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1. Introduction. The sequence bnαc, with α ∈ R, has been studied
many times. A usual approach is to replace it with the simpler sequence
bna/bc, where a/b is a rational approximation to α such as an approximant
of the continued fraction of α. Here bxc is the greatest integer less than or
equal to x. Knowing how close a/b is to α, the natural question is how close
the corresponding sequences bnαc and bna/bc are to one another.

A typical example occurs when one studies the function
∑

n≥0 x
bnαc.

This sum at first looks difficult to handle, but the key is to realize that it
is exceptionally well approximated by the function

∑
n≥0 x

bna/bc when a/b
is a good rational approximation to α. It is not difficult to show that this
latter sum is in fact a rational function and one gets excellent information
about the original function.

In [2] the question of exactly how well bna/bc could approximate bnαc
was thoroughly studied. This was motivated by the observation in [4] that

(1)

⌊
n

1 +
√

5

2

⌋
=

⌊
n
Fi+1

Fi

⌋
for 0 ≤ n < Fi+2. (Here, as usual, Fi is the ith Fibonacci number with
F0 = 0.) On the other hand, for the purpose of studying discrepancy, it was
proved in [9] that

(2) bnαc =

⌊
n
pi
qi

⌋
for 0 ≤ n < qi+1. (Here pi/qi is the ith convergent of the regular continued
of α.) It is not difficult to see that the interval of equality in (1) is optimal;
at n = Fi+2 the two greatest integer functions are no longer equal. On the
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other hand, the interval of equality in (2) is not always maximal, (1) being
an example of this.

This led one of the authors to consider in [2] the least natural number
n for which the sequences bnαc and bna/bc are not equal. In fact, in [2] the
more general case of two real numbers α and β was considered, and this
brought into consideration a whole new topological perspective. The least
integer n for which bnαc 6= bnβc was denoted by Ψ(β, α). Furthermore, in [2],
the more general problem was solved, of finding, for given real numbers α,
β and s, the least natural number n for which bnα + sc 6= bnβ + sc. This
number n was denoted by Ψ(β, α; s).

In this paper we move on to consider two basic problems which are
motivated by the work in [2]. The first problem is to study the expected value
and other statistical quantities related to Ψ(β, α; 0). We give asymptotic
formulas for the probability that Ψ(β, α; 0) is greater than a positive integer
Q and compute the expected value of Ψ(β, α; 0). This last constant is found
to have the value 4. Typically after the first value of n for which bnα+ sc 6=
bnβ+sc there will be an interval of equality again, followed by a second point
of inequality and so on, until they are eventually unequal for all large n. Our
second problem is to investigate the successive points of inequality. We define
Ψk(β, α; s) to be the kth natural number n for which bnα + sc 6= bnβ + sc.
We give a theoretical formula for Ψk. We also denote by N (β, α; s) the set
of positive integers n for which bnα + sc 6= bnβ + sc. It is easy to see that
N (β, α; 0) is a semigroup. We determine a set of generators (in a certain
sense) for the semigroup and characterize it in various ways.

2. The probability P (Ψ > Q). In this section we investigate how often
Ψ(α, β) is large. More precisely, we want to establish an asymptotic formula
for the probability, call it P (Ψ > Q), that Ψ(α, β) > Q, where Q is a large
positive integer and α, β vary independently in [0, 1]. We first look at the
probability, call it P (Ψ = N), that Ψ(α, β) = N, where N is a given large
positive integer and α, β vary independently in [0, 1]. We could, of course,
allow α, β to take also real values larger than 1, but by Proposition 3.1 of [2]
we know that if Ψ(α, β) = N > 1 then bαc = bβc and Ψ({α}, {β}) = N.
In view of this periodicity, in the following we will only consider the case
α, β ∈ [0, 1]. Denote

(3) MN = {(α, β) ∈ [0, 1]× [0, 1] : Ψ(α, β) = N}.
If we denote by µ the Lebesgue measure on [0, 1]× [0, 1], then

(4) P (Ψ = N) = µ(MN ).

Since the set of points (α, β) ∈ [0, 1]× [0, 1] for which at least one of α, β is
rational has measure zero, we may restrict in what follows to the case when
both α and β are irrational.
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Fix now an integer N > 1 and irrational numbers 0 < α < β < 1
such that Ψ(α, β) = N. Then choose a large positive integer Q and consider
the Farey sequence FQ of order Q. The intersection of FQ with the inter-
val (α, β) consists of, say, M points, which we arrange in increasing order:
γ1 < · · · < γM . By a repeated application of Proposition 3.1(d) of [2], we
see that

(5) N = Ψ(α, β) = min{Ψ(α, γ1), Ψ(γ1, γ2), . . . , Ψ(γM−1, γM ), Ψ(γM , β)}.
Note that, since α and β are irrational, the numbers nα and nβ with 1 ≤
n ≤ N are not integers. Thus there exists an ε > 0, depending on α, β
and N, such that for any γ with α < γ < α + ε one has Ψ(α, γ) > N, and
similarly for any γ with β − ε < γ < β one has Ψ(γ, β) > N. We choose our
Q to be large enough so that γ1 ∈ (α, α+ ε) and γM ∈ (β − ε, β). Then

(6) min{Ψ(α, γ1), Ψ(γM , β)} > N.

