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1. Introduction. For a positive integer n, let s(n) = σ(n)−n, the sum
of the proper divisors of n. The function s has been studied since antiquity;
it may be the first function ever defined by mathematicians. Beginning with
Pythagoras, we have looked for cycles in the dynamical system formed when
iterating s. There are still a number of unsolved problems connected with
this dynamical system: Are there infinitely many cycles? Examples of cycles
are 6 → 6 and 220 → 284 → 220; about 12 million are known. Does the
set of numbers involved in some cycle have asymptotic density 0? We know
the upper density is bounded above by about 0.002. Is there an unbounded
orbit? The least starting value in question is n = 276. (For references on
these questions, see [KPP].)

Perhaps a more basic question about the function s is to identify its
image: What numbers are of the form s(n)? Note that if p, q are different
primes then s(pq) = p + q + 1. Not many even numbers are of this form,
but a slightly stronger version of Goldbach’s conjecture (every even number
starting with 8 is the sum of two different primes) implies that every odd
number starting with 9 is in the range of s. Since s(2) = 1, s(4) = 3, and
s(8) = 7, while s(n) = 5 has no solutions, it then follows from this slightly
stronger Goldbach conjecture that every odd number except 5 is in the range
of s. Moreover, this slightly stronger form of Goldbach’s conjecture is known
to be usually true. There are many papers in this line; a recent survey is [P].

So, almost all odd numbers (in the sense of asymptotic density) are of
the form s(n). In a short, beautiful paper, Erdős [E73] looked at the even
values of s, showing that a positive proportion of even numbers are missed.
He raised the issue of whether the asymptotic density of even values exists,
saying that it is not even known if the lower density is positive. Similar
questions are asked for the function sϕ(n) := n − ϕ(n), where ϕ is Euler’s
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function. Again, almost all odd numbers are attained by sϕ, but even less is
known about even values, compared with s(n). In fact, the Erdős argument
(that s misses a positive proportion of even values) fails for sϕ.

These thoughts were put in a more general context in [EGPS]. There the
following conjecture is formulated.

Conjecture 1.1. If A is a set of natural numbers of asymptotic den-
sity 0, then s−1(A) also has asymptotic density 0.

If this is true, one consequence would be that the set of even values of s
does not have density 0. Indeed, if A is the set of even numbers in the range
of s, then

s−1(A) = {n even : n, n/2 not squares} ∪ {n2 : n odd},
so s−1(A) has asymptotic density 1/2. Thus, if Conjecture 1.1 is true, then
A does not have asymptotic density 0.

In this paper we prove the following theorem.

Theorem 1.2. The set of even numbers of the form s(n) for some in-
teger n has positive lower density.

With a few superficial changes the proof of Theorem 1.2 can be adapted
to show the following more general result: For any two fixed positive integers
a, b, a positive proportion of numbers in the residue class a (mod b) are of
the form s(n). Since asymptotically all odd numbers are of the form s(n),
this result has new content only in the case that a, b are both even.

Essentially the same proof will show that numbers of the form sϕ(n)
contain a positive proportion of all even numbers (or any residue class).

It is hoped that the methods in this paper can be of help in proving
Conjecture 1.1.

It seems likely that the asymptotic density of even numbers in the range
of s exists. In some numerical work in [PY] it appears that the even numbers
in the range have density about 1/3 and the density of even numbers missing
is about 1/6. In [CZ] it is shown that the lower density of the set of even
numbers missing from the range is more than 0.06. The proof of Theorem
1.2 that we present is effective, but we have made no effort towards finding
some explicit lower bound for the lower density of even values of s.

2. Notation and lemmas. The letters p, q, r, π, with or without dashes
or subscripts, will represent prime numbers. We let τ(n) denote the number
of positive divisors of n. We say a positive integer n is deficient if s(n) < n.
We let P (n) denote the largest prime factor of n when n > 1, and we set
P (1) = 1. We say a positive integer n is z-smooth if P (n) ≤ z. For each
prime p and natural number n, we let vp(n) denote the exponent of p in the
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prime factorization of n. For each large number n, let

y = y(n) = log log n/log log log n.

Lemma 2.1. On a set of asymptotic density 1 we have:

(1) p2a | σ(n) for every prime power pa ≤ y,
(2) P (gcd(n, σ(n))) ≤ y,
(3) σ(n)/gcd(n, σ(n)) is divisible by every prime p ≤ y,
(4) every prime factor of s(n)/gcd(n, σ(n)) exceeds y.

