the following for ¢ = 0,1,...,l — 1:

€Clz], and Pj(2):= (z —71)P(2).

B(2)

(i) For any v € N;(7) we have

(4.7) Bi(y) =0.
(ii) We have
(4.8) o e Ny(r).

In particular, N;(7) # 0.
(iii) It follows that

(49)  A(DBi(2)P(2) = A(2)Bia (z9Q(2) [ (==

veN( )
First, . and (| with ¢ = 0 are clear by (4.2). From (| we have
A<z )Bl<z>PJ () = A(2)Bi(z )Q(Z)(zd - T),

which implies (4.9) with i = 0.
Suppose that there ex1sts an mteger j with 1 < j < 1—1 such that N;(7),

Bit1(z), and PJr satlsfy forz—O,l,...,j—l. Set
Nj(r):={y €N ”d< ™) | Bj(z) =0},
My(r) i= {y € N/{(7) | Bj(3) # O}
Then 1) holds for i = j. Since lefcll(T) C ©;(1) by Nj_1(1) C Oj_1(7),
we get N;j(7), M;(1) C ©;(r). For any v € leicf(T), we have B;j_1(v%) =0
by (4.7) with i = j — 1, and so A(y%) # 0 since B;_1(z) and A(z) are
‘4 9)

coprime. Thus, substituting z = v € leicll (1) into with i = j — 1, we
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get Bj(7) Pl

the roots of P]Ll(z). Define

(v) = 0. In particular, all the elements of the set M;(7) are

) = Bj(z) B
BJ+1( ) : H,YGN]-(T)(Z — '7) € (C[ ]7
T

Py = gy

Note that ad" ™ € leﬁ (1) by 1’ with ¢ = j —1 and
_ B(z)
= —= .
H‘gZO H’YENi(’T) (Z - 7)
Recall that B(_ads_j) = 0. For the proof of 1' with ¢ = 7, it suffices to
show that_adsﬂ ¢ Np(7) for any h =0, 1, ...,Jj—1. Suppose on the contrary
that o™ € Nu(7) C Ou(7). Then o® ™" = 7 = o, which contradicts

the minimality of [. Hence we showed (4.8) with ¢ = j. We rewrite (4.9) with
1=35—1as

AE (B T =) (Ple IT ¢-2)

YEN;(T) yeEM;(T)

—AE)(Binz) T[T '-m)ee I =

YEN;(7) YEN;—1(7)

Bj(2)

Dividing both sides of this equality by
II G- Il c-v= I -9,
"/eNj(T) ’YEM]'(T) "/GNj_l(T)
we get
Az B (2)P(2) = A(2)Bin (:DQ(z) [ =),
YEN;(T)
which implies (4.9) with ¢ = j. Therefore, we have defined N;(7), M;(7),
Biti1(2), and P/(z) fori=1,...,1 - 1.
We show that z — 7 divides both H76N1_1(7')(Zd — ) and
PT (Z) _ (Z — T)P(Z>
-1 -1 :
Hi:l ~yEM;(T) (Z - ’7)
First by (4.8) with i =1 — 1 we have
(4.10) =a? =Y e Ny (7).

Hence z — 7 divides HveNl_l(r)(zd — ). Next if PLl(T) # 0, then we have
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T € Mi(t) C O4(7) for some i with 1 < i < [ —1, and so 7% = 7, which
contradicts the minimality of [. Dividing both sides of (4.9) with i =1 —1

by z — 7, and letting P;_1(z) := Pltl(z)/(z —7), we get
HyeNl,l(T) (Zd - fY)

Z—T

411)  AGEYB()Pi(z) = AR)Bi(z)Q(2)
Define
Ni(r) == {y € N{(1)\ {r} | Bu() = 0},
Mi(r) == {y € N{)\ {r} | Bu(y) # 0} U {7}

If v € Nllfil(T) \ {7}, then A(y%) # 0 by 1) with ¢ = [ — 1. Substituting
z =~y into (4.11)), we get B;(y)F,—1(v) = 0. Hence, setting

Bi(2) Fi-1(2)
Bii1(2) ==
H'yENl(T)(Z -7) HveMz(T)\{T}(Z ~7)
and dividing both sides of (4.11]) by

