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A functional relation for Tornheim’s double zeta functions
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Kazuhiro Onodera (Chiba)

1. Introduction. Tornheim’s double zeta function is defined as

ζ(s, t;u) =

∞∑
m,n=1

1

msnt(m+ n)u

for (s, t, u) ∈ C3 with Re(s + u) > 1, Re(t + u) > 1 and Re(s + t + u) > 2.
It is known, from Matsumoto [8, Theorem 1], that ζ(s, t;u) can be mero-
morphically continued to the whole space C3, and its singularities are lo-
cated on the subsets of C3 defined by one of the equations s + u = 1 − l,
t + u = 1 − l (l = 0, 1, 2, . . . ) and s + t + u = 2. This function can be
regarded as a generalization of some well-known zeta functions: the prod-
uct of two Riemann zeta functions ζ(s)ζ(t) = ζ(s, t; 0), the Euler double
zeta function ζ(u, t) = ζ(0, t;u) and the SU(3)-type Witten zeta function
ζSU(3)(s) = 2sζ(s, s; s). Euler and Tornheim [14] and many other people
gave a lot of relations between the values ζ(s, t;u) for triples (s, t, u) of
non-negative integers in the domain of convergence, but few relations as
functions of complex variables have been found. As an exception, Tsumura
[15, Theorem 4.5] represented explicitly the function

(1.1) Z(s, t;u) = ζ(s, t;u) + cos(πt)ζ(t, u; s) + cos(πs)ζ(u, s; t)

in terms of the Riemann zeta function, when s, t ∈ Z≥0, t ≥ 2 and u ∈ C, ex-
cept for singularities. Afterward Nakamura [10, Theorem 1.2] gave a simpler
version: for s, t ∈ Z≥1 and all u ∈ C except for the singular points,

Z(s, t;u) = 2

[s/2]∑
h=0

(
s+ t− 2h− 1

s− 2h

)
ζ(2h)ζ(s+ t+ u− 2h)(1.2)

+ 2

[t/2]∑
k=0

(
s+ t− 2k − 1

t− 2k

)
ζ(2k)ζ(s+ t+ u− 2k),
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where [x] for x ∈ R denotes the greatest integer not exceeding x. This result
seems really fascinating because it contains most of the known relations be-
tween the values ζ(s, t;u) for s, t, u ∈ Z≥1 and the Riemann zeta values (see
[10, §3]). The aim of this paper is to generalize it to a relation between Torn-
heim’s double zeta functions of three complex variables. Our main result is

Theorem. The following relation holds on the whole space C3 except
for the singular points of both sides:

Z(s, t;u) = A(s, t;u) +A(t, s;u),

where, for (s, t, u) ∈ C3 with s,−t, 1− t− u 6= 0, 1, 2, . . . ,

(1.3)

A(s, t;u) =
sin(πs)

2πi

�

L

cot

(
π(s− η)

2

)
Γ (t+ η)Γ (−η)

Γ (t)
ζ(s− η)ζ(t+ u+ η) dη.

Here, the contour L is a line from −i∞ to i∞ indented in such a manner
as to separate the poles at η = s− 2n,−t−n, 1− t−u (n = 0, 1, 2, . . . ) from
the poles at η = 0, 1, 2, . . . .

Remark 1.1. The singularities of A(s, t;u) are located only on the sub-
sets of C3 defined by the equations t + u = 1 − l (l = 0, 1, 2, . . . ). This can
be easily seen by shifting the contour L as follows. Let K be a non-negative
integer. If Re(s) < K + 1/2, −K − 1/2 < Re(t) and −K + 1/2 < Re(t+ u),
then

(1.4) A(s, t;u) = 2

K∑
k=0

(t)k
k!

cos2
(
π(s− k)

2

)
ζ(s− k)ζ(t+ u+ k)

+
sin(πs)

2πi

�

LK

cot

(
π(s− η)

2

)
Γ (t+ η)Γ (−η)

Γ (t)
ζ(s− η)ζ(t+ u+ η) dη,

where (t)k = Γ (t+ k)/Γ (t) and LK is the vertical line from K + 1/2− i∞
to K + 1/2 + i∞. Also, from this, it is clear that our functional relation is
a generalization of (1.2) (see (4.2)).

Remark 1.2. SinceZ(s, t;u)

Z(t, u; s)

Z(u, s; t)

 =

 1 cos(πt) cos(πs)

cos(πt) 1 cos(πu)

cos(πs) cos(πu) 1


ζ(s, t;u)

ζ(t, u; s)

ζ(u, s; t)

 ,

we can write ζ(s, t;u) in terms of the Z-function as

∆(s, t, u)ζ(s, t;u) = (1− cos2(πu))Z(s, t;u)(1.5)

+ (cos(πs) cos(πu)− cos(πt))Z(t, u; s)

+ (cos(πt) cos(πu)− cos(πs))Z(u, s; t),
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where

∆(s, t, u) = 1− cos2(πs)− cos2(πt)− cos2(πu) + 2 cos(πs) cos(πt) cos(πu),

and so the Theorem gives a new integral representation of ζ(s, t;u). Some
special cases will be displayed in Proposition 4.1.