Proof. (1) Let x be large, let y = y(x), and let d be an integer with
1 < d ≤ y. The integers n ≤ x with d2 |σ(n) include all n ≤ x which are
precisely divisible (i.e., divisible to just the first power) by two different
primes p1, p2 in the residue class −1 (mod d). The complementary set where
d2 - σ(n) is contained in the union of the set of those n ≤ x divisible by
the square of a prime p > y and the set of those n ≤ x which are not
divisible by two different primes p ≡ −1 (mod d) with p ∈ (y,

√
x). The

number of n ≤ x divisible by the square of a prime p > y is at most
x
∑

p>y 1/p2 � x/(y log y), so these numbers are negligible. Let Pd(y,
√
x)

denote the set of primes p ≡ −1 (mod d) with p ∈ (y,
√
x). Note that the

prime number theorem for residue classes implies that∑
p∈Pd(y,

√
x)

1

p
=

log(log x/log y)

ϕ(d)
+O(1)

uniformly for d ≤ y. The number of n ≤ x which are not divisible by two
different primes in Pd(y,

√
x) is, by the sieve (see [HR, Theorem 2.2]),

� x

(
1 +

∑
p∈Pd(y,

√
x)

1

p

) ∏
p∈Pd(y,

√
x)

(
1− 1

p

)

� x log log x

ϕ(d)
exp

(
− log(log x/log y)

ϕ(d)

)
≤ x log log x

ϕ(d)
exp

(
− log(log x/log y)

d

)

�


x

ϕ(d)
if 1

2y < d ≤ y,

x

ϕ(d) log log x
if d ≤ 1

2y.

Letting d run over primes and powers of primes, we see that the number of
integers n ≤ x which do not have the property in (1) is � x/log y = o(x) as
x→∞.

(2) In [ELP, Theorem 8], it is shown that on a set of asymptotic den-
sity 1, gcd(n, ϕ(n)) is the largest divisor of n supported on the primes at
most log log n. Virtually the same proof establishes the analogous result for
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gcd(n, σ(n)), so that for almost all n, gcd(n, ϕ(n)) = gcd(n, σ(n)). (Also see
[E56, EGPS, KS, Pol].) To see that assertion (2) usually holds, it suffices to
note that the number of n ≤ x divisible by a prime in (y, log log x] is o(x)
as x→∞.

(3) Let y = y(x), where x is large. Assertion (3) will follow from (1) for
n ≤ x if for each prime power pa with pa ≤ y < pa+1 we have p2a - n. But
the number of n ≤ x which fail to satisfy this condition is at most

x
∑
p≤y

1

y
� x

log y
.

(4) For this part, we have seen that we may assume that for each prime
p ≤ y, we have vp(σ(n)) > vp(n). Thus, vp(s(n)) = vp(n) = vp(gcd(n, σ(n)))
for such primes p.

Lemma 2.2. The set of numbers n with P (n) > n1/2 and π2 | s(n) for
some prime π > y(n) has asymptotic density 0.

Proof. Assume that n ∈ (x, 2x] and that n = pm where p = P (n) > x1/2.
Let y = y(x) and say π2 | s(n) where π > y. We have

s(n) = ps(m) + σ(m) ≡ 0 (mod π2).

Thus, if π | s(m), then π |σ(m), so that π |m. By part (2) of Lemma 2.1
this occurs only for o(x) choices for n, so assume that π - s(m). The
above congruence thus places p in a residue class Rπ,m (mod π2) deter-
mined by π and m. Since s(n) � x log log x, there is some constant c such
that π ≤ c(x log log x)1/2. First assume that π > log x, so that π ∈ I :=
(log x, c(x log log x)1/2]. Using only the fact that p ≤ 2x/m is an integer in
a residue class mod π2, we find that the number of choices for n is at most∑

π∈I

∑
m<2x1/2

(
1 +

2x

mπ2

)
�
∑
π∈I

(
x1/2 +

x log x

π2

)
� x

log log x
.

So it remains to consider values of π ∈ (y, log x]. For this we use the Brun–
Titchmarsh inequality to count the number of triples π,m, p, getting∑

y<π≤log x

∑
m<2x1/2

∑
p≤2x/m

p≡Rπ,m (modπ2)

1�
∑
π

∑
m

x

mπ2 log(x/mπ2)

�
∑
π

x log x

π2 log x
� x

y log y
.