On combining (5) with (6) we find that

(7) Ψ(α, β) = min{Ψ(γ1, γ2), . . . , Ψ(γM−1, γM )}.

Next, if we denote for j = 1, . . . ,M by aj and qj the numerator and
respectively the denominator of γj , written in its lowest terms, then by a
fundamental property of Farey sequences we know that aj+1qj − ajqj+1 = 1
for any 1 ≤ j ≤M − 1. Therefore we may apply Corollary 4.1 of [2], which,
in our case, states that

(8) Ψ

(
aj
qj
,
aj+1

qj+1

)
= qj+1

for 1 ≤ j ≤M − 1. From (5), (7) and (8) it follows that

(9) N = min{q2, q3, . . . , qM}.
As a consequence, no element of the Farey sequence FN−1 of order N − 1
lies inside the interval (α, β), otherwise one of the numbers qj from the right
side of (9) will have to be strictly less than N, contradicting (9). On the
other hand, one of the numbers qj from the right side of (9) equals N, thus
the Farey sequence FN does have at least one element inside the interval
(α, β).

We may interpret the above results in the following way. Let N > 1 be
an integer and consider the Farey sequences FN−1 and FN . Then, if α and β
are irrational numbers with 0 < α < β < 1 and such that Ψ(α, β) = N, the
interval (α, β) will contain an element a/N, with 1 ≤ a < N and (a,N) = 1,
from FN , but it will contain no element from FN−1. If γ′ = a′/q′ and
γ′′ = a′′/q′′ are the left and respectively right neighbors of a/N in FN ,
and if we denote the open intervals (γ′, a/N) and (a/N, γ′′) by Ia/N and
respectively Ja/N , then γ′, γ′′ ∈ FN−1, and one must have α ∈ Ia/N and
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β ∈ Ja/N . By the basic properties of Farey fractions we know that the
length |Ia/N | of the interval Ia/N satisfies

(10) |Ia/N | =
1

q′N
,

and similarly,

(11) |Ja/N | =
1

q′′N
.

One also has the equality

(12) q′ + q′′ = N.

Let us suppose, conversely, that the interval (α, β) contains an element of
FN but does not contain any element of FN−1. Then (9) holds, and from (7)
and (8) one further obtains Ψ(α, β) = N. In conclusion, if α, β are irrational
numbers with 0 < α < β < 1, then the pair (α, β) belongs to MN if and
only if it belongs to the union

(13) UN :=
⋃

(a,N)=1

Ia/N × Ja/N .

By (4) and (13) one finds that

(14) P (Ψ = N) = 2µ(UN ) = 2
∑

1≤a≤N
(a,N)=1

|Ia/N | · |Ja/N |.

On combining this with (10)–(12) we derive

(15) P (Ψ = N) =
2

N2

∑
1≤a≤N
(a,N)=1

1

q′(N − q′)
.

Now, for any 1 ≤ q ≤ N with (q,N) = 1, there exists a unique pair of
consecutive elements of FN with denominators q and N (in this order). It
follows that

(16) P (Ψ = N) =
2

N2

∑
1≤q≤N
(q,N)=1

1

q(N − q)
=

4

N3

∑
1≤q≤N
(q,N)=1

1

q
.

This gives an exact expression for the probability P (Ψ = N). An asymptotic
formula for the probability P (Ψ > Q) that Ψ(α, β) > Q, for a large positive
integer Q, where as before α and β vary independently in [0, 1], can be
derived as follows. If we repeat the arguments from this section with the
condition Ψ(α, β) = N replaced by the condition Ψ(α, β) > Q, where α, β
are irrational numbers satisfying 0 < α < β < 1, we see that Ψ(α, β) > Q if
and only if the interval (α, β) does not contain any element of FQ. In other
words, if 0 = γ0 < γ1 < · · · < γN(Q) = 1 denote the Farey fractions of order
Q, then Ψ(α, β) > Q if and only if α and β belong to the same interval of
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the form (γj , γj+1). Therefore

(17) P (Ψ > Q) =

N(Q)∑
j=1

(γj+1 − γj)2,

where we set γN(Q)+j = γj + 1 for 1 ≤ j < N(Q). A sharp estimate for
the sum on the right side of (17) has been provided by Kanemitsu, Sitara-
machandra Rao and Siva Rama Sarma in [8], the result being

S0(Q) :=

N(Q)∑
j=1

(γj+1 − γj)2 =
12

π2Q2

(
logQ+ γ − ζ ′(2)

ζ(2)
+

1

2

)
(18)

+Oε

(
log5/3Q (log logQ)1+ε

Q3

)
,

where γ is Euler’s constant and ζ is the Riemann zeta function. We thus
have the following result.

Theorem 1.

(i) For any positive integer N ,

P (Ψ = N) =
4

N3

∑
1≤q≤N
(q,N)=1

1

q
.

(ii) For any ε > 0 and any positive integer Q,

P (Ψ > Q)

=
12

π2Q2

(
logQ+ γ − ζ ′(2)

ζ(2)
+

1

2

)
+Oε

(
log5/3Q (log logQ)1+ε

Q3

)
.

