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1. Introduction. In [4], we proved the reciprocity law for Dedekind
sums with characters by using values at non-positive integers of Barnes’s
double zeta functions with characters. The reciprocity law (Theorem 1 in
Section 2) is of course concerned with the Dedekind sums with characters.
But if one is interested in the generalized Bernoulli numbers B∗,χ rather
than in the Dedekind sums, then the law shows a different side. It leads us
to consider a character as a product of two characters with coprime moduli
if possible, and one might say that the law gives us the relation between
B∗,χ1χ2 and B∗,χ1 ·B∗,χ2 , or that the Dedekind sums with characters fill the
gap between B∗,χ1χ2 and B∗,χ1 ·B∗,χ2 .

From this point of view, we can obtain formulas for class numbers of
imaginary quadratic fields, since B1,χd for χd the Kronecker character is the
negative of the class number of Q(

√
d) when d < −4. More precisely, we

prove three propositions (and one corollary). Actually the first two propo-
sitions are obtained by using the way of proving the law, and the last one
is obtained from the law itself. Proposition 1 gives us a formula for the
class number h(d) of Q(

√
d) by short character sums partitioned by t. We

already have formulas for small values of t (cf. [7, Chap. I, §9.6]), and
Proposition 1 gives a general formula. Proposition 2 gives us an expres-
sion of B1,χ1χ2 in terms of short character sums, where χ1 and χ2 are of
opposite parity. This has been obtained by Szmidt, Urbanowicz and Za-
gier by using Zagier’s identity (cf. [6], [7, Chap. I, §9.7]), and we give
a different proof. The Corollary to Proposition 2 is known as the class
number formulae of Lerch and Mordell (cf. [2], [3], [7, Chap. I, §9.7]).
If we compare the formula for h(td) with that for h(d), it may be pos-
sible to derive some interesting results (see Remark 1). The last proposi-
tion (Proposition 3) treats the relation between h(d1)h(d2) and h(d̃1)h(d̃2),
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where d1, d2, d̃1, d̃2 < −4, (d1, d2) = (d̃1, d̃2) = 1 and d1d2 = d̃1d̃2. They
are related to the sums of the type

∑
n∈T nχ(n), where χ is the prod-

uct of Kronecker characters for Q(
√
d1) and Q(

√
d2), and T is the set

{n = a|d1| + b|d2| | a, b ∈ Z, 0 ≤ a < |d2|, 0 ≤ b < |d1|, n > d1d2}.
These sums come from the Dedekind sums.

In Section 2, we review Dedekind sums with a character, and state a
reciprocity law for them. In Section 3, we give formulas for class numbers.

2. Dedekind sums with a character and the corresponding reci-
procity law. First we give definitions of Bernoulli numbers, Bernoulli poly-
nomials, Bernoulli functions and generalized Bernoulli numbers.

Definition 1. The nth Bernoulli number Bn and the nth Bernoulli
polynomial Bn(u) are defined by

t

et − 1
=
∞∑

n=0

Bn
n!

tn and
teut

et − 1
=
∞∑

n=0

Bn(u)
n!

tn.

For example, B1 = −1/2, B2 = 1/6 and B1(u) = u− 1/2. It is easy to show
that

(2.1) Bn(1− u) = (−1)nBn(u).

The nth Bernoulli function Bn(u) is defined by

Bn(u) = Bn({u}) if n > 1,

B1(u) =
{
B1({u}) if u 6∈ Z,

0 if u ∈ Z.
Here {u} denotes the fractional part of a real number u, i.e., 0 ≤ {u} < 1.
Also for a Dirichlet character χ of conductor f , we define the nth generalized
Bernoulli number Bn,χ by

f∑

a=1

χ(a)teat

eft − 1
=
∞∑

n=0

Bn,χ
n!

tn.

It is easy to show that for any multiple F of f ,

(2.2) Bn,χ = Fn−1
F∑

j=1

χ(j)Bn

(
j

F

)
.

The following gives us the definition of Dedekind sums with a character.

Definition 2. Let k and h be positive integers such that (k, h) = 1,
and let χ be a Dirichlet character defined mod l with l | kh. We define the
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nth Dedekind sum with character χ by

sn(χ; (k, h)) = kn−1
k−1∑

a=0

h−1∑

b=0

b

h
χ(ha+ kb)Bn

(
a

k
+
b

h

)
,

sn(χ; (h, k)) = hn−1
k−1∑

a=0

h−1∑

b=0

a

k
χ(ha+ kb)Bn

(
a

k
+
b

h

)
.