24—
II c-» I (z—v)ZHVGN"I(T)( 7),

€Cldl, Plz) = € Cl4

Z—T
~YEN(T) yeM(T)\{}
we obtain
(4.12) A(z) B (2)Pi(2) = A(2)Bia(zHQ(2) [ %=
YEN;(T)

Since 7 € Nll_/f(v') by (4.10)), if N;(7) = 0, then Nll_/f(T) = M;(7), and
hence M;(7) = (4M;(7). Then we let k = [, which implies the lemma because

(2 — 7)P(2)
P(z) = Clz].
= I carir (= — ) .

If Ni(7) # 0, for i (> 1+ 1), we define inductively
Ni(r) = {y € N{(r) | B;(7) =0},
Mi(7) := {v € N{(r) | Bi(y) # 0},

and
Bi(z) Pi1(z)

H’yeNi(T) (Z - ’7)7 H'yEMi(T) (Z - ’7)
unless N;_1(7) is empty. Note that B;y1(2), Pi(z) € C[z], since for any «y in
Nil_/‘li(T) we have B;(vy)P;i—1(y) = 0 by |i and A(y%) # 0. In the same

way as above, we have

A(z"Brya(2)Pya(2) = A(2)Brya(zDQ(z) [ (" =)

“/GN[+1 (T)

Bi+1(z) = F’Z(Z) =
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We repeat this process, which terminates in a finite number of steps since
B(z) is a polynomial. Thus there exists an integer k > [ such that

A=Y Bi11(2) Pu(2) = A(2) Bria (2HQ(2)
and Ni(7) = 0, which implies N;iidl(T) = Mj(7), and hence My(1) =
Cde(T). n

REMARK 4.3. The case where 7 = —1 and d is even corresponds to
Lemma The cases where 7 = —1 and d is odd and where 7 = 1 corre-
spond to Lemma . We also note that the case where —1 € Fj(7) occurs
when d is even and 7 = +£1.

Let H (7)(7:) be a polynomial defined by
H(T)(Z): H (Z_ry) H (2_7)7
YENg-1(T) YEN(T)

where N;(7) (0 < i < k — 1) are defined in the proof of either Lemma
or 4.2

LEMMA 4.4. The polynomial B(z) is divisible by H(7)(2), and by factor-
ing out we have an equation of the same form as (2.7), namely,

A(z")B(2)P1(z) = A() B' (:1)Q"(»),

where
P(z) Q(2) B(z)
PO =mme Q6=20 PE=ga0
if T ¢ E(7), and
P(z2) B(z)
PT(Z) = F(T)(z)/(z _ T)’ QT(Z) = Q(2), BT(Z) = m

if 7€ Eu(T).

Proof. The fact that B(z) is divisible by H(7)(2) is shown in the proof
of Lemma [£.1] or [1.2] By the definition of the sets therein, we have

(4.13)  FU(z)

= Il ¢-=» II G-» II -7

yEMy(T) YEM_1(7) yeM1(T)

= I &= I e-»- I G-

VEN)—1(7) YENY LT\ Ng—1(7) ~eNy/*(T)\N1(7)
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d
L _
= I O || R EL
z—ry
YEN,_1(T) YENK_2(T)
X H (=) H (z =)
FEN L (T)\Njy_2(7) ~ENy H(T)\N1(r)
d _ _ _
:HZVHZV...HZVHZ_
zZ—" zZ—="
YENK_1(T) YEN,_o(T) ~YEN,(T) ~YENo(T)
B H(T)(zd)

H(T)(z) (z—1).
Hence the lemma is proved by dividing both sides of by HM(2)F()(z)
= H™ (2%)(z — ) in the case of Lemma and by H (2)F()(2)/(z—71) =
H)(2%) in the case of Lemma m n

5. Proof of the theorems

LEMMA 5.1 (A special case in Nishioka [4, Lemma 2.3.3]). Let L be a
subfield of C and suppose that

f(2) € Cl[z]I N L(2).
If f(2) converges at z = «, then f(a) € L(a).