We remark that it would be nice to remove the condition P (n) > n1/2

in Lemma 2.2, but we do not know how to do this. Note that Lemmas 2.1
and 2.2 imply that a positive proportion of squarefree integers n have s(n)
squarefree.



The range of the sum-of-proper-divisors function 191

Lemma 2.3. The set of deficient numbers n for which s(n) is non-
deficient has asymptotic density 0.

This result follows from [EGPS, Theorem 5.1] and the continuity of the
distribution function for σ(n)/n.

Lemma 2.4. As n tends to infinity through a set of asymptotic density
1 we have τ(s(n)) = (log n)log 2+o(1).

This result follows from the estimates in [T]. We remark that our proof
does not depend on this lemma; we could have used the weaker inequality
τ(s(n)) ≤ no(1) which holds for all n as n → ∞, but we thought it good
to highlight some other recent research concerning the statistical study of
s(n).

Lemma 2.5. On a set of integers n of asymptotic density 1 we have∑
r |σ(n)

r>(log logn)2

1

r
≤ 1.

This follows by the method of proof of [DL, Lemma 5].

3. Proof of Theorem 1.2. We identify a set of integers A such that
every member of s(A) is even and s(A) has positive lower density. We shall
pile on a number of conditions for A to satisfy. For our initial choice for A,
we take the set of even deficient numbers. This set has a positive density
(see [K]). Let x be large; we study A(x) := A∩ [1, x]. We assume that each
member n of A(x) is of the form

n = pm, p ∈
(
x

2m
,
x

m

]
, m = q` = qrk,

k ≤ x1/60, r ∈ (x1/15, x1/12], q ∈ (x7/20, x11/30].

So n = pm = pq` = pqrk. Note that n,m, `, k are all even deficient numbers,
each running through a positive proportion of numbers to their respective
bounds: n ≤ x, m ≤ x7/15, ` ≤ x1/10, and k ≤ x1/60. We assume that each of
these four variables has the properties in the lemmas. We also assume that
k has no prime factors in (y(k), y(x)].

Let y = y(x). Say δ > 0 is such that #A(x) ≥ δx for all large x. For
each y-smooth integer d, let Ad(x) denote the subset of A(x) consisting
of those members n with largest y-smooth divisor equal to d. By standard
results on smooth numbers (see [dB]), there is some constant c such that
the reciprocal sum of those y-smooth numbers d > yc is less than 1

3δ log y.
Note that if d ≤ yc is y-smooth, then the number of integers n ≤ x with
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greatest y-smooth divisor equal to d is

(3.1) (1 + o(1))
x

d

∏
p≤y

(
1− 1

p

)
= (1 + o(1))

x

eγd log y

uniformly as x → ∞. Let D denote the set of y-smooth numbers d ≤ yc

with

#Ad(x) ≥ δ

6

x

d log y
.

We deduce from (3.1) that for large x,

(3.2)
∑
d∈D

#Ad(x) ≤ x

log y

∑
d∈D

1

d
,

and, by definition,∑
P (d)≤y
d≤yc
d6∈D

#Ad(x) <
δ

6

x

log y

∑
P (d)≤y

1

d
= (1 + o(1))

δ

6
eγx.

Using
∑

d≤yc, P (d)≤y #Ad(x) > 2
3δx, we thus have, for x large,∑

P (d)≤y
d≤yc
d6∈D

#Ad(x) <
1

3
δx,

∑
d∈D

#Ad(x) >
1

3
δx,

which, with the upper bound (3.2) just seen for this last sum, gives

(3.3)
∑
d∈D

1

d
>

1

3
δ log y.

For d ∈ D and a positive integer u, let Rd(u) denote the number of
representations of u in the form s(n) for n ∈ Ad(x). By the definition of D,∑

u

Rd(u) = #Ad(x)� x

d log y

uniformly for all d ∈ D. Note too that if d 6= d′, then we cannot have both
Rd(u), Rd′(u) > 0. Indeed, by Lemma 2.1, if Rd(u) > 0, then d is the largest
y-smooth divisor of u.

We will show that

(3.4)
∑
u

Rd(u)2 � x

d log y

uniformly for each d ∈ D, so that from Cauchy’s inequality it will follow
using (3.3) that

#s(A(x)) ≥
∑
d∈D

#s(Ad(x)) ≥
∑
d∈D

(
∑

uRd(u))2∑
uRd(u)2

�
∑
d∈D

x

d log y
� x.
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The sum
∑

uRd(u)2 counts solutions to s(n) = s(n′) for n, n′ ∈ Ad(x),
with n = pm, n′ = p′m′. We have

(3.5) ps(m) + σ(m) = p′s(m′) + σ(m′).