For the principal character χ0, we have

sn(χ0; (k, h)) =
h−1∑

b=1

b

h
Bn

(
kb

h

)
=: sn(k, h),

where sn(k, h) is the generalized Dedekind sum considered by Apostol
(cf. [1]).

Lemma 1. (1) Let χ be a non-trivial character defined mod k, and set
χ(−1) = (−1)λ. If n ≡ λ (mod 2), then

{
sn(χ; (h, k)) = 1

2 k
1−nBn,χ,

sn(χ; (k, h)) = 1
2 (h1−n − χ(h))Bn,χ.

(2) Let χ = χ1χ2 be a character with χ1 (resp. χ2) defined mod k (resp.
h), both non-trivial , and set χ(−1) = (−1)λ. If n ≡ λ (mod 2), then

{
sn(χ; (h, k)) = 1

2 k
1−nBn,χ,

sn(χ; (k, h)) = 1
2 h

1−nBn,χ.

Proof. We only prove (1), since we can prove (2) analogously. Consider
the sum

A :=
k−1∑

a=0

h−1∑

b=0

B1

(
a

k

)
χ(ha+ kb)Bn

(
a

k
+
b

h

)
.

Since {
2−

(
a

k
+
b

h

)}
=

{
1−

(
a
k + b

h

)
if a
k + b

h ≤ 1,

2−
(
a
k + b

h

)
if a
k + b

h > 1,

from (2.1) we have

Bn

(
2−

(
a

k
+
b

h

))

=

{
Bn
(
1−

(
a
k + b

h

))
= (−1)nBn

(
a
k + b

h

)
if a
k + b

h ≤ 1,

Bn
(
2−

(
a
k + b

h

))
= (−1)nBn

(
a
k + b

h

)
if a
k + b

h > 1.
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So

A =
k−1∑

a=1

h−1∑

b=1

B1

(
a

k

)
χ(ha)Bn

(
a

k
+
b

h

)
+
k−1∑

a=1

B1

(
a

k

)
χ(ha)Bn

(
a

k

)

=
k−1∑

a=1

h−1∑

b=1

B1

(
k − a
k

)
χ(h(k − a))Bn

(
k − a
k

+
h− b
h

)

+
k−1∑

a=1

B1

(
k − a
k

)
χ(h(k − a))Bn

(
k − a
k

)

= (−1)λ+n+1
{ k−1∑

a=1

h−1∑

b=1

B1

(
a

k

)
χ(ha)Bn

(
a

k
+
b

h

)

+
k−1∑

a=1

B1

(
a

k

)
χ(ha)Bn

(
a

k

)}

= (−1)λ+n+1A.

Thus if n ≡ λ (mod 2), then A = 0.
Now since B1(u) = u−1/2 and {ha+kb | 0 ≤ a < k, 0 ≤ b < h, a, b ∈ Z}

is a complete set of representatives modulo kh, from (2.2) we have

sn(χ; (h, k)) = hn−1
{
A+

1
2

k−1∑

a=0

h−1∑

b=0

χ(ha+ kb)Bn

(
a

k
+
b

h

)}

=
hn−1

2

hk−1∑

j=0

χ(j)Bn

(
j

kh

)
=

1
2
k1−nBn,χ

for n ≡ λ (mod 2).
For sn(χ; (k, h)), we obtain similarly

B :=
k−1∑

a=0

h−1∑

b=0

B1

(
b

h

)
χ(ha+ kb)Bn

(
a

k
+
b

h

)

=
k−1∑

a=1

h−1∑

b=1

B1

(
b

h

)
χ(ha)Bn

(
a

k
+
b

h

)
+B1(0)

k−1∑

a=1

χ(ha)Bn

(
a

k

)

= (−1)λ+n+1
k−1∑

a=1

h−1∑

b=1

B1

(
b

h

)
χ(ha)B

(
a

k
+
b

h

)
− 1

2
χ(h)k1−nBn,χ

= (−1)λ+n+1
{
B +

1
2
χ(h)k1−nBn,χ

}
− 1

2
χ(h)k1−nBn,χ.
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So if n ≡ λ (mod 2), then

B = −1
2
χ(h)k1−nBn,χ.