Proof of Theorem [I.3 First we check the necessary conditions for alge-
braic dependence. Assume that the values @, (a_dN), e ,@m(oz_dN) in Sec-
tion [2] are algebraically dependent. As is mentioned in that section, there
exist integers e > 0 and e¢; > 1 (1 < ¢ < [), and coprime polynomials
A(z),B(z) € K|[z] \ {0} satisfying the functional equation with b =1
by Lemma [3.2] Recall that Pi(2) = 1 + p;z + z2. We deﬁne

k

z) =[] Pi(2)% and Q(z):=(1+2) H Pi(z
i=1 i=k+1
and so deg P(z) = deg Q(2). If v € C is a zero of P(2)Q(z), then v = /=1
or —(y+7) € {ai,...,an} by 2.3).

First we consider the case of d = 2. If P(z) or Q(z) has a real root, we
take a real root ay of P(z)Q(z) with the largest absolute value among its
real roots, that is, ay satisfies (3.2). Exchanging the above definition of P(z)
and @Q(z) if necessary, we may assume that P(ay) = 0. If a; is positive,
then case (i) of Theorem holds by Lemma and Remark . If oy
is negative, then we have oy = —1 by Lemma namely, P(—1) = 0.
Thus we see that a; = 2 for some i, and case of Theorem holds (see
Remark .

Next we suppose that P(z)Q(z) has non-real roots, which are included
in the set M defined by as is shown in Subsection Exchanging the
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above definitions of P(z) and Q(z) if necessary, we may assume that P(z)
has a non-real root with the smallest positive argument among the roots of
P(2)Q(z) in M. Then the assumptions of either Lemma 4.1 or Lemma

are satisfied. Setting & (7) := & (1) U E(7), we have
gk(T) :Fl(T)U“'UFk,l(T)USk(T),

where Sk (1) = My (1) U My (1), Ai(7) = Ni(7) UN;(7) (0 <i<k—1), and
Ii(1) = M;(1) U M;(7) (1 <i<k—1). Using the conditions on M;(7) (1 <
i < k), we see that the assumptions on & (7) stated in the Introduction are
satisfied. Now we show that the set of roots of P(2)Q(z) contains Fy(7).
Note that if v € C is a zero of P(z) (resp. Q(z)), then 7 is also a zero of
P(z) (resp. Q(z)). If the assumptions of Lemma are satisfied, then the
set of roots of P(z) (resp. Q(z)) contains E(7) (resp. {7,7}). Since P(z)
and Q(z) are coprime, 7 &€ & (1), and so Fi(1) = E(7) U {7, 7}. Thus the
set of the roots of P(z)Q(z) contains Fj(7) in this case. On the other hand,
if the assumptions of Lemma are satisfied, then we get & (1) D {7,7}
and Fi(7) = &Ek(7) \ {7, 7}. Moreover, the set of the roots of P(z) contains
Fi (7). Hence case of Theorem |1.3| holds in both cases.

We now consider the case of d > 3. By and Lemma we get
b=1, and so d is even. By Lemma the roots of P(2)Q(z) are included
in M. By Lemma or there exist 71 € C with |r;| = 1 and &, (11)
with k; > 1 such that

(i) 71 ¢ &, (1) and P(z),Q(z) are divisible by F(™)(z), z — 1, respec-
tively, or
(ii) 71 € &, (71) and P(z) is divisible by F(")(2)/(z — ).

Dividing (2.7)) by these terms, from Lemma we have
A(z)B'(2)P!(2) = A(2) BT (z1)Q'(=),

which has the same form as . For convenience, denote ") (z) := Pf(2)
and £ (z) := Qf(2). Since the number of the elements in &, (1) is not less
than d > 2, we have degn™™ (2) < deg €M (2). In particular, degn™ ()M (2)
> 0. Let o) € C with || = 1 be a root of M (2)6((2) having the small-
est positive argument among its roots. If €M (M) #£ 0, then nM (o) = 0.
We apply Lemma with P(z) = nM(2) and Q(z) = €M (z). We write
the polynomials corresponding to Pf(z) and QTf(z) therein as 7 (z) and
£@)(z), respectively. Then we see that degn(®(z) < deg&®(z). Repeating
this process, we can define n(V)(2),£®)(2), and o (i = 2,3,...) inductively
whenever €071 (a(=1)) % 0. This process terminates in a finite number of

steps since PT(z) is a polynomial.
Thus there exists an integer & > 1 such that £ (%)) = 0. Since n(k)
4.2

and £ (2) are factors of Pf(z) and Q1(2), respectively, Lemma or
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implies the following: There exist 7 € C with || = 1 and &, (m) with
ko > 1 such that