An estimate for a subsum of (18) of the form

S0(Q, I) =
∑
γj∈I

(γj+1 − γj)2,

where the summation is over Farey fractions from a fixed subinterval I of
[0, 1] with rational endpoints, has been obtained in Theorem 2 of [1]. The
result is

(19) S0(Q, I) = |I|S0(Q) + 2cIQ
−2 +Oε(Q

−21/10+ε),

where the constant cI is given by

(20) cI =
∑
q≥1

#{a ∈ qI : gcd(a, q) = 1} − |I|ϕ(q)

q2
.

This provides us in turn with an asymptotic result for the probability, call
it PI(Ψ > Q), that Ψ(α, β) > Q, for a large positive integer Q, where α and
β vary independently in a fixed subinterval I of [0, 1]. We state the result in
the following theorem.
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Theorem 2. For any subinterval I of [0, 1] with rational endpoints, any
ε > 0 and any positive integer Q,

PI(Ψ > Q) =
12

π2Q2|I|

(
logQ+γ− ζ

′(2)

ζ(2)
+

1

2

)
+

2cI
|I|2Q2

+Oε

(
1

|I|2Q21/10−ε

)
.

3. The expected value of Ψ . In this section we determine the expected
value, call it E(Ψ), of Ψ(α, β) as α, β vary independently in the interval [0, 1].
We have

(21) E(Ψ) =
∞∑
N=1

NP (Ψ = N).

Note that Ψ(α, β) ≥ 2 for any α, β ∈ [0, 1), so P (Ψ = 1) = 0. For N > 1 we
may use (16), and (21) becomes

(22) E(Ψ) = 4
∞∑
N=2

∑
1≤q≤N
(q,N)=1

1

qN2
= −4 + 4

∞∑
N=1

∑
1≤q≤N
(q,N)=1

1

qN2
.

On the right side of (22) we use Möbius summation to derive

(23) E(Ψ) = −4 + 4
∞∑
N=1

∑
1≤q≤N

∑
d|N
d|q

µ(d)

qN2
.

Here we write N = dm, q = dn, then interchange the order of summation
to obtain

(24) E(Ψ) = −4 + 4
∞∑
d=1

µ(d)

d3

∞∑
m=1

∑
1≤n≤m

1

m2n
= −4 + 4ζ(3)−1S,

where

S =
∑

m≥n≥1

1

m2n
=

∑
m>n≥1

1

m2n
+
∑
m≥1

1

m3
= ζ(2, 1) + ζ(3) = 2ζ(3).(25)

Here ζ(2, 1) is a multiple zeta value. The relation ζ(2, 1) = ζ(3) is an in-
stance of the duality formula for multiple zeta values first conjectured by
Hoffman [7] and proved by Zagier [10] (see also Section 3.1 of [3]). Hence we
have the following theorem.

Theorem 3. The expected value of Ψ(α, β) as α, β vary independently
in [0, 1] is E(Ψ) = 4.

4. Determination of Ψ2(β, α). Recall that Ψk(β, α) is the kth positive
integer n such that bnαc 6= bnβc.

In this section we are concerned with Ψ2(β, α).
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Proposition 1. Assume β ≤ γ ≤ α.
(i) If Ψ1(β, γ) = Ψ1(γ, α), then

(26) Ψ2(β, α) = min{Ψ2(β, γ), Ψ2(γ, α)}.
(ii) If Ψ1(β, γ) 6= Ψ1(γ, α), then

(27) Ψ2(β, α) = min{max{Ψ1(β, γ), Ψ1(γ, α)}, Ψ2(β, γ), Ψ2(γ, α)}.
Proof. Since β ≤ γ ≤ α, it follows that bnβc ≤ bnγc ≤ bnαc. Thus

if either bnβc < bnγc or bnγc < bnαc, then bnβc < bnαc. We now pro-
ceed to prove (i). Because Ψ1(β, γ) = Ψ1(γ, α), the next n for which ei-
ther bnβc < bnγc or bnγc < bnαc will be Ψ2(β, α). But this will occur at
min{Ψ2(β, γ), Ψ2(γ, α)}, which proves (i).

In the following we will refer to the equality bnβc = bnγc as the “left
equality”, to bnγc = bnαc as the “right equality”, and to bnβc = bnαc as
the “outer equality”.

Next, we turn to the proof of (ii). If both Ψ1(β, γ) and Ψ1(γ, α) are less
than both of Ψ2(β, γ) and Ψ2(γ, α), then Ψ2(β, α) will equal the larger of
Ψ1(β, γ) and Ψ1(γ, α) since Ψ1(β, γ) 6= Ψ1(γ, α) and thus there will be two
failures of equality at both left and right equalities before either Ψ2(β, γ)
or Ψ2(γ, α) are reached. The other possibility is that one of Ψ2(β, γ) or
Ψ2(γ, α) is less than one of Ψ1(β, γ) or Ψ1(γ, α). In this case Ψ2(β, α) will
be the smaller of Ψ2(β, γ) or Ψ2(γ, α), and this completes the proof of the
proposition.