In this paper, to prove the Theorem, we employ Li’s method [7] which
gave a simple proof of (1.2). In §2, we will generalize some partial fraction
decompositions used there to a form usable in our case. We will give a proof
of the Theorem in §3 and exhibit its applications in §4. In the Appendix,
we will prove a functional equation for Euler’s double zeta function.

2. Generalized partial fraction decomposition. The following par-
tial fraction decomposition plays a fundamental role in the theory of multiple
zeta values: for two independent variables p, q and two positive integers s, t,

(2.1)
1

psqt
=

s−1∑
h=0

(t)h
h!

1

ps−h(p+ q)t+h
+

t−1∑
k=0

(s)k
k!

1

qt−k(p+ q)s+k

(see [5], for instance). In this section, we will give two partial fraction de-
compositions in the case of s, t being complex numbers.

Lemma 2.1. Let p, q be positive real numbers and let s, t be complex
numbers whose real parts are positive. If s, t 6= 1, 2, . . . , then

(2.2)
Γ (s)Γ (t)

psqt
= I(s, t; p, r) + I(t, s; q, r),

where r = p+ q and

(2.3) I(s, t; p, r) =
1

2πi

�

Ls,t

Γ (1− s+ η)Γ (−η)

Γ (1− s)
Γ (s− η)

ps−η
Γ (t+ η)

rt+η
dη.

Here, the contour Ls,t is a line from −i∞ to i∞ indented in such a manner
as to separate the points η = s − 1 −m,−t −m (m = 0, 1, 2, . . . ) from the
points η = s+ n, n (n = 0, 1, 2, . . . ).

Proof. From the usual integral representation of the gamma function, it
follows that

I(s, t; p, r)

=
1

2πi

�

Ls,t

Γ (1− s+ η)Γ (−η)

Γ (1− s)

( � �

(R>0)2

e−pµ−rνµs−η−1νt+η−1 dµ dν
)
dη.
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By a suitable choice of Ls,t, it can be shown that the integrations can be
interchanged. Hence,

I(s, t; p, r)

=
� �

(R>0)2

e−pµ−rνµs−1νt−1
(

1

2πi

�

Ls,t

Γ (1− s+ η)Γ (−η)

Γ (1− s)
(ν/µ)η dη

)
dµ dν.

Since the innermost integral is (1 + ν/µ)s−1 (see [17, §14.51, Corollary]), we
obtain

I(s, t; p, r) =
� �

(R>0)2

e−pµ−rν(µ+ ν)s−1νt−1 dµ dν

=
� �

0<ν<µ

e−pµ−qνµs−1νt−1 dµ dν.

We note that

I(t, s; q, r) =
� �

0<µ<ν

e−pµ−qνµs−1νt−1 dµ dν,

and so the right hand side of (2.2) is equal to
� �

(R>0)2

e−pµ−qνµs−1νt−1 dµ dν =
Γ (s)Γ (t)

psqt
.

This is the desired result.

Lemma 2.2. Let p, q, s, t be as in Lemma 2.1. If p < q and s, t 6= 1, 2, . . . ,
then

(2.4)
cos(πs)Γ (s)Γ (t)

psqt
= J(s, t; p, q − p) + I(t, s; q, q − p),

where

J(s, t; p, q − p)

=
1

2πi

�

Ls,t

Γ (1− s+ η)Γ (−η)

Γ (1− s)
cos(π(s− η))Γ (s− η)

ps−η
Γ (t+ η)

(q − p)t+η
dη.

Proof. For any p, r ∈ C×, the integrand in (2.3) is

� |η|Re(t)−1e−2π|η|eIm(η)(arg r−arg p)|p−s| |r−t|
as η → ±i∞ on Ls,t, where the implied constant does not depend on p, r, η.
This estimate ensures that, for any fixed q ∈ R>0, the right hand side of (2.2)
can be continued to C \ {±iR≥0 ∪ (−q ± iR≥0)} as a holomorphic function
in p, where the double signs correspond, and hence, if 0 < p < q, then

e±πisΓ (s)Γ (t)

psqt
=
Γ (s)Γ (t)

(−p)sqt
= I(s, t;−p, q − p) + I(t, s; q, q − p)
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and

I(s, t;−p, q − p)

=
1

2πi

�

Ls,t

Γ (1− s+ η)Γ (−η)

Γ (1− s)
e±πi(s−η)Γ (s− η)

ps−η
Γ (t+ η)

(q − p)t+η
dη.

Thus, we obtain Lemma 2.2.

3. Proof of Theorem. For simplicity of description, we suppose that
Re(s),Re(t),Re(u) > 2, s, t 6= 3, 4, 5, . . . , and the contour Ls,t always sat-
isfies the condition −1/2 ≤ Re(η) ≤ Re(s) − 1/2 for all η ∈ Ls,t. We first
evaluate

ζ(s, t;u) =
∞∑

m,n=1

1

msnt(m+ n)u
.