(i) 7 ¢ Ek,(m2) and QF(2), PT(2) are divisible by F()(z),z — 7, re-

spectively, or

(i) 7o € &k, (m2) and QF(2) is divisible by F(™)(2)/(z — 7).
We note that 7 # 72, since B(11) = A(m2) = 0 and since A(z) and B(z)
are coprime. For j = 1,2, we set &, (7;) := c‘fkj (rj) U ((jk]. (75). As in the case
where d = 2 and P(z)Q(z) has non-real roots, we see that the set of roots of
P(z) (resp. Q(z)) contains &k, (11) \ {71, 71} (resp. &k, (m2) \ {72, 72}) both in
the case of Lemmas |4.1|and Since P(z) and Q(z) are coprime, we obtain

(€ (1) \ {71, 71}) N (Ey (72) \ {72, 72}) = 0,

and so

Fiey (11) N Fiey (12) C (Eky (11) N Epy (12)) U {11, 71, T2, T2} C {71,771, T2, T2}
Hence we obtain case of Theorem .

In what follows, we show that @1 (o~ %" ), ... &, (a4 ) are algebraically
dependent under the assumption that case , , or in Theorem
holds. Recall by (2.3)) that p; = a; (¢ =1,...,m) and b = 1 since d is even

in every case. It suffices to show that there exist a non-empty subset I of

{1,...,m} and non-zero integers e; (i € I) satisfying
2 €i
. z¢+1
5.1 (e =TT == ) eHy,
(5.1) et =T(w ) <
el i€l

where Hy is the subgroup of the multiplicative group K (z)* defined by (2.1,
or there exists a g(z) € K(z)* such that

[Teiz) = o) :

iel

Here, if z = 0 is a zero or a pole of g(z), then it is a zero or a pole of
g(2%)/g(2), respectively. Hence g(0) # 0 because ¢;(0) = 1 (i € I). Then
we see by that F(z) == g(2) 7' [[;e; Di(2)% € K[[2] satisfies F(z%) =
F(z), which holds only if F'(z) = A € K. In fact, if | (> 1) is the lowest degree
of non-constant terms of F(z), then that of F(2%) is dl, which contradicts
F(z%) = F(z). Hence

[I2:(2)7 = Xg(2) € K[[2]] N K (2).
el
By Lemma [5.1] we have

H Qsi(a_dN)ei € K’
i€l
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which implies that @, (oz_dN), e @m(a_dN) are algebraically dependent and
thus we have only to prove (5.1]).
Note that, for any h > 1 and g(z) € K(z)*,

gz") _g(z") gz*) (="
9(z)  g(z) g(z%)  g(z"")
If d = 2, then for the proof of (5.1)) it suffices to check that

(5.2) €H,

(5.3) [1Z* +aiz +1)% € H
iel
because
241
5.4 211 = € Ho.
(5.4) 27+ o 2

First we suppose that case ({i) of Theorem holds. Since b; = —bs, we have
(22 4+ b1z +1)(22 +byz+1) =2 — (b3 — 2)22 + 1,

and then
-1
(5.5) (224brz+1)(22+byz+1) H ¥ +bjz2ji2 +1) = 27 2 T
7j=3
by b; = b —2(j=3,...,0—1) and b, = —b? | + 2. Therefore by 1}
and (| . we obtaln
-1
(2 +bz+ 1) [P+ b2+ 1)
j=1
2T T = 22 +bjz+1 cH
22 +bz+1 227 4 b2 41 >
which implies (5.3)).
Here we suspend the proof of the theorem and investigate the properties
of the sets defined in Section 1. For convenience, denote I(7) := Si(7).