Proposition 2. If a
b + 1

bd = c
d , then

(28) Ψ2

(
a

b
,
c

d

)
=

{
b+ d if b < d,

2d if b ≥ d.
Proof. Note that if b = d then b = d = 1 and Ψ2

(
a
b ,

c
d

)
= 2 = 2d.

Now
⌊
nab
⌋

=
⌊
n cd
⌋

is equivalent to
⌊
n cd −

⌊
nab
⌋⌋

= 0. This is the same as⌊
n cd − n

a
b + {nab }

⌋
= 0, which is equivalent to 0 ≤ n

bd +
{
na
b

}
< 1. Hence we

seek the second value of n such that

(29)
n

bd
+

{
na

b

}
≥ 1.

It is easy to see that the first n for which (29) holds is n = d. Indeed, for
n < d, n

bd <
1
b . Also,

{
da
b

}
=
{
bc−1
b

}
= b−1

b . We now distinguish two cases.

Case I: d > b. If n = d + b, then 1
b <

n
bd <

2
b and

{
na
b

}
= b−1

b . Thus

Ψ2
(
a
b ,

c
d

)
= b+d. Note that n = d+b is the least n > d for which

{
na
b

}
= b−1

b .

Case II: d < b. If d < n < 2d, then 1
b <

n
bd <

2
b and accordingly, the

only chance for (29) to hold for n in this range is for
{
na
b

}
= b−1

b . But after

n = d, the next case of
{
na
b

}
= b−1

b is n = d+ b > 2d. The least n for which
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n
bd ≥

2
b is n = 2d. At n = 2d,

{
na
b

}
=
{
2ad
b

}
=
{
2bc−2
b

}
= b−2

b . Accordingly

Ψ2
(
a
b ,

c
d

)
= 2d in this case, which completes the proof of the proposition.

Recall from [2] the definition of the coconvergent and the semiconver-
gents of two real numbers β and α. (See also Section 6 below.) Choosing
the semiconvergents between β and α and using Propositions 1 and 2 and
simplifying the resulting minimums and maximums, we obtain the following
result.

Proposition 3. Assume β < α. Then

(30) Ψ2(β, α) = min{b−1, 2b0, b1},
where a0/b0 is the coconvergent of β and α, a−1/b−1 is the intermediate
convergent of β just less than a0/b0, and a1/b1 is the intermediate convergent
of α greater than a0/b0.

5. The probability P (Ψ2 > Q). Let Q be a large positive integer. Since
Ψ2(β, α) is larger than Ψ1(β, α) for any α, β, we may write

(31) P (Ψ2 > Q) = P (Ψ1 > Q) + P (Ψ1 ≤ Q,Ψ2 > Q),

where P (Ψ1 ≤ Q,Ψ2 > Q) stands for the probability that one has simulta-
neously Ψ1(β, α) ≤ Q and Ψ2(β, α) > Q as β and α vary independently in
[0, 1]. For the probability P (Ψ1 > Q) we have the asymptotic result provided
by Theorem 1. It remains to estimate P (Ψ1 ≤ Q,Ψ2 > Q). Let

(32) VQ = {(α, β) ∈ [0, 1]× [0, 1] : Ψ1(β, α) ≤ Q, Ψ2(β, α) > Q}.
Then

(33) P (Ψ1 ≤ Q,Ψ2 > Q) = µ(VQ).

Let (α, β) ∈ VQ with 0 < β < α < 1. As before, we may assume that α
and β are irrational. Denote Ψ1(β, α) = N. By the reasoning from Section 2
above we know that the interval (β, α) contains exactly one element of FN ,
and this element has the form a/N, with 1 ≤ a < N and (a,N) = 1. Let
a1/q1 be a rational number from the interval (β, α), with a1/q1 6= a/N and
q1 as small as possible. Thus q1 > N.

We claim that q1 > Q. Indeed, let us choose an irrational number γ
between the numbers a1/q1 and a/N. Then one of the numbers a1/q1 or
a/N lies inside the interval (β, γ), and the other lies inside the interval (γ, α).
Again by the reasoning from Section 2 it follows that one of the numbers
Ψ1(β, γ) or Ψ1(γ, α) equals N, and the other equals q1. Since N < q1, one
has Ψ1(β, γ) 6= Ψ1(γ, α). Thus Proposition 1(ii) is applicable, and we derive

Ψ2(β, α) = min{max{Ψ1(β, γ), Ψ1(γ, α)}, Ψ2(β, γ), Ψ2(γ, α)}
≤ max{Ψ1(β, γ), Ψ1(γ, α)} = max{N, q1} = q1.

But Ψ2(β, α) > Q, and so q1 > Q, which proves the claim.
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Our second claim is that 2N > Q. Indeed, let c/d ∈ (β, a/N) be such
that

(34)
c

d
+

1

dN
=

a

N
.

To find such a fraction c/d, one may simply choose a large M so that FM has
elements in the open interval (β, a/N), and let c/d be the largest element
of FM in the interval (β, a/N). Then c/d is the left neighbor of a/N in FM ,
and (34) follows from the basic properties of Farey fractions. Next, from
(34) and Proposition 2 we find that

(35) Ψ2

(
c

d
,
a

N

)
= N + min{d,N} = 2N.