Suppose that m = m′. Since m > 1 (which implies that s(m) > 0), we
deduce that p = p′. This situation contributes

∑
uRd(u) to

∑
uRd(u)2,

which is easily seen to be � x/d log y. Thus, we may assume that m 6= m′.
By Lemma 2.1, we have gcd(m,σ(m)) = gcd(m′, σ(m′)) = d, so that

d | (s(m), s(m′)). Write gcd(s(m), s(m′)) = dh. By Lemma 2.1, every prime
factor of h exceeds y. Moreover, since P (m) = q > m7/9, it follows from
Lemma 2.2 that we may assume that s(m) is not divisible by the square of
any prime π > y. Hence, h is squarefree.

From (3.5) we have

(3.6) p
s(m)

dh
− p′ s(m

′)

dh
=
σ(m′)− σ(m)

dh
.

For fixed m,m′, we count the number of pairs of primes p, p′ that satisfy
this equation. Note that σ(m) 6= σ(m′), since if they were equal, we would
deduce from (3.5) that ps(m) = p′s(m′), and since

min{p, p′} > max{m,m′} > max{s(m), s(m′)},
we would get s(m) = s(m′), so m = m′, which is false. Let u, u′ be the
integral solution of the linear equation (3.6) in p, p′ with u > 0 and minimal.
Then

p = u+
s(m′)

dh
t and p′ = u′ +

s(m)

dh
t

are both primes and 0 ≤ t ≤ (x/m)/(s(m′)/dh) = xdh/(ms(m′)). Let

A =
s(m)

dh
· s(m

′)

dh
· |σ(m)− σ(m′)|

dh
=: A1A2A3, say.

By the sieve [HR, Theorem 2.2], the number of such p ≤ x/m is

(3.7)

� xdh

ms(m′)(log(xdh/ms(m′)))2
A

ϕ(A)
� xdh

mm′(log x)2
A1

ϕ(A1)

A2

ϕ(A2)

A3

ϕ(A3)
,

where the second inequality follows because ms(m′) ≤ mm′ ≤ x14/15 and
s(m′)� m′.

Since s(m)/(dh) and s(m′)/(dh) are deficient, it follows that

A1

ϕ(A1)
� 1,

A2

ϕ(A2)
� 1

However, A3/ϕ(A3) is not small. In fact, by Lemma 2.1, we may assume
that A3 is divisible by all primes ≤ y = y(x), so log y � A3/ϕ(A3) �
log log x. Write A3 = A3,1A3,2A3,3, where A3,1 is the largest divisor with
P (A3,1) ≤ (log log x)2 and A3,2 is the largest divisor of what remains with
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P (A3,2) ≤ log x. Since A3 has O(log x/log log x) distinct prime factors, it
follows that A3,3/ϕ(A3,3) ∼ 1 as x→∞ and so

(3.8)
A1A2A3

ϕ(A1)ϕ(A2)ϕ(A3)
� A3

ϕ(A3)
� A3,2

ϕ(A3,2)
log y.

Let A′3,2 be the largest divisor of A3,2 which is coprime to σ(m). By Lemma
2.5, we may assume that A3,2/ϕ(A3,2)� A′3,2/ϕ(A′3,2). From (3.7), we now
have the problem of showing that for d ∈ D,

(3.9)
x log y

(log x)2

∑
m,m′

dhA′3,2
mm′ϕ(A′3,2)

� x

d log y
,

where dh = gcd(s(m), s(m′)).

3.1. The case h > x1/3. We first sum overm,m′ with h > x1/3, showing
that the contribution to (3.9) is small. With m = q` and h | s(m), we have

(3.10) s(m) = qs(`) + σ(`) ≡ 0 (mod h).

In addition, h and σ(`) are coprime. Indeed, if some prime π divides
gcd(h, σ(`)), then π = q or π | s(`). In the latter case, π | `, so π |n. But
π |σ(`) implies that π |σ(n), so we have a contradiction to our assumption
that the properties in Lemma 2.1 hold. If π = q, since π |σ(`), we again get
π | gcd(n, σ(n)), a contradiction. So, given h, ` we find from (3.10) that q is
in a fixed coprime residue class modulo h; say

q ≡ ah,` (mod h).

