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1. Introduction and statement of the main results. Let O denote
the real division algebra of Cayley’s octaves and let Γ denote the smallest
(non-associative) subring of O which contains the eight basal units of O, so
that we may identify O with R8 and Γ with Z8. (See [7] for some motivating
comments on the choice of Γ as an integral domain.) In a previous paper [7]
we developed the following two asymptotic formulas, generalizing a result
of H. Müller and W. G. Nowak [9] on the distribution of squares of Gaus-
sian integers, and our results [6] on the distribution of squares of integral
quaternions.

As X →∞,

(1.1) #{θ2 | θ ∈ Γ ∧ θ2 ∈ [−X,X]8} = C8X
4 − 8π3

105
X7/2 +X3∆8(X),

where C8 = 6.747289 . . . is a numerical constant , and the remainder term
∆8(X) can be estimated by ∆8(X)� X23/73(logX)461/146.

(1.2) #{θ2 | θ ∈ Γ ∧ |Re(θ2)|, |Im(θ2)| ≤ X}

=
π3

9
X4 − 8π3

105
X7/2 +O(X3),

where Re(a) = a0 is the real part and Im(a) := (a1, a2, a3, a4, a5, a6, a7) is
the imaginary part of the octave a = (a0, a1, a2, a3, a4, a5, a6, a7), and | · | is
the Euclidean norm.

Referring to the proof of [7, Theorem 1], the order of magnitude of the
remainder term ∆8(X) is not greater than the bound

max
{
X1/4, max

N≤
√

2X

∣∣∣∣
N∑

n=1

ψ

(
X

n

)∣∣∣∣, max
N≥
√
X/5

∣∣∣
[
√
X]∑

n=N

ψ(
√
X − n2)

∣∣∣
}
,
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where ψ(z) = z−[z]−1/2 is the rounding error function, so that by applying
the new, but yet unpublished version [3] of Huxley’s method (cf. [2]) the
estimate in (1.1) can be improved to

∆8(X)� X131/416(logX)26947/8320 (X →∞).

In the present paper we investigate two further distribution questions
which naturally arise from introducing the Cayley numbers by taking the
Zorn extension of the complex numbers on the one hand, and by doubling
the quaternions on the other. (The second question is also motivated by [8],
where the quaternions are introduced by doubling the complex numbers.)

First, consider the set C × C3 and define addition componentwise and
multiplication via

(x,x)(y,y) = (xy − 〈y,x〉, xy + yx + x× y),

where (x1, x2, x3) = (x1, x2, x3) for xi ∈ C, 〈·, ·〉 is the complex inner prod-
uct, and × is the vector product in C3 overtaken from the standard vector
product in R3. Then, if we identify every real r with (r,o), C × C3 also
equals the Cayley algebra O and Z[i]× Z[i]3 equals the ring Γ .

Secondly, if H is the division ring of Hamilton’s quaternions, then fix a
“hyper-quaternion” unit p 6∈ H and create H + Hp, defining addition and
multiplication formally with respect to (q1p)q2 = (q1q2)p, q1(q2p) = (q2q1)p,
and (q1p)(q2p) = −q2q1 for all q1, q2 ∈ H. Then H + Hp equals the Cayley
algebra O. Consequently, Γ = J0 + J0p, where J0 = Z4 is the Lipschitz ring
of integral quaternions.

If a ∈ O then we call CP(a) := z the complex part and HCP(a) := z the
hypercomplex part of the Cayley number a = (z, z) (z ∈ C, z ∈ C3).

If a ∈ O then we call QP(a) := α the quaternion part and HQP(a) := β
the hyperquaternion part of the Cayley number a = α+ βp (α, β ∈ H).

Now the objective of the present paper is to prove the following two
theorems.

Theorem 1. For X ≥ 1 let

A1(X) := #{θ2 | θ ∈ Γ ∧ |CP(θ2)|, |HCP(θ2)| ≤ X}.
Then, as X →∞,

A1(X) = C1X
4 − 8π3

105
X7/2 +O(X3∆(X)),

where C1 = 3.500550 . . . is a numerical constant so that 2C1 equals the eight-
dimensional volume of the basic domain {a ∈ O | |CP(a2)|, |HCP(a2)| ≤ 1},
and

∆(X) := max{X1/4,∆1(X),∆2(X),∆3(X)},
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with

∆1(X) := max
N≤
√

2X

∣∣∣∣
N∑

n=1

ψ

(
X

n

)∣∣∣∣, ∆2(X) := max
N≥0

∣∣∣
[
√
X]∑

n=N

ψ(
√
X − n2)

∣∣∣,

and

∆3(X) := max
N≤c4

√
X

∣∣∣∣
∑

c1
√
X≤n≤N

ψ

(√√
2X − n2 − X2

4n2

)∣∣∣∣,

c1 :=
√

(
√

2− 1)/2, c4 :=
√

(
√

2 + 1)/2.

Numerically ,

(1.3) ∆(X)� X131/416(logX)26947/8320 � X0.315 (X →∞).

Theorem 2. For X ≥ 1 let

A2(X) := #{θ2 | θ ∈ Γ ∧ |QP(θ2)|, |HQP(θ2)| ≤ X}.
Then, as X →∞,

A2(X) = C2X
4 − 8π3

105
X7/2 +O(X101/32+ε),

where C2 = 3.284604 . . . is a numerical constant so that 2C2 equals the eight