By Proposition 1, applied to the numbers β < c/d < a/N, we see that

(36) Ψ2

(
β,

a

N

)
≤ min

(
Ψ2

(
β,
c

d

)
, Ψ2

(
c

d
,
a

N

))
.

Applying Proposition 1 to the numbers β < a/N < α we derive

(37) Ψ2(β, α) ≤ min

(
Ψ2

(
β,

a

N

)
, Ψ2

(
a

N
, α

))
.

By (35)–(37) it follows that Ψ2(β, α) ≤ 2N. On combining this with the
inequality Ψ2(β, α) > Q, the claim follows.

Putting together the above two claims, we find that if 0 < β < α < 1,
α, β irrational, Ψ1(β, α) ≤ Q ≤ Ψ2(β, α), then the interval (β, α) contains
exactly one element of FQ, and moreover the denominator N of this element
is > Q/2.

Conversely, let 0 < β < α < 1, α, β irrational, such that the interval
(β, α) contains exactly one element of FQ, call it a/N, where 1 ≤ a ≤ N,
(a,N) = 1, which furthermore satisfies the inequality 2N > Q. We then
claim that Ψ2(β, α) > Q. In order to prove the claim, let us first observe
that since 2N > Q, there is only one number n ∈ {1, . . . , Q} such that an/N
is an integer, namely n = N. Hence there exists an ε > 0 such that for any
γ ∈ (a/N − ε, a/N) and any δ ∈ (a/N, a/N + ε) one has bnγc = bnδc for all
n ∈ {1, . . . , Q} with the exception of n = N. It then follows directly from
the definition that Ψ2(γ, δ) > Q. Fix now some such irrational numbers γ
and δ. We know from Section 2 that Ψ1(δ, α) > Q since FQ does not have
any elements in the interval (δ, α). Also, Ψ1(γ, δ) = N, since a/N is the only
element of FN inside the interval (γ, δ). Then Proposition 1(ii), applied to
the numbers γ < δ < α, gives

(38) Ψ2(γ, α) = min{max{Ψ1(γ, δ), Ψ1(δ, α)}, Ψ2(γ, δ), Ψ2(δ, α)}
= min{Ψ1(δ, α), Ψ2(γ, δ), Ψ2(δ, α)} = min{Ψ1(δ, α), Ψ2(γ, δ)} > Q.
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Similarly, one has Ψ1(β, γ) > Q since FQ does not have any element in the
interval (β, γ), and Ψ1(γ, α) = N since a/N is the only element of FN inside
the interval (γ, α). Using (38) in combination with Proposition 1(ii) applied
to β < γ < α, we deduce that

Ψ2(β, α) = min{max{Ψ1(β, γ), Ψ1(γ, α)}, Ψ2(β, γ), Ψ2(γ, α)}(39)

= min{Ψ1(β, γ), Ψ2(β, γ), Ψ2(γ, α)}
= min{Ψ1(β, γ), Ψ2(γ, α)} > Q.

This proves the claim. In conclusion, the set VQ has the following shape.
For any N with bQ/2c + 1 ≤ N ≤ Q and any 1 ≤ a ≤ N with (a,N) = 1,
if γ′ and γ′′ denote the left and respectively the right neighbors of a/N in
FQ, then β and α are allowed to vary independently inside the intervals
I ′a/N = (γ′, a/N) and respectively I ′′a/N = (a/N, γ′′). Putting together the

contribution of all such fractions a/N, we see that

(40) P (Ψ1 ≤ Q,Ψ2 > Q) = 2
∑

bQ/2c+1≤N≤Q

∑
(a,N)=1

|I ′a/N | · |I
′′
a/N |.

If we denote the elements of FQ, in increasing order, by γj = aj/qj , 1 ≤ j ≤
N(Q), then (40) becomes

(41) P (Ψ1 ≤ Q,Ψ2 > Q) = 2
∑

1≤j≤N(Q)
bQ/2c+1≤qj

(γj+1 − γj)(γj − γj−1).

The sum on the right side of (41) is a subsum of

(42) S1(Q) :=

N(Q)∑
j=1

(γj+1 − γj)(γj+2 − γj+1).

In [5], Hall provides the asymptotic formula

(43) S1(Q) =
6

π2Q2

(
logQ+ γ − ζ ′(2)

ζ(2)
+B

)
+O

(
logQ

Q5/2

)
,

where γ is Euler’s constant and

B =
1

2
+ log 2 + 2

∑
k≥1

ζ(2k)− 1

2k − 1
= 2.546277 . . . .

To evaluate the subsum on the right side of (41), we use the equalities
γj+1 − γj = 1

qjqj+1
and γj − γj−1 = 1

qj−1qj
to obtain

P (Ψ1 ≤ Q,Ψ2 > Q) = 2
∑

1≤j≤N(Q)
bQ/2c+1≤qj

1/qj−1q
2
j qj+1.