Hence

sn(χ; (k, h)) = kn−1
{
B +

1
2

k−1∑

a=0

h−1∑

b=0

χ(ha+ kb)Bn

(
a

k
+
b

h

)}

= −1
2
χ(h)Bn,χ +

1
2
h1−nBn,χ =

1
2

(h1−n − χ(h))Bn,χ.

The reciprocity law is the following:

Theorem 1 (Reciprocity Law, [4]). Let k, h and χ be as in Definition 2.
If χ 6= χ0, then for a positive integer n,

1
n
{hn−1sn(χ; (k, h)) + kn−1sn(χ; (h, k))}

=
k−1∑

a=0

h−1∑

b=0

χ(ha+ kb)(Bhk +Bhk + ha+ kb)n+1

n(n+ 1)(hk)2 +
1
hk

Bn+1,χ

n+ 1
+
Bn,χ
n

,

where

(Bhk +Bhk + ha+ kb)n+1

=
n+1∑

j=0

n+1−j∑

l=0

(
n+ 1
j

)(
n+ 1− j

l

)
Bj(hk)jBl(hk)l(ha+ kb)n+1−j−l.

For n = 1 and χ = χ1χ2 with χ1 (resp. χ2) defined mod k (resp. h), both
non-trivial characters,

(2.3) s1(χ; (k, h)) + s1(χ; (h, k)) = uB1,χ1B1,χ2 +
B2,χ

2hk
+B1,χ,

where u = χ1(h)χ2(k).

3. Formulas for class numbers of imaginary quadratic fields. In
this section, we give several formulas for class numbers of imaginary quad-
ratic fields. As usual, we denote the class number of a quadratic field Q(

√
d)

with a discriminant d by h(d).

Proposition 1. Let d < −4 be a discriminant of Q(
√
d), and t a pos-

itive integer such that (t, d) = 1 and t > 1. Then

h(d) =
1

t− χd(t)

[t/2]∑

j=1

(t− 2j + 1)Aj(χd, |d|, t),
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where χd is the Kronecker character of Q(
√
d), and Aj(χd, |d|, t) is the short

character sum defined by

Aj(χd, |d|, t) =
∑

|d|(j−1)/t≤a<|d|j/t
χd(a).

Proof. Set d0 = |d| and Aj = Aj(χd, |d|, t), and consider B1,χd . Since
the set {at + bd0 | 0 ≤ a < d0, 0 ≤ b < t, a, b ∈ Z} is a complete set of
representatives modulo d0t, we have

B1,χd =
d0t−1∑

j=0

χd(j)B1

(
j

d0t

)
=
d0−1∑

a=0

t−1∑

b=0

χd(at+ bd0)B1

(
at+ bd0

d0t

)
(3.1)

=
d0−1∑

a=0

t−1∑

b=0

χd(at)
({

a

d0
+
b

t

}
− 1

2

)

=
d0−1∑

a=0

t−1∑

b=0

χd(at)
(
a

d0
+
b

t
− 1

2

)
−

∑

(a,b)∈S
χd(at),

where

S = {(a, b) ∈ Z2 | 0 ≤ a < d0, 0 ≤ b < t, at+ bd0 ≥ d0t}.

Now

(3.2)
d0−1∑

a=0

t−1∑

b=0

χd(at)
(
a

d0
+
b

t
− 1

2

)
= χd(t)t

d0−1∑

a=1

a

d0
χd(a) = χd(t)tB1,χd .

Hence from (3.1) and (3.2) we have

(3.3) B1,χd =
1

t− χd(t)
∑

(a,b)∈S
χd(a).

Since (a, b) ∈ S if and only if a ≥ d0 − bd0/t,

∑

(a,b)∈S
χd(a) =

t−1∑

b=1

∑

a≥d0−bd0/t

χd(a)(3.4)

= −
t−1∑

b=1

∑

a<bd0/t

χd(a) = −
t−1∑

b=1

b∑

j=1

Aj

= −
t−1∑

j=1

( t−1∑

b=j

1
)
Aj = −

t−1∑

j=1

(t− j)Aj .
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Assume that t is odd. Then
t−1∑

j=1

(t− j)Aj =
(t−1)/2∑

j=1

(t− j)Aj +
t−1∑

j=(t+1)/2

(t− j)Aj

=
(t−1)/2∑

j=1

(t− j)Aj +
(t−1)/2∑

j=1

jAt−j .