Applying Lemma 2.1 with (p, q) = (m,n), we see that

ζ(s, t;u) = X(s, t;u) +X(t, s;u),

where

X(s, t;u) =
1

2πi

∞∑
m,n=1

�

Ls,t

Γ (s, t; η)

ms−η(m+ n)t+u+η
dη,

Γ (s, t; η) =
Γ (1− s+ η)Γ (−η)Γ (s− η)Γ (t+ η)

Γ (1− s)Γ (s)Γ (t)
.

From the condition of Ls,t, it follows that the summation and integration in
X(s, t;u) can be interchanged. As a result,

X(s, t;u) =
1

2πi

�

Ls,t

Γ (s, t; η)ζ(s− η, 0; t+ u+ η) dη(3.1)

=
Γ (s+ t− 1)

Γ (s)Γ (t)
ζ(1, 0; s+ t+ u− 1)

+
1

2πi

�

Ls−1,t

Γ (s, t; η)ζ(s− η, 0; t+ u+ η) dη.

We next treat cos(πt)ζ(t, u; s) + cos(πs)ζ(u, s; t). Set

am,n(s, t;u) =
cos(πt)

mtnu(m+ n)s
+

cos(πs)

nums(m+ n)t

for m,n ∈ Z≥1. Applying Lemma 2.2 to each term, we obtain

am,n(s, t;u) = bm,n(s, t;u) + bm,n(t, s;u),

where
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bm,n(s, t;u)

=
I(s, t;m+ n, n) + J(s, t;m,n)

Γ (s)Γ (t)nu

= −Γ (s+ t− 1)

Γ (s)Γ (t)

1

ns+t+u−1

(
1

m
− 1

m+ n

)
+

1

2πi

�

Ls−1,t

Γ (s, t; η)

(
1

nt+u+η(m+ n)s−η
+

cos(π(s− η))

ms−ηnt+u+η

)
dη.

Put Y (s, t;u) =
∑∞

m,n=1 bm,n(s, t;u). Then it is easily seen that

cos(πt)ζ(t, u; s) + cos(πs)ζ(u, s; t) = Y (s, t;u) + Y (t, s;u),

and

(3.2) Y (s, t;u) = −Γ (s+ t− 1)

Γ (s)Γ (t)
(ζ(1, 0; s+ t+ u− 1) + ζ(s+ t+ u))

+
1

2πi

�

Ls−1,t

Γ (s, t; η)
{
ζ(t+ u+ η, 0; s− η)

+ cos(π(s− η))ζ(s− η)ζ(t+ u+ η)
}
dη.

Combining (3.1) and (3.2), we have

(3.3) X(s, t;u) + Y (s, t;u)

= −Γ (s+ t− 1)

Γ (s)Γ (t)
ζ(s+ t+ u)

+
1

2πi

�

Ls−1,t

Γ (s, t; η){1 + cos(π(s− η))}ζ(s− η)ζ(t+ u+ η)dη

− 1

2πi

�

Ls−1,t

Γ (s, t; η)dη ζ(s+ t+ u)

because generally

(3.4) ζ(s, 0; t) + ζ(t, 0; s) = ζ(s)ζ(t)− ζ(s+ t).

The second term on the right hand side of (3.3) becomes

Γ (s+ t)

sΓ (s)Γ (t)
ζ(s+ t+ u) +A(s, t;u)

by shifting the contour to Ls+1,t, and the third term is

Γ (s+ t− 1)

Γ (s)Γ (t)
ζ(s+ t+ u)− 1

2πi

�

Ls,t

Γ (s, t; η) dη ζ(s+ t+ u)

=
Γ (s+ t− 1)

Γ (s)Γ (t)
ζ(s+ t+ u)− Γ (s+ t)

tΓ (s)Γ (t)
ζ(s+ t+ u)
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by Barnes’ lemma (see [17, 14.52]). Hence,

X(s, t;u) + Y (s, t;u) =

(
1

s
− 1

t

)
Γ (s+ t)

Γ (s)Γ (t)
ζ(s+ t+ u) +A(s, t;u).

Thus, we have

Z(s, t;u) = X(s, t;u) +X(t, s;u) + Y (s, t;u) + Y (t, s;u)

= A(s, t;u) +A(t, s;u),

when Re(s),Re(t),Re(u) > 2 and s, t 6= 3, 4, 5, . . . . By the theory of analytic
continuation, the proof of the Theorem is complete.

Remark 3.1. We have used Li’s method in this section, but it is possible
to prove the Theorem by Nakamura’s original method. In fact, all of his
argument is valid here except for the property of the Bernoulli polynomial
[10, (2,7)], which can be proved by the partial fractional decomposition (2.1)
in a way similar to Eisenstein’s proof of addition formulas for trigonometric
functions (see [16, Chapter II] or [13, §2.1]).