Similarly, we have m′ = q′`′ and q′ ≡ ah,`′ (mod h).

Since h | gcd(s(m), s(m′)), formula (3.5) implies that h |σ(m) − σ(m′),
so that m ≡ m′ (mod h). With (3.10) we get

`σ(`)

s(`)
≡ −q` = −m ≡ −m′ = −q′`′ ≡ `′σ(`′)

s(`′)
(mod h),

which implies

(3.11) s(`′)`σ(`)− s(`)`′σ(`′) ≡ 0 (mod h).

The absolute value of the left-hand side is < 2 max{`3, `′3} < 2x3/10. Thus,
for h > x1/3, the integer on the left-hand side of the above congruence must
be zero. We thus get

(3.12)
`σ(`)

s(`)
=
`′σ(`′)

s(`′)
, or equivalently

`2

s(`)
+ ` =

`′2

s(`′)
+ `′.

We have gcd(`, s(`)) = gcd(`′, s(`′)) = d. Further, by property (3) in Lemma
2.1, d rad(d) | gcd(σ(`), σ(`′)), where rad(d) is the largest squarefree divisor
of d. Hence, gcd(`2, s(`)) = d and the same is true for gcd(`′2, s(`′)). Putting
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` = dλ, `′ = dλ′, we get

dλ2

s(`)/d
− dλ′2

s(`′)/d
= `− `′,

and the two fractions appearing on the left-hand side above are reduced.
So, their denominators must be equal, that is, s(`)/d = s(`′)/d, therefore
s(`) = s(`′). Now equation (3.12) gives

`2 + `s(`) = `′2 + `′s(`),

and since the function t2 + ts(`) is increasing in t, this gives ` = `′. Thus, in
the case h > x1/3, we must have ` = `′ and the congruence classes ah,`, ah,`′
of q and q′ modulo h are the same.

Summing the expression in (3.9) over m,m′ where h | gcd(s(m), s(m′)),
h > x1/3, and using the maximal order of A′3,2/ϕ(A′3,2) , we have

dx log log x

(log x)2

∑
m,m′,h

h

mm′
=
dx log log x

(log x)2

∑
q,q′,`,h

h

qq′`2
.

Since ` = `′ and m 6= m′, we deduce that q 6= q′; assume that q > q′. Since
q ≡ q′ ≡ ah,` (mod h), the sum of 1/q above is O((log x)/h), even forgetting
that q is prime. Thus, the above sum reduces to

dx log log x

log x

∑
q′,`,h

1

q′`2
≤ dx log log x

log x

∑
q′,`

τ(s(q′`))

q′`2
≤ x(log x)O(1)

∑
q′,`

1

q′`2
,

by Lemma 2.4. Now
∑

1/q′ � 1 and
∑

1/`2 � x−1/15, so we have the
estimate

x14/15(log x)O(1) = O

(
x

d log y

)
,

which is consistent with (3.9).

3.2. The case h ≤ x1/3. We now consider values of h with h ≤ x1/3.
Since s(m′) is deficient, we have s(m′)/ϕ(s(m′)) � 1, so that A′3,2/ϕ(A′3,2)
� A′′3,2/ϕ(A′′3,2), where A′′3,2 is the largest divisor of A′3,2 coprime to s(m′).
Fix m′, h with h | s(m′) and consider numbers m that can arise. As noted
before,

m ≡ σ(m) ≡ σ(m′) ≡ m′ (mod h).

Since h | s(m) and gcd(m,σ(m)) = d, we have gcd(m,h) = gcd(σ(m), h) = 1.
Recall that m = qrk. Thus, the above congruences, rewritten as

qrk ≡ (q + 1)(r + 1)σ(k) ≡ m′ (mod h),

determine u := qr (mod h) and v := q + r (mod h), when k,m′ are given.
As we have seen, Lemma 2.2 allows us to assume that h is squarefree. This
implies that the number of solutions to the congruence t2 − vt + u ≡ 0
(mod h) is at most τ(h). That is, there are at most τ(h) pairs a, b (mod h)
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such that we have q ≡ a (mod h) and r ≡ b (mod h). Let Sh,k denote the
set of pairs a, b that arise for m′, h, k.