Then &,(1) = Ur, Ti(7).
LEMMA 5.2. Let 7 € C with |[7| =1, k > 1, and Si(1) C (1) satisfy
(1.4). Suppose that T € Ex(7). Then

Card{i |1 <i<k,7rel(r)}=Card{i|1<i<k,Teliyr)}=1,
where Card denotes cardinality.

Proof. Since I;(t) = Ii(7) for i = 1,..., k, it suffices to show that
(5.6) Card{i |1 <i<k,7el;(r)}=1

z,y € C, we write x ~ y if x = y or if # = y. Noting that 7 €
(1) C Ule (1), we take [ ;== min{i > 1| 7¢ ~ 7} (< k). Suppose that
7 € I'j(1) C £2§() for some j > 1. Set j = ql +r, where ¢ and r are integers
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withg>0and 0 <r <I[-—1. Then 7 ~ 7# = 747" NTdr,andsorzo
by the minimality of [. We take b :=min{q > 1| 7 € I';(7)}. For the proof
of , it suffices to show that 7 & I'y4(7) for any ¢ > 1.

Suppose on the contrary that 7 € Iy (7). Then 7¢ € Apye—1(7).
Note that for any 4,5 with i > j, if v € A;(7), then 4 € A;(r). Thus
7~ 78 = (7D € Ay (7). Since Ay (1) = Ay(7), we obtain T € Ay(7),
which contradicts the fact that Ip(7) N Ay(7) =0. =

Define
(5.7) 94(2) = (2 =)z =7)
for v € C.

LEMMA 5.3. Let 7 € C with |7] =1, k > 1, and Sk(7) C Q2(7) satisfy
(1.4). Then there exists an integer valued function e on Fi(T) such that

(5.8) e(v)=e(®) #0

for any v € Fi(1) and

(5.9) [T 9" € Hy,
YEFR(T)

where Hy is the subgroup of K(2)* defined by (2.1). In particular, there
exists an integer p such that
(5.10) (22 +1)P 11 9-(2)°") € Hy.
YEFR(T\{£EV-1}
Proof. Tt suffices to show (5.9) because g —(z) = g_ =1(z) = 2> + 1.
Set Ail/d(T) ={yeC|y?ec A7)} fori=0,1,...,k—2and
gE(rsiz) = 11 = 11 @@ 1] %@.

YESK(T) Y€ k—1(T) ~eli(r)

In the same way as for (4.13), noting that Sk(7) = A,lgédl(T) by Sk(1) =

My (1) U My(1), Mp(7) = N,iidl(T), and Ag_1(7) = Np_1(7) U Np_1(7), we
see that

g@&(ryiz = I 69 II MO R | A E

yEA—1(7) FeAYL PN\ Ay (7) veAy {m\Ax(r)

H gv(zd)

YEAR_2(T)

x I1 ORI | B C)

YEN G (P\ Ak _a(7) yeAY Hr\AL(7)




184 H. Kaneko et al.

_ gv(zd)
= II o 1I

G

97
97( H ( H oz

YEAR_1(7) YEAR_2(T) veto(r) IV e
Since Ag(7) = {7, 7}, we obtain
(5.11) g*(2) = g(&r(r);2) [ 9+(2)7" € Ha.
ve{r7}

Note that for v € C,
(5.12) v € E(7) if and only if g(é’k(v')' v) = 0.
Suppose first that 7 & E(7). Then ( and (5.11)) imply (5.8)) and

because Fi (1) = Ex(7) U {7,T}. Notlng that T ¢ Ek(T) by Ek( ) = €k(7),
we get e(y) # 0 for any v € Fi(7) by (5.12). Next assume that 7 € Eg(7).
Then Lemma 1mphes that g*(z) is a polynomlal with g ( ) # 0 and

g*(T) #O0. Thus and (5.11) imply (5.8) and (5.9) by Fi(r) = Ek(7)

{T,T}. Moreover, e( ) #0 for any vy € fk )by (.12). =

Continuation of the proof of Theorem- 1.5 Suppose that case of The-
orem holds. Then for any v € fk( )\{j:\/ 1} we have a;(,) = (7 +7)

for some 1 < i(vy) < m. Using (5.4]) and ( , we obtain

H (22 + Ai(y)% + 1)6(7) € Hy, e(y)#0,
VEFR(T)\{£V -1}

which implies with a non-empty subset I of {1,...,m} and integers e;
(i € I). Note that for v,n € Fi(r) \ {£v/—1}, a;4) = a;(, if and only if
v ~ n. Moreover, if v ~ 7, then e(y) = e(n) by . Hence e; # 0 for any
el