Since

At−j =
∑

|d|(t−j−1)/t≤a<|d|(t−j)/t
χd(a)(3.5)

=
∑

|d|j/t<b≤|d|(j+1)/t

χd(|d| − b) = −Aj+1,

we have A(t+1)/2 = 0. Thus

(3.6)
t−1∑

j=1

(t− j)Aj =
(t−1)/2∑

j=1

(t− 2j + 1)Aj .

For t even we can show analogously

(3.7)
t−1∑

j=1

(t− j)Aj =
t/2∑

j=1

(t− 2j + 1)Aj .

Therefore from (3.3), (3.4), (3.6) and (3.7), we get

B1,χd =
−1

t− χd(t)

[t/2]∑

j=1

(t− 2j + 1)Aj .

As h(d) = −B1,χd for d < −4, we have the result.

Example. For t = 2, 3, 5, the formula gives us known results:

h(d) =
1

2− χd(2)

∑

a<|d|/2
χd(a), h(d) =

2
3− χd(3)

∑

a<|d|/3
χd(a),

h(d) =
2

5− χd(5)

{
2
∑

a<|d|/5
χd(a) +

∑

|d|/5<a<2|d|/5
χd(a)

}

(cf. [7, Chap. I, §9.6]). For t = 7,

h(d) =
2

7− χd(7)

×
{

3
∑

a<|d|/7
χd(a) + 2

∑

|d|/7<a<2|d|/7
χd(a) +

∑

2|d|/7<a<3|d|/7
χd(a)

}

for d with (d, 7) = 1.
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Next we shall consider t such that t is also a discriminant of Q(
√
t) and

(t, d) = 1. Then td is a discriminant of Q(
√
td). The following proposition

is essentially the same as Theorem 7 in [7, Chap. I], which was proved by
using Zagier’s identity. We give a different proof.

Proposition 2 ([6], [7, Chap. I, Theorem 7]). Let k and h be positive
integers with (k, h) = 1, and χ1 and χ2 non-trivial Dirichlet characters
defined mod k and h respectively , satisfying χ1(−1) = −1 and χ2(−1) = 1.
Then

B1,χ1χ2 = −2χ1(h)χ2(k)
[h/2]∑

j=1

( j−1∑

l=1

χ2(l)
)
Aj(χ1, k, h)(3.8)

= 2χ1(h)χ2(k)
[k/2]∑

j=1

( j−1∑

l=1

χ1(l)
)
Aj(χ2, h, k) + α,(3.9)

where

Aj(χ1, k, h) =
∑

k(j−1)/h≤a<kj/h
χ1(a), Aj(χ2, h, k) =

∑

h(j−1)/k≤a<hj/k
χ2(a)

and

α =

{
χ1(h)χ2(k)(

∑(k−1)/2
l=1 χ1(l))A(k+1)/2(χ2, h, k) for k odd ,

0 for k even.

Proof. Similarly to the proof of Proposition 1, we have

B1,χ1χ2 =
kh−1∑

j=0

χ1χ2(j)B1

(
j

kh

)
=
k−1∑

a=0

h−1∑

b=0

χ1χ2(ha+ kb)B1

(
ha+ kb

kh

)

=
k−1∑

a=0

h−1∑

b=0

χ1(ha)χ2(kb)
(
a

k
+
b

h
− 1

2

)
−

∑

(a,b)∈S1

χ1(ha)χ2(kb),

where

S1 = {(a, b) ∈ Z2 | 0 ≤ a < k, 0 ≤ b < h, ha+ kb ≥ kh}.
Now

k−1∑

a=0

h−1∑

b=0

χ1(ha)χ2(kb)
(
a

k
+
b

h
− 1

2

)
= 0,

since χ1 and χ2 are both non-trivial. Thus

(3.10) B1,χ1χ2 = −χ1(h)χ2(k)
∑

(a,b)∈S1

χ1(a)χ2(b).
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As in the proof of Proposition 1,

∑

(a,b)∈S1

χ1(a)χ2(b) =
h−1∑

b=1

χ2(b)
∑

a≥k−kb/h
χ1(a)(3.11)

= −
h−1∑

b=1

χ2(b)
∑

a<kb/h

χ1(a)

= −
h−1∑

b=1

χ2(b)
b∑

j=1

Aj(χ1, k, h)

= −
h−1∑

j=1

( t−1∑

b=j

χ2(b)
)
Aj(χ1, k, h)

=
h−1∑

j=1

( j−1∑

b=1

χ2(b)
)
Aj(χ1, k, h).