For m′, h, k, and the pair a, b in Sh,k all given, define

fm′,h,k,a,b(qr) = f(qr) =
∑

π |σ(kqr)−σ(m′)
(log log x)2<π≤log x

π -hσ(kqr)

1

π
,

where π runs over primes. Note that if f(qr) ≤ 1, then A′′3,2/ϕ(A′′3,2) � 1.
Say k, r are given and π |σ(kqr)− σ(m′) and π - σ(kqr). Since

qσ(kr) = −σ(kr) + σ(kqr) ≡ −σ(kr) + σ(m′) (mod π),

if kr, π are fixed, then q is in a residue class modulo π, say cπ,kr (mod π).
To summarize, with m′, h, kr, a, b fixed, if m = kqr satisfies π |A′′3,2, we have
q ≡ cπ,kr (mod π), q ≡ a (mod h), r ≡ b (mod h). Since π - h, the two
congruences for q may be combined to put q in a single residue class modulo
πh. Thus, using q > x7/20, h ≤ x1/3, π ≤ log x, and the Brun–Titchmarsh
inequality, we obtain∑

qr

f(qr)

qr
�
∑
π

1

π

∑
r

1

r

∑
q

1

q

�
∑
π

1

πϕ(πh)

∑
r

1

r
�
∑
π

1

π2h

∑
r

1

r
.

To estimate
∑

r 1/r we consider two ranges for h. Since r ≡ b (mod h), we
have

∑
r

1

r
�


log x

x1/20
if h > x1/20,

1

h
if h ≤ x1/20.

Here, we are using that r ∈ (x1/15, x1/12], a trivial estimate when h > x1/20,
and the Brun–Titchmarsh inequality with partial summation (as well as
ϕ(h)� h) in the second case. Thus,

(3.13)
∑
qr

f(qr)

qr
�


log x

hx1/20
if h > x1/20,

1

h2(log log x)2
if h ≤ x1/20.

The expression in (3.9) for h ≤ x1/3 can be dealt with as follows.
Fix m′, h. Since A′3,2/ϕ(A′3,2) � 1 or log log x/log y depending on whether
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f(qr) ≤ 1 or f(qr) > 1, we have

(3.14)
x log y

(log x)2

∑
m

dhA′3,2
mm′ϕ(A′3,2)

� x log y

(log x)2
dh

m′

∑
k

1

k

∑
Sh,k

( ∑
f(qr)≤1

1

qr
+

∑
f(qr)>1

log log x

qr log y

)

≤ x log y

(log x)2
dh

m′

∑
k

1

k

∑
Sh,k

∑
qr

(
1

qr
+
f(qr) log log x

qr log y

)
.

First assume that x1/20 < h ≤ x1/3. By (3.13) we have∑
qr

(
1

qr
+
f(qr) log log x

qr log y

)
� log x log log x

hx1/20 log y
.

Thus, (3.14) and
∑

k 1/k � (log x)/d log y imply that

x log y

(log x)2

∑
m

dhA′3,2
mm′ϕ(A′3,2)

� x log y

(log x)2
dh

m′

∑
k

1

k

τ(h) log x log log x

hx1/20 log y

� x log y

(log x)2
dh

m′
log x

d log y

τ(h) log x log log x

hx1/20 log y

=
x19/20 log log x

log y

τ(h)

m′
.

Now we sum over choices for m′, h. We have∑
h | s(m′)

τ(h) ≤ τ(s(m′))2 � (log x)1.4,

using Lemma 2.4. Further,
∑

m′ 1/m′ � (log x)/d log y. Thus, the sum in

(3.9) is at most (x19/20/d)(log x)O(1) when x1/20 < h ≤ x1/3, which is cer-
tainly consistent with the inequality in (3.9).

It remains to consider the case h ≤ x1/20. By (3.13), we have∑
qr

(
1

qr
+
f(qr) log log x

qr log y

)
� 1

h2
+

log log x

h2 log y(log log x)2
� 1

h2
.

Thus, from (3.14) and
∑

k 1/k � (log x)/d log y, we deduce

x log y

(log x)2

∑
m

dhA′3,2
mm′ϕ(A′3,2)

� x log y

(log x)2
dh

m′

∑
k

1

k

τ(h)

h2
� x

log x

τ(h)

hm′
.

Now h | s(m′) and we are assuming that s(m′) is deficient. Therefore,∑
h

τ(h)

h
≤
(∑

h

1

h

)2

< 4.
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So, summing the previous expression over h,m′ we get an estimate which is
� x/d log y. This completes the proof of (3.9) and Theorem 1.2.
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