4. Application. In this section, we will deduce some new results from
the Theorem. Each of the following propositions can be proved indepen-
dently of the others. However, the next lemma seems to be useful for some
applications, and so we state it first.

Lemma 4.1. Let a be an integer and b, c be non-negative integers. Set

(4.1) F (s, t; c) =
c∑

k=0

(
c

k

)
ζ(s− k)ζ(t− c+ k)

for s, t ∈ C. Then:

(1) For t, u ∈ C with t+ u 6= 1− l (l = 0, 1, 2, . . . ),

(4.2) A(a, t;u) = 2

[a/2]∑
k=0

(
t+ a− 2k − 1

a− 2k

)
ζ(2k)ζ(t+ u+ a− 2k),

where the value of any empty sum is defined to be 0.

(2) For s, u ∈ C with u 6= b+ 1− l (l = 0, 1, 2, . . . ),

A(s,−b;u) =
b∑

k=0

(
b

k

)
(cos(πs) + (−1)k)ζ(s− k)ζ(u− b+ k).

(3) For any s ∈ C,

lim
u→−c

A(s,−b;u) = (cos(πs)− (−1)b+c)F (s,−c; b) + δc0(−1)b+1ζ(s− b),

where δij denotes the Kronecker symbol.
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(4) For any s ∈ C,

lim
t→−b

A(s, t;−c)

= (cos(πs)− (−1)b+c)

(
F (s,−c; b) +

(−1)c+1b!c!

(b+ c+ 1)!
ζ(s− b− c− 1)

)
+ δc0(−1)b+1ζ(s− b).

Proof. (1)&(2) The formulas follow immediately from (1.4).
(3) We apply (2) to get

lim
u→−c

A(s,−b;u) = (cos(πs)− (−1)b+c)
b−1∑
k=0

(
b

k

)
ζ(s− k)ζ(−b− c+ k)

+ (cos(πs) + (−1)b)ζ(s− b)ζ(−c),

where we have used the fact that ζ(−b − c + k) = 0 if 0 ≤ k ≤ b − 1 and
k ≡ b+ c (mod 2). Thus, by a simple calculation, we obtain the result.

(4) The result follows in a similar way to the above.

We give integral representations of several zeta functions.

Proposition 4.1. (1) The Euler double zeta function ζ(s, t) has the
following representation:

(4.3) (cos(πt)− cos(πs))ζ(s, t)

= A(s, t; 0) +A(t, s; 0)− (1 + cos(πs))ζ(s)ζ(t) + cos(πs)ζ(s+ t).

(2) Let n be a non-negative integer. Then

(4.4) (1 + cos(πs))ζ(s)ζ(s+ 2n)

= A(s, s+ 2n; 0) +A(s+ 2n, s; 0) + cos(πs)ζ(2s+ 2n)

and

(1 + cos(πs))ζ(s)ζ(−s+ 2n)

= A(s,−s+ 2n; 0) +A(−s+ 2n, s; 0) + cos(πs)ζ(2n) + δn(s),

where

δn(s) =


−πs sin(πs)/12 if n = 0,

−π sin(πs)/(s− 1) if n = 1,

0 otherwise.
In particular,

(1 + cos(πs))ζ(s)2 − cos(πs)ζ(2s) = 2A(s, s; 0)

=
2 sin(πs)

2πi

�

L

cot

(
π(s− η)

2

)
Γ (s+ η)Γ (−η)

Γ (s)
ζ(s− η)ζ(s+ η) dη.
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(3) The Witten zeta function of SU(3) can be written as

(4.5) 2−s−1(1 + 2 cos(πs))ζSU(3)(s) = A(s, s; s)

=
sin(πs)

2πi

�

L

cot

(
π(s− η)

2

)
Γ (s+ η)Γ (−η)

Γ (s)
ζ(s− η)ζ(2s+ η) dη.

Remark 4.1. We can regard (4.4) as a generalization of the formula

ζ(2l)ζ(2m)− 1

2
ζ(2l + 2m)

=

max{l,m}∑
k=0

{(
2l + 2m− 2k − 1

2l − 1

)
+

(
2l + 2m− 2k − 1

2m− 1

)}
× ζ(2k)ζ(2l + 2m− 2k)

for l,m ∈ Z≥1. Indeed, taking s = 2l (l = 1, 2, . . . ) in (4.4) and putting
m = l + n, we obtain this from (4.2).

Proof of Proposition 4.1. (1) Substituting u = 0 in (1.1) and using (3.4),
we see

Z(s, t; 0) = ζ(s)ζ(t) + cos(πt)ζ(t, 0; s) + cos(πs)ζ(0, s; t)

= (cos(πt)− cos(πs))ζ(t, 0; s) + (1 + cos(πs))ζ(s)ζ(t)− cos(πs)ζ(s+ t).