Next, recall (see [5], [6], [1]) the equality qj+1 =
⌊Q+qj−1

qj

⌋
qj − qj−1, and
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the fact that the pairs (qj−1, qj) of consecutive denominators of FQ are in
one-to-one correspondence with the pairs of integers a, b with 1 ≤ a, b ≤ Q,
(a, b) = 1 and a+ b > Q. It follows that

P (Ψ1 ≤ Q,Ψ2 > Q) = 2
∑

1≤a,b≤Q, a+b>Q
bQ/2c+1≤b, (a,b)=1

f(a, b),

where the function f is defined by

f(x, y) =
1

xy2
(⌊Q+x

y

⌋
y − x

) .
We may now apply Lemma 2 of [1], which shows that

(44) P (Ψ1 ≤ Q,Ψ2 > Q) ∼ 12

π2

� �

QΩ

f(x, y) dx dy,

where Ω is the polygon with vertices (1/2, 1/2), (1, 1/2), (1, 1) and (0, 1). As
a side remark, note that

⌊Q+x
y

⌋
∈ {1, 2, 3} for (x, y) ∈ Ω, and these values 1,

2 and 3 are attained exactly when the point (x, y) lies in the corresponding
regions T1, T2 and T3∩Ω from Figure 1 of [1]. After making a linear change
of variables in the integral from the right side of (44), one finds that

(45) P (Ψ1 ≤ Q,Ψ2 > Q) ∼ 12C

π2Q2
,

where the constant C is given by

(46) C =
� �

Ω

1

xy2
(⌊

1+x
y

⌋
y − x

) dx dy.
On combining (45), (31) and Theorem 1, and estimating the error terms as in
Section 10 of [1], one obtains the following asymptotic result for P (Ψ2 > Q).

Theorem 4. For any positive integer Q,

P (Ψ2 > Q) =
12

π2Q2

(
logQ+ γ − ζ ′(2)

ζ(2)
+

1

2
+ C

)
+O(Q−5/2 logQ).

We remark that, as in Section 2, the entire discussion may be adapted
to the case when α and β vary in some fixed subinterval of [0, 1], and an
analogue of Theorem 4 can be established in that case, following the method
from Section 10 of [1].

6. Properties of N (β, α). The goal of this section is to study the set
N (β, α). Obviously

N (β, α) = {Ψk(β, α) : k ∈ Z+}.
It is clear from the definition of N (β, α) that it contains all but finitely
many natural numbers. We will in general deal with the inhomogeneous
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case s 6= 0 as it presents no greater difficulty, although some particular
results will require s = 0. If we need to specify the value of s, we write
N (β, α; s).

Proposition 4. N (β, α; 0) is a semigroup under addition of natural
numbers.

Proof. Without loss of generality, assume β < α and take m,n ∈ N (β, α).
Then there exist integers P,Q ∈ Z+ for which mβ < P ≤ mα and nβ <
Q ≤ nα. Adding these inequalities gives (m + n)β < P + Q ≤ (m + n)α.
This implies that m+ n ∈ N (β, α) finishing the proof.

We will later determine the exact structure of this semigroup. In the
inhomogeneous case, the above proposition clearly generalizes to the fact
that m ∈ N (β, α; s) and n ∈ N (β, α; t) implies that m+ n ∈ N (β, α; s+ t).

Proposition 5. For any β ≤ γ ≤ α and s ≥ 0,

(47) N (β, α) = N (β, γ) ∪N (γ, α).

Also, for any α1 ≤ · · · ≤ αm and s ≥ 0,

(48) N (α1, αm) =

m−1⋃
i=1

N (αi, αi+1).

Proof. Since β ≤ γ ≤ α, it follows that bnβ + sc ≤ bnγ + sc ≤ bnα+ sc.
If bnβ + sc 6= bnα + sc, then one of the above inequalities must be strict,
hence we have the inclusion ⊆. Conversely, if one of the above inequalities
fails, then bnβ + sc 6= bnα+ sc. The second statement immediately follows
from the first. This proves the proposition.

Proposition 6. When β ≤ α,

N (β, α) =

{
n ∈ Z+ : β < α− {nα+ s}

n

}
(49)

=

{
n ∈ Z+ : β +

1− {nβ + s}
n

≤ α
}
.

Proof. It is routine to show that bnβ + sc 6= bnα + sc if and only if
0 ≤ n(β − α) + {nα + s} < 1. Since β ≤ α, this can fail if and only if n is
in the first set above. The second part is similar.

Proposition 7. Assume a
b + 1

bd = c
d . Then for s ≥ 0,

(50) N (a/b, c/d) = {mb+ nd : m ≥ −bdsc, n > bbsc}.

In particular, when s = 0, we have

(51) N (a/b, c/d) = {mb+ nd : m ≥ 0, n ≥ 1}.
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Proof. This follows directly from the proof of Lemma 4.2 of [2]. In par-
ticular, in [2] it was shown that, for n ∈ Z+,

bnc/d+ sc 6= bna/b+ sc

if and only if

n+ d{bs}
db

+

{
na+ bbsc

b

}
≥ 1.