By using Ah−j(χ1, k, h) = −Aj+1(χ1, k, h) (cf. (3.5)), we derive

(3.12)
h−1∑

j=1

( j−1∑

b=1

χ2(b)
)
Aj(χ1, k, h) = 2

[h/2]∑

j=1

( j−1∑

b=1

χ2(b)
)
Aj(χ1, k, h).

Therefore from (3.10)–(3.12), we obtain (3.8).
For (3.9), we do the same computations except that we use the identity

Ak−j(χ2, h, k) = Aj+1(χ2, h, k).

Corollary (Class number formulae of Lerch and Mordell, [2], [3], [7,
Chap. I, Theorem 6]). Let d be a discriminant of an imaginary quadratic
field Q(

√
d), and t a discriminant of a real quadratic field Q(

√
t) satisfying

(t, d) = 1. Then

h(td) = 2
[t/2]∑

j=1

( j−1∑

l=1

χt(l)
)
Aj(χd, |d|, t),

where Aj(χd, |d|, t) is the same as in Proposition 1.

Proof. We only note that under our assumptions χd(t)χt(|d|) = 1.

Remark 1. If we compare the above Corollary with Proposition 1, we
might obtain some interesting results. For example, when t is a prime with
t ≡ 1 (mod 4), the Corollary gives us the congruence

h(td) ≡ (1− χd(t))h(d) (mod 4).
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This is because

h(td) = 2
(t−1)/2∑

j=2

{ j−1∑

l=1

((
l

t

)
+ 1
)}

Aj − 2
(t−1)/2∑

j=2

( j−1∑

l=1

1
)
Aj

≡ 2
(t−1)/2∑

j=2

(1− j)Aj ≡ (t− χd(t))h(d) ≡ (1− χd(t))h(d) (mod 4).

The above congruence is obvious if h(d) is even. But if h(d) is odd, i.e., the
2-rank of the ideal class group of Q(

√
td) is 1, then

h(td) ≡ 0 (mod 4) ⇔ χd(t) = 1,

which is a part of the results by Rédei and Reichardt (cf. [5]).

Next we shall consider the relation between h(d1)h(d2) and h(d̃1)h(d̃2),
where d1, d2, d̃1, d̃2 are discriminants of imaginary quadratic fields such that
(d1, d2) = (d̃1, d̃2) = 1 and d1d2 = d̃1d̃2.

We define the Dirichlet L-series L(s, χ) by

L(s, χ) =
∞∑

n=1

χ(n)
ns

for Re(s) > 1.

It is well known that L(s, χ) is analytically continued to the whole complex
plane, and for a positive integer n,

L(1− n, χ) = −Bn,χ
n

.

We also set

T (k, h) = {n = ha+ kb | a, b ∈ Z, 0 ≤ a < k, 0 ≤ b < h, n > kh}
for coprime positive integers k and h.

Lemma 2. Let χ1 and χ2 be non-trivial characters defined mod k and h,
respectively. Assume (k, h) = 1, and set χ = χ1χ2.

(1) L(0, χ) =
∑
n∈T (k,h) χ(n).

(2) When χ1 and χ2 are both even,

L(−1, χ) =
∑

n∈T (k,h)

nχ(n).

(3) When χ1 and χ2 are both odd ,

L(−1, χ) = −χ1(h)χ2(k)khB1,χ1B1,χ2 +
∑

n∈T (k,h)

nχ(n).

(4) When χ1 and χ2 are of opposite parity ,

L(0, χ) =
1
kh

∑

n∈T (k,h)

nχ(n).
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Proof. For (1), we argue as follows:

B1,χ =
k−1∑

a=0

h−1∑

b=0

χ(ha+ kb)B1

(
a

k
+
b

h

)

=
k−1∑

a=0

h−1∑

b=0

χ(ha+ kb)
(
a

k
+
b

h
− 1

2

)
−

∑

n∈T (k,h)

χ(n)

= −
∑

n∈T (k,h)

χ(n).

For (2)–(4), we apply Theorem 1.
(2) The right hand side of (2.3) is − 1

khL(−1, χ), and the left hand side
of (2.3) is

χ1(h)χ2(k)
k−1∑

a=0

h−1∑

b=0

(
a

k
+
b

h

)
χ1(a)χ2(b)

(
a

k
+
b

h
− 1

2

)
− 1
kh

∑

n∈T (k,h)

nχ(n).