Hence, the result follows from the Theorem.
(2) Assume that Re(s) > 1. Comparing the limits of both sides of (4.3)

as t→ ±s+ 2n, we get

(1 + cos(πs))ζ(s)ζ(±s+ 2n)

= A(s,±s+ 2n; 0) +A(±s+ 2n, s; 0) + cos(πs)ζ(s± s+ 2n)

− lim
z→0
{cos(π(z ± s))− cos(πs)}ζ(z ± s+ 2n, 0; s),

where the double signs correspond. It is clear that the limit becomes 0 unless
the double signs are “−” and n = 0, 1. In the remaining cases, the last term
of the right side is δn(s) because

ζ(z − s+ 2n, 0; s) =
1

s− 1
ζ(z + 2n− 1) +

s

12
ζ(z + 2n+ 1) +O(1)

as z → 0 (see [8, p. 425, (4.4)]).
(3) The result follows immediately from (1.1) and the Theorem.

We next extend the parity result [2, Theorem 2] to the whole domain of
convergence.

Proposition 4.2. Let a, b, c be integers such that a+b+c is odd. Assume
that a+ c ≥ 2, b+ c ≥ 2 and a+ b+ c ≥ 3. If a+ b ≥ 2, then

2ζ(a, b; c) = (−1)a{A(c, a; b) +A(a, c; b)}+ (−1)b{A(c, b; a) +A(b, c; a)},
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where every A-value is representable in the form (4.2). If a+ b ≤ 1, then

2ζ(a, b; c) = (−1)a{A∗(c, a; b) +A(a, c; b)}+ (−1)b{A∗(c, b; a) +A(b, c; a)}

+
(−1)a2

(1− a− b)!
d

ds
(s+ a)1−a−b

∣∣∣∣
s=0

ζ(a+ b+ c− 1).

Here

A∗(c, a; b) = 2
∑
k

(
a+ c− 2k − 1

c− 2k

)
ζ(2k)ζ(a+ b+ c− 2k),

where the sum is taken over all integers k ∈ [0, c/2], k 6= (a+ b+ c− 1)/2.

Proof. Taking the limits of both sides of (1.5) as u→ c, t→ b and s→ a
in order, we have

2ζ(a, b; c) = (−1)aA(a, c; b) + (−1)bA(b, c; a)

+ lim
s→a

((−1)aA(c, s; b) + (−1)bA(c, b; s)).

It is easily seen that the limiting value equals (−1)aA(c, a; b)+(−1)bA(c, b; a)
if a+ b ≥ 2, and

(−1)aA∗(c, a; b) + (−1)bA∗(c, b; a)

+
(−1)a2

(1− a− b)!
d

ds
(s+ a)1−a−b

∣∣∣∣
s=0

ζ(a+ b+ c− 1)

if a+ b ≤ 1. Thus, we obtain Proposition 4.2.

The following proposition suggests that ζ(s, t;u) can be represented as
a sum of products of Riemann zeta functions, if at least two of s, t and u
are non-positive integers in the sense of the coordinatewise limit.

Proposition 4.3. Let a, b and c be non-negative integers and let s, t
and u be complex numbers.

(1) If s, t 6= c+ 1− l (l = 0, 1, 2, . . . ) and s+ t 6= c+ 2, then

ζ(s, t;−c) = F (s, t; c),

where F (s, t; c) is defined by (4.1).

(2) If u 6= a+ 1− l, b+ 1− l, a+ b+ 2 (l = 0, 1, 2, . . . ), then

ζ(−a,−b;u) = (−1)a+1F (u,−a; b) + (−1)b+1F (u,−b; a)

+
a!b!

(a+ b+ 1)!
ζ(u− a− b− 1)− δa0ζ(u− b)− δb0ζ(u− a).

(3) For s ∈ C with s 6= c+ 1− l, b+ c+ 2 (l = 0, 1, 2, . . . ),

lim
u→−c

ζ(s,−b;u) = F (s,−b; c) +
(−1)b+1b!c!

(b+ c+ 1)!
ζ(s− b− c− 1).
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Proof. (1) This is trivial.

(2) We take the limits of both sides of (1.5) as t → −b and s → −a in
order. Then the result is a direct consequence of Lemma 4.1.

(3) The result can be proved in a similar way to (2), but it also follows
easily from the representation [8, (5.3)] of ζ(s, t;u).

Corollary 4.1. Let a, b and c be non-negative integers. Then

(1) lim
(s,t)→(−a,−b)

ζ(s, t;−c) = F (−a,−b; c),

(2) lim
u→−c

ζ(−a,−b;u)

= F (−a,−b; c) +

(
(−1)a+1a!c!

(a+ c+ 1)!
+

(−1)b+1b!c!

(b+ c+ 1)!

)
ζ(−a− b− c− 1),

(3) lim
s→−a

lim
u→−c

ζ(s,−b;u) = F (−a,−b; c)+(−1)b+1b!c!

(b+ c+ 1)!
ζ(−a−b−c−1),

(4) lim
t→−b

lim
u→−c

ζ(−a, t;u) = F (−a,−b; c)+(−1)a+1a!c!

(a+ c+ 1)!
ζ(−a−b−c−1).