This last relation easily translates into the three relations an ≡ −(M+bbsc)
(mod b), Kd − d{bs} ≤ n, and 0 < M ≤ min(b,K). It is easy to see that
all solutions to an ≡ r (mod b) with n satisfying n ≥ L are given by
n = d(L + rd)/be + bN for all N ≥ 0. (In [2], the least such n was sought,
so the inequality Kd − d{bs} ≤ n < Kd − d{bs} + b was used and no N
occurred in the formula.) Hence we have

(52) N (a/b, c/d) = {dM + dbbsc+ bd(K −M)d/b− dse+ bN :

N ≥ 0, K ≥M, 0 < M ≤ b}
= {d(M + bbsc) + b(N + d−dse) : N ≥ 0, M ≥ 1}

= {mb+ nd : m ≥ −bdsc, n > bbsc}.

The proof is complete.

When s = 0, it is convenient to write the conclusion of this proposition
in the form N (a/b, c/d) = {d+mb+nd : m,n ≥ 0}. Since (b, d) = 1, we can
rephrase the proposition by saying that the semigroup (N (a/b, c/d),+) is
generated by the elements b and d, the multiplicity of d being at least one.
It is a well-known theorem of Sylvester that when (b, d) = 1, the largest
integer which is not a non-negative integer linear combination of b and d is
exactly bd− b− d. Thus we have the following corollary.

Corollary 1. If a/b + 1/bd = c/d, then the last integer n for which
bna/bc = bnc/dc is n = b(d− 1).

We are now ready to give for any positive integer k a theoretical formula
for Ψk(a/b, c/d).

Corollary 2. Let s = 0 and assume a/b+ 1/bd = c/d. Then, for each
k, Ψk(a/b, c/d) is equal to the kth element in the set {d+mb+nd : m,n ≥ 0}
when its elements are arranged in increasing order. In particular,

Ψ1(a/b, c/d) = d;(53)

Ψ2(a/b, c/d) = d+

{
b, b/d ∈ (0, 1],

d, b/d ∈ [1,∞);
(54)
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Ψ3(a/b, c/d) = d+


2b, b/d ∈ (0, 1/2],

d, b/d ∈ [1/2, 1),

b, b/d ∈ (1, 2],

2d, b/d ∈ [2,∞);

(55)

Ψ4(a/b, c/d) = d+



3b, b/d ∈ (0, 1/3],

d, b/d ∈ [1/3, 1/2),

2b, b/d ∈ (1/2, 1),

2d, b/d ∈ (1, 2),

b, b/d ∈ (2, 3],

3d, b/d ∈ [3,∞);

(56)

Ψ5(a/b, c/d) = d+



4b, b/d ∈ (0, 1/4],

d, b/d ∈ [1/4, 1/3),

3b, b/d ∈ (1/3, 1/2),

b+ d, b/d ∈ (1/2, 1) ∪ (1, 2),

3d, b/d ∈ (2, 3),

b, b/d ∈ (3, 4],

4d, b/d ∈ [4,∞);

(57)

Ψ6(a/b, c/d) = d+



5b, b/d ∈ (0, 1/5],

d, b/d ∈ [1/5, 1/4),

4b, b/d ∈ (1/4, 1/3),

b+ d, b/d ∈ (1/3, 1/2),

3b, b/d ∈ (1/2, 2/3],

2d, b/d ∈ [2/3, 1),

2b, b/d ∈ (1, 3/2],

3d, b/d ∈ [3/2, 2),

b+ d, b/d ∈ (2, 3),

4d, b/d ∈ (3, 4),

b, b/d ∈ (4, 5],

5d, b/d ∈ [5,∞).

(58)

In general, Ψk(a/b, c/d) is only a function of the ratio b/d and the num-
ber k. The boundary cases in the above formulas are handled by the general
evaluations

(59) Ψk(a/b, c/d) =

{
k, b/d ∈ Z+,

k + n− 1, d/b = n ∈ Z+.
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Proof. The characterization of Ψk(a/b, c/d) follows immediately from the
previous corollary. The remaining parts are just a calculation based upon
this characterization of Ψk(a/b, c/d). This calculation is best facilitated by
forming a tree structure where each vertex is labeled by a Farey fraction and
a linear combination of b and d. The vertices of height k are labeled with
the possible values of Ψk− d written as linear combinations of b and d along
with a maximal interval with rational endpoints over which Ψk achieves the
assigned value. One starts with the root labeled 0 for the value and labeled
with the interval (0,∞). The next larger linear combinations after 0 are b
and d. The smaller of these two values is clearly b when b/d ≤ 1 and is d
when b/d ≥ 1. These two possibilities give rise to the vertices of height 2 and
the evaluation of Ψ2 above. The tree and the evaluations follow by continuing
this construction. For example consider the vertex of height 5 labeled with
b+ d and the interval (1/2, 1). The values already achieved by Ψk − d with
b/d ∈ (1/2, 1) for 1 ≤ k ≤ 5 are in increasing order: 0, b, d, 2b, b + d. The
next possible larger values are 2d and 3b. Now 2d ≤ 3b and 3b ≤ 2d if and
only if b/d ∈ [2/3, 1) and b/d ∈ (1/2, 2/3] respectively. Hence the vertex of
height 5 considered gives rise to the two vertices of height 6 with the values
2d and 3b and the corresponding intervals just given.

That Ψk(a/b, c/d) depends only on k and the value of b/d follows from the
above construction and the fact that an inequality of the form hb+jd < mb+
nd holds if and only if either b/d > (j−n)/(m−h) or b/d < (j−n)/(m−h),
according as m − h is positive or negative. Thus the ordering of the linear
combinations is completely determined by the value of the ratio b/d. Finally,
the formulas at the end for Ψk for all k are easy consequences. This completes
the proof.