Here the first term becomes 0 since both are even non-trivial characters,
and we obtain the result.

(3) Similarly the right hand side of (2.3) is

− 1
kh
L(−1, χ) + χ1(h)χ2(k)B1,χ1B1,χ2 ,

and the left hand side is

2χ1(h)χ2(k)B1,χ1B1,χ2 −
1
kh

∑

n∈T (k,h)

nχ(n).

(4) The right hand side of (2.3) is −L(0, χ), and the left hand side is
− 1
kh

∑
n∈T (k,h) nχ(n).

The following proposition is an easy consequence of the above lemma.

Proposition 3. (1) Let d be a discriminant of an imaginary quadratic
field , and χd the Kronecker character. Suppose that we have a decomposition
of |d| as |d| = kh with k, h > 1 and (k, h) = 1. Then

h(d) =
∑

n∈T (k,h)

χd(n).

(2) Let d1 and d2 be discriminants of imaginary quadratic fields with

(3.13) (d1, d2) = 1 and d1, d2 < −4.

Also let χi be the corresponding Kronecker character , and set χ = χ1χ2.
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(a) We have the formula

h(d1)h(d2) =
1

d1d2
L(−1, χ)− 1

d1d2

∑

n∈T (|d1|,|d2|)
nχ(n).

(b) When d1 ≡ 1 (mod 4) and d2 = 4m2 with m2 ≡ 3 (mod 4),

h(d1)h(d2) =
1

d1d2

{ ∑

n∈T (4|d1|,|m2|)
nχ(n)−

∑

n∈T (|d1|,|d2|)
nχ(n)

}
.

(c) Suppose that we have another pair (d̃1, d̃2) of discriminants for imag-
inary quadratic fields satisfying (3.13) and d1d2 = d̃1d̃2. Then

h(d1)h(d2)− h(d̃1)h(d̃2) =
1

d1d2

{ ∑

n∈T (|d̃1|,|d̃2|)

nχ(n)−
∑

n∈T (|d1|,|d2|)
nχ(n)

}
.

Proof. (1) Corresponding to |d| = kh, we have the decomposition of χd
as χd = χ1χ2 with χ1 and χ2 defined mod k and h, respectively. So from
Lemma 2(1) this is obvious.

(2) First we note that χ1(|d2|)χ2(|d1|) = −1.
(a) This is obvious from Lemma 2(3).
(b) We have d1d2 = (−4d1)(−m2), where −4d1 and −m2 are discrimi-

nants of real quadratic fields, and the product of their Kronecker characters
is the same as χ = χ1χ2. From Lemma 2(2) we know that

L(−1, χ) =
∑

n∈T (4|d1|,|m2|)
nχ(n).

On the other hand, from Lemma 2(3) we have another expression of
L(−1, χ), and by equating the two the result is obtained.

(c) Since χ1χ2 = χ̃1χ̃2, this is obvious from (a).

Remark 2. (1) When d1 (or d2) in Proposition 3(2) is −3 or −4, the
results are slightly different, as h(d1) = −3B1,χ1 or −2B1,χ1 .

(2) It seems meaningful to consider the values
∑
n∈T nχ(n) for various

T ’s. When χ = χ0, the principal character, we can evaluate the sum:
∑

n∈T (k,h)

n =
2
3

(kh)2 − 3
4
kh(k + h) +

7
12
kh+

1
12

(k + h)2 − 1
12
.

This is obtained for example by using the reciprocity law of Dedekind:

s1(k, h) + s1(h, k) =
1
12

(
k

h
+
h

k
+

1
kh

)
− 1

4
.
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For we can transform the left hand side of the law as follows:

s1(k, h) + s1(h, k) =
h−1∑

b=1

b

h
B1

(
kb

h

)
+
k−1∑

a=1

a

k
B1

(
ha

k

)

=
h−1∑

b=1

b

h

k−1∑

a=0

B1

(
b

h
+
a

k

)
+
k−1∑

a=1

a

k

h−1∑

b=0

B1

(
a

k
+
b

h

)

=
k−1∑

a=0

h−1∑

b=0

(
a

k
+
b

h

)
B1

(
a

k
+
b

h

)

=
k−1∑

a=0

h−1∑

b=0

(
a

k
+
b

h

)(
a

k
+
b

h
− 1

2

)
− 1
kh

∑

n∈T (k,h)

n.

∑
n∈T (k,h) nχ(n) is considered as the signed sum over the set T (k, h).
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