Remark 4.2. Komori [3] studied Tornheim’s double zeta values for coor-
dinatewise limits at non-positive integers and gave their explicit expressions
in terms of generalized Bernoulli numbers. Our formulation seems to be
more concrete than his.

Okamoto [11] investigated coordinatewise limits of another double zeta
function: ∑

1≤m<n

1

msnt(m+ n)u
,

at non-positive integers.

To prove (2), we have to use the following lemma and the relation

(−1)a+b+cF (−a,−b; c)−δa0ζ(−b−c)−δb0ζ(−a−c)−δa0δb0δc0 = F (−a,−b; c).

Lemma 4.2. Let a, b and c be non-negative integers. Then

(4.6) (−1)a+bF (−a,−b; c) + (−1)b+cF (−b,−c; a) + (−1)c+aF (−c,−a; b)

=

(
(−1)ca!b!

(a+ b+ 1)!
+

(−1)ab!c!

(b+ c+ 1)!
+

(−1)bc!a!

(c+ a+ 1)!

)
ζ(−a− b− c− 1)

+ δa0δb0δc0.

This is equivalent to Theorem 2 of Chu–Wang [1]. However, their formu-
lation is quite different from ours, and so we now prove it for the reader’s
convenience.
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Proof. For a non-negative integer m, we set

P̃m(x) = δm0 + (−1)m
m!

xm+1
+ 2m+1

∞∑
k=0

(−1)m+kζ(−m− k)
(2x)k

k!
.

We calculate the value

R = 2−a−b−c−2[x−1](P̃a(x)− δa0)(P̃b(x)− δb0)(P̃c(x)− δc0)
in two ways, where [x−1]f(x) denotes the formal residue of a formal Laurent
series f(x). We first use the definition of P̃m(x) to obtain

R = (−1)a+bF (−a,−b; c) + (−1)b+cF (−b,−c; a) + (−1)c+aF (−c,−a; b)

−
(

(−1)ca!b!

(a+ b+ 1)!
+

(−1)ab!c!

(b+ c+ 1)!
+

(−1)bc!a!

(c+ a+ 1)!

)
ζ(−a− b− c− 1).

We next apply [12, Proposition 3.1] to get R = δa0δb0δc0. Thus, we have
(4.6).

We finally describe the behavior of ζSU(3)(s) at each integer.

Proposition 4.4. Let a be a positive integer.

(1) [2, Theorem 3]

ζSU(3)(a) =
2a+2

1 + (−1)a2

[a/2]∑
k=0

(
2a− 2k − 1

a− 1

)
ζ(2k)ζ(3a− 2k).

(2) ζSU(3)(0) = 1/3 and ζ ′SU(3)(0) = log(24/3π).

(3) If a is odd, then ζSU(3)(s) has a simple zero at s = −a, and

ζ ′SU(3)(−a) = 2−a+2

(a−1)/2∑
k=0

(
a

2k

)
ζ(−a− 2k)ζ ′(−2a+ 2k)(4.7)

+
2−a+1(a!)2

(2a+ 1)!
ζ ′(−3a− 1).

In particular, sign(ζ ′SU(3)(−a)) = (−1)(a−1)/2.

(4) If a is even, then ζSU(3)(s) has a zero of order two at s = −a, and

(4.8) ζ ′′SU(3)(−a) = 2−a+2

a/2∑
k=0

(
a

2k

)
ζ ′(−a− 2k)ζ ′(−2a+ 2k).

In particular, sign(ζ ′′SU(3)(−a)) = (−1)a/2.

Remark 4.3. The value of Witten’s zeta function ζG(s) of each finite
group G at s = −2 coincides with the order of G. From this viewpoint, it is
attractive to clarify the behavior of ζG(s) at s = −2 in the case of G being
an infinite compact topological group. In [6], Kurokawa and Ochiai studied
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the values of Witten’s zeta functions at negative integers, and proved that
ζSU(3)(s) has a zero at each negative integer. Proposition 4.4 can be regarded
as a refinement of their result. Moreover, as seen below, our proof reveals
that a zero of ζSU(3)(s) at each negative integer comes from the gamma
factors appearing on the left sides of (2.2) and (2.4).

Proof of Proposition 4.4. We use here the integral representation (4.5)
of ζSU(3)(s).

(1) The result is clear from (4.2).

(2) By (1.4), we see that, if K is a non-negative integer and −K/2+1/4 <
Re(s) < K + 1/2, then

2−s−1(1 + 2 cos(πs))ζSU(3)(s)

= 2

K∑
k=0

(s)k
k!

cos2
(
π(s− k)

2

)
ζ(s− k)ζ(2s+ k) +

sin(πs)

Γ (s)
RK(s),

where RK(s) is a holomorphic function. We note that every term except for
the one with k = 0 has a zero of order at least two at s = 0. Hence, the
values at s = 0 can be immediately calculated.

(3) Set K = 2a + 1. If a is odd, then the terms with k = 0, 1, . . . , a
satisfying k ≡ a (mod 2) and the term with k = 2a + 1 have a simple zero
at s = −a, and the others have a zero of order at least two. Hence, we
can easily obtain the first part of the result. The last part follows from the
functional equation of the Riemann zeta function. Indeed, we can show that
the sign of each term on the right side of (4.7) coincides with (−1)(a−1)/2.