We now consider the problem of finding N (α, β) for general α and β.
To this end we use the sequences of approximating fractions constructed
in [2]. Specifically, assume β < α and bβc = bαc. Put Ψ = Ψ1(β, α; 0).
Now arrange the union of the convergents and intermediate convergents of
α less than α in increasing order. Do the same with β, except with the
convergents and intermediate convergents greater than β. In the event that
β is rational, choose the number of terms in the continued fraction for β to be
odd. Then the last approximating fraction to β will be the least convergent
or intermediate convergent greater than β. In this case, also adjoin the
infinite sequence of mediants approaching β formed by taking the mediant
of β and this last fraction and iterating the procedure. (The numerators and
denominators of this sequence of special mediants will be in an arithmetic
progression.) Together these sequences were termed semiconvergents in [2].
It was proved in [2] that these sequences of fractions approaching α and
β have a common element. Moreover, this common convergent is exactly
bΨαc/Ψ . For this reason, bΨαc/Ψ is called the coconvergent of α and β.
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Let g0 = a0/b0 denote the coconvergent of β and α. For i > 0, let
gi = ai/bi denote the ith convergent or intermediate convergent of α greater
than g0. For i < 0, let gi = ai/bi denote the −ith convergent or intermediate
convergent (as constructed above) of β less than g0. Thus we have a doubly
infinite sequence of rational numbers gi = ai/bi satisfying

lim
i→−∞

gi = β, lim
i→∞

gi = α,

and
ai
bi

+
1

bibi+1
=
ai+1

bi+1
.

We will require the following lemma.

Lemma 1. Assume α is irrational. Suppose there exists a positive integer
J such that {Jα + s} = 0. Then for any N > 0, there exists a β < α such
that β ≤ γ < α implies that Ψ2(γ, α) > N .

Proof. Let J1 = 1 and define Ji for i > 1 inductively by the rule that
Ji+1 is the least positive integer greater than Ji such that {Ji+1α+s}/Ji+1 <
{Jiα + s}/Ji. Then the sequence Ji will be finite; let Je be its last term.
By Lemma 4.1 of [2], we know that α − {Je−1α + s}/Je−1 ≤ γ < α im-
plies that Ψ1(γ, α) = J = Je. Now let K1 be the least integer greater
than J such that {K1α + s}/K1 < {Je−1α + s}/Je−1. Define the sequence
Ki inductively by the rule that Ki+1 is the least positive integer greater
than Ki such that {Ki+1α + s}/Ki+1 < {Kiα + s}/Ki. Then since α is
irrational, the sequence Ki is infinite. Now by Proposition 6 it is clear
that α − {Kiα + s}/Ki ≤ γ < α − {Ki+1α + s}/Ki+1 < α implies that
Ψ2(γ, α) = Ki+1 and the lemma is proved.

The next theorem characterizes the set N (β, α). We assume α is irra-
tional and s is some non-negative fixed real number. From [2] we know that
if there exists a natural number L such that {Lα+ s} = 0 then it is a value
of Ψ1. In [2] a formula for computing L was also provided.

Theorem 5. Assume α is irrational and β < α. Then for s ≥ 0,

N (β, α) = {mbi + nbi+1 : i ∈ Z, m > −bbi+1sc, n ≥ bbisc} ∪ {L}.
When s = 0 we have

N (β, α) = {mbi + nbi+1 : i ∈ Z, m > 0, n ≥ 0}.
In particular, when s = 0, N (β, α) is generated by the set of numbers
{bk}k∈Z.

Proof. By Proposition 5,

(60) N (β, α) = N (β, g−j) ∪N (gk, α) ∪
⋃

−j≤i<k
N (gi, gi+1).

If {nα+s} 6= 0 for n ∈ Z+, then by Lemma 4.1 of [2], j and k can be chosen
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large enough that both Ψ1(β, g−j) and Ψ1(gk, α) are larger than b0(b1 − 1). In
this case we clearly have N (β, g−j) ∪N (gk, α) ⊂ N (g0, g1). (For by Corol-
lary 1, n > b0(b1 − 1) implies that n ∈ N (g0, g1).)

If {Lα + s} = 0, then by Lemma 4.1 of [2], when k is sufficiently large,
Ψ1(gk, α) = L, so L is in the set. By Lemma 1 we can now choose k
sufficiently large so that Ψ2(gk, α) > b0(b1 − 1) and hence N (gk, α) ⊂
{L} ∪ N (g0, g1). Thus for large enough j and k,

N (β, α) = {L} ∪
⋃

−j≤i<k
N (gi, gi+1) ⊆ {L} ∪

⋃
−∞≤i<∞

N (gi, gi+1).

But by Proposition 5 the last inclusion is actually an equality. Proposition 7
gives the first part of the theorem. The second part follows trivially from
the first, and the third follows immediately from the second.

When s = 0 it is clear from the proof of this theorem how to choose
a finite set of the bi which will form a set of generators for the semigroup
(N (β, α),+).
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