Next suppose that case of Theorem holds. Then, for any ~v €
Fia (1) \ {j:\/jl} (resp. Y € Fiy (7—2) \ {j:\/jl})v we have Ai(y) = _(’Y +7)
for some i(y) (resp. a;,y = —(y +7) for some j(7)). Combining and
(5-10), we get

_—

(22 + 1) 11 Ciy (2)°0) € Hy,
VEFky (r1)\{£V -1}

(% +1)% 11 cjin ()7 € Hy,
YEFky (T2)\{£V—=1}

where q1, g2, e(y) = e(Fg, (11);7), and €'(v) = e(Fg,(72);y) are integers with

e(v), €(v) #0.
We show that (5.1)) is satisfied with a non-empty subset I of {1,...,m}
and integers e; (¢ € I). The case where g = 0 or g2 = 0 is clear. If ¢ # 0
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and go # 0, then (5.1)) follows from
H Ci(v)(z)—qw(v) H cj(v)(z)‘“e/(”) € Hy.
YEFr, ()\{£V-1} YEFry (2)\{£V-1}

By (5.8)), to prove the existence of the subset I such that e; # 0 (i € I), we
have only to show that

(5.13) Fir () \ AV =1} # Fiey (12) \ {=£V -1}
Suppose on the contrary that
(5.14) Fiea (1) \ {£V=1} = Figy (12) \ {£V/-1}.

Then, using (5.14)) and the assumptions on F, (7;) for i = 1,2, we get
(5.15)

Ek;(7i) C T (1) U{Ti, Ti} C (Fy (11) N Fy(12)) U{7i, 70, V=1, =V =1}

C {7—177—717 T277—725 V _17_ \% _1}

If there exists an ¢ € {1,2} such that 7; ¢ R, then &, (7;) contains at least
2d > 8 elements by (1.4)). This contradicts (5.15]). Hence we see that 71,79 €
{1,—1} by |n1| = |=2| = 1, and so 7;, = —1 for some h € {1,2} by 71 # 7o.
Therefore &, (—1) C {1,—1,v/—1,—/—1} by (5.15). Since &, (—1) contains
at least d > 4 elements by (1.4)), we obtain &, (—=1) = {1, —1,v/—1, —/—1},
which is impossible because 1 ¢ §2;(—1) for any ¢ > 1. This completes the
proof of Theorem 1.3. m

Proof of Theorem . If the values @1 (a~%"), ..., &, (a~%") in Section
are algebraically dependent, then we see that b = 1 and d is odd by (2.3])
and Lemma [3:2] The theorem can be proved in a similar way to Theorem
only except the following: We show that the sets Fj, (71) and Fp, (m2)
satisfy (5.13)). Suppose on the contrary that (5.14)) holds. Then, using the
assumptions on Fy, (7;) for i = 1,2, we get
(5.16)

Sk (7i) C Fiey (1) U{75, i} C (Fy (11) N Fey (72)) UA{73, 70, V=1, =V =1}
C {7—177-7177—2)7—727 vV —4,—V _1}
If there exists an i € {1,2} such that 7; ¢ R, then by the assumptions on
Sk, (1) we see that S, (7;) contains at least 2d elements. Thus (5.16|) implies
that d = 3 and
Skl(Tz) = {7—177—71, T2, T2, V—1,—v _1}

Hence
k; k;
\/—713 =7; or \/—713 =T.
Consequently, 7, = v/—1 or 7, = —v/—1, and so 6 < Card Si(r;) < 4 by
(5.16)), a contradiction.
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We now assume that 71, 72 € R. Since |11| = |r2| = 1, (5.16]) implies that,

fori=1,2,

Skl('rz) C {1, —1, \/j, —\/jl},
which contradicts the fact that Si, (7;) = (4Sk, (7i) since d is odd. This com-
pletes the proof of and Theorem 1.1. =
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