(4) Put K = 2a+ 1 again. In the same way, we see that ζSU(3)(s) has a
zero of order at least two at s = −a if a is even. In order to determine the
multiplicity of the zero, we now show (4.8). Assume that 0 < ε < 1/2. Set

f(s, η) =
sin(πs)

Γ (s)
cot

(
π(s− η)

2

)
Γ (s+ η)Γ (−η)ζ(s− η)ζ(2s+ η).

Then, by shifting the contour, we obtain the following expression of ζSU(3)(s)
which is valid around s = −a:

2−s−1(1 + 2 cos(πs))ζSU(3)(s) = −
a/2∑
k=0

Uk(s) +

a/2−1∑
l=0

Vl(s) +W (s) + I(s),

where

Uk(s) = Res
η=k

f(s, η), Vl(s) = Res
η=−s−l

f(s, η), W (s) = Res
η=1−2s

f(s, η)

and

I(s) =
1

2πi

�

Cε

f(s, η) dη,
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where the contour Cε is the union of C
(1)
ε : a/2 − i∞ → a/2 − iε, C(2)

ε :

a/2 + εeiθ (θ : −π/2 → π/2) and C
(3)
ε : a/2 + iε → a/2 + i∞. We here

remark that the poles at η = k, s − 2m,−s − a/2 − m (k = 0, 1, . . . , a/2;
m = 0, 1, 2, . . . ) lie on the left of the contour Cε and the poles at η = 1−2s,
−s− l, a/2 + n (l = 0, 1, . . . , a/2− 1;n = 1, 2, . . . ) lie on the right. Hence,

2a−13 ζ ′′SU(3)(−a) = −
a/2∑
k=0

U ′′k (−a) +

a/2−1∑
l=0

V ′′l (−a) +W ′′(−a) + I ′′(−a).

By a simple calculation, we first see that, for k = 0, 1, . . . , a/2 and l =
0, 1, . . . , a/2− 1,

U ′′k (−a) =


−8

(
a

k

)
ζ ′(−a− k)ζ ′(−2a+ k) if k is even,

π2
(
a

k

)
ζ(−a− k)ζ(−2a+ k) if k is odd,

V ′′l (−a) =


4

(
a

l

)
ζ ′(−a− l)ζ ′(−2a+ l) if l is even,

−2π2
(
a

l

)
ζ(−a− l)ζ(−2a+ l) if l is odd,

and

W ′′(−a) =
3π2

2

(a!)2

(2a+ 1)!
ζ(−3a− 1).

We next evaluate

I ′′(−a) =
1

2πi

�

Cε

f ′′(−a, η) dη,

where f ′′ means (∂/∂s)2f . Since the integrals on C
(1)
ε and C

(3)
ε cancel each

other, we obtain

I ′′(−a) =
1

2πi

�

C
(2)
ε

Res
η=a/2

f ′′(−a, η)
dη

η − a/2

+
1

2πi

�

C
(2)
ε

(
f ′′(−a, η)− Res

η=a/2
f ′′(−a, η) · 1

η − a/2

)
dη.

We note that the integrand in the second integral is holomorphic at η = a/2,
and so the integral tends to zero as ε→ 0. Since I(s) is independent of the
choice of ε, we get

I ′′(−a) =
1

2
Res
η=a/2

f ′′(−a, η) = D1(a) +D2(a),



Tornheim’s double zeta functions 351

where

D1(a) =

−
π2

2

(
a

a/2

)
ζ(−3a/2)2 if a ≡ 2 (mod 4),

0 if a ≡ 0 (mod 4),

D2(a) =


0 if a ≡ 2 (mod 4),

−2

(
a

a/2

)
ζ ′(−3a/2)2 if a ≡ 0 (mod 4).

Combining the above results, we have

−
∑

0≤k≤a/2
k odd

U ′′k (−a) +
∑

0≤l≤a/2−1
l odd

V ′′l (−a) +W ′′(−a) +D1(a)

= −3π2

2

a∑
k=0

(
a

k

)
ζ(−a− k)ζ(−2a+ k) +

3π2

2

(a!)2

(2a+ 1)!
ζ(−3a− 1) = 0,

where in the last step we have used (4.6) with a = b = c. Moreover, we see

−
∑

0≤k≤a/2
k even

U ′′k (−a) +
∑

0≤l≤a/2−1
l even

V ′′l (−a) +D2(a)

= 6

a/2∑
k=0

(
a

2k

)
ζ ′(−a− 2k)ζ ′(−2a+ 2k).

Thus, we obtain (4.8). In the same way as (3), we get sign(ζ ′′SU(3)(−a)) =

(−1)a/2, which completes the proof of Proposition 4.4.

Appendix. A functional equation for Euler’s double zeta func-
tion. The A-function (1.3) has not been found in previous papers on mul-
tiple zeta functions. However, as seen in the next proposition, A(s, t; 0) is
related to the functional equation of ζ(s, t) = ζ(t, 0; s) which was obtained
by Matsumoto [9, Theorem 1].

Proposition A.1. Set

h(s, t) = ζ(s, t)− Γ (1− t)
Γ (s)

Γ (s+ t− 1)ζ(s+ t− 1).

Then

(A.1)
h(s, t)

(2π)s+t−1Γ (1− t)
= cos

(
π

2
(s+ t− 1)

)
h(1− t, 1− s)

Γ (s)

+ sin

(
π

2
(s+ t− 1)

)
Γ (1− s)

π
A(1− s, 1− t; 0).

In particular, the second term on the right side of (A.1) vanishes on the
hyperplane s+ t = 2k + 1 (k ∈ Z \ {0}) (cf. [4, Theorem 2.2]).
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Remark A.1. Firstly, the function g(u, v) in Matsumoto’s paper coin-
cides with h(v, u). Secondly, it may seem that the singularities of ζ(s, t) are
located on the hyperplanes s = 1 − l and s + t = 2 − l (l = 0, 1, 2, . . . ).
However, the singularities on s = −l and s+ t = −1−2l (l = 0, 1, 2, . . . ) are
fake, namely, the singularities of ζ(s, t) are only located on the hyperplanes
s = 1, s+ t = 1 and s+ t = 2− 2l (l = 0, 1, 2, . . . ). This can be confirmed,
for instance, by (1.4) and (4.3). Hence, the last part of the proposition is
justified.

Proof of Proposition A.1. We first recall the usual integral representation
of ζ(s, t) (cf. [8, (5.2)]):

ζ(s, t) =
1

2πi

�

(c)

Γ (s+ η)Γ (−η)

Γ (s)
ζ(t− η)ζ(s+ η) dη

for s, t ∈ C with Re(s) > 1 and Re(t) > 1, where −Re(s) + 1 < c < 0 and
(c) is the line from c− i∞ to c+ i∞. Since the residue of the integrand at
η = t− 1 is

−Γ (1− t)
Γ (s)

Γ (s+ t− 1)ζ(s+ t− 1)

unless t = 1, 2, 3, . . . , we shift the contour to obtain

h(s, t) =
1

2πi

�

C

Γ (s+ η)Γ (−η)

Γ (s)
ζ(t− η)ζ(s+ η) dη

for s, t ∈ C with s 6= 1 − k and t 6= k (k = 0, 1, 2, . . . ), where C is a
line from −i∞ to i∞ indented in such a manner as to separate the points
η = −s+ 1− l, t− l (l = 0, 1, 2, . . . ) from the points η = 0, 1, 2, . . . . By the
functional equation of the Riemann zeta function, the integrand is equal to
(2π)s+t−1Γ (1− t) times

cos

(
π

2
(s+ t− 1)

)
Γ (1− t+ η)Γ (−η)

Γ (s)Γ (1− t)
ζ(1− s− η)ζ(1− t+ η)

+ sin

(
π

2
(s+ t− 1)

)
Γ (1− s)

π
sin(π(1− s))

× cot

(
π

2
(1− s− η)

)
Γ (1− t+ η)Γ (−η)

Γ (1− t)
ζ(1− s− η)ζ(1− t+ η).

Thus, we obtain (A.1).

We now compare our result with the result of Matsumoto to obtain a new
representation of A(s, t; 0). For (s, t) ∈ C2 with Re(s) < 0 and Re(t) > 1,
set

F±(s, t) =
∞∑
k=1

σs+t−1(k)Ψ(t, s+ t;±2πik),
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where σν(k) =
∑

d|k d
ν and Ψ(α, γ; z) is the confluent hypergeometric func-

tion of the second kind. It is known that F±(s, t) can be continued mero-
morphically to the whole space C2.

Corollary A.1. The function A(s, t; 0) can be represented in terms of
the F±-functions:

2Γ (s)A(s, t; 0) = (2πi)s+tF+(s, t) + (−2πi)s+tF−(s, t).

Proof. Propositions 1 and 2 of [9] show that

h(s, t)

(2π)s+t−1Γ (1− t)
= eπi(s+t−1)/2F+(t, s) + eπi(1−s−t)/2F−(t, s)

and

(A.2) F±(1− t, 1− s) = (±2πi)s+t−1F±(s, t),

respectively. These suggest

h(1− t, 1− s)
Γ (s)

= F+(t, s) + F−(t, s)

and so we see that
h(s, t)

(2π)s+t−1Γ (1− t)
= cos

(
π

2
(s+ t− 1)

)
h(1− t, 1− s)

Γ (s)

+ i sin

(
π

2
(s+ t− 1)

)
(F+(t, s)− F−(t, s)).

By comparing this with (A.1), we have

Γ (1− s)A(1− s, 1− t; 0) = πi(F+(t, s)− F−(t, s)).

Now, we use (A.2) to obtain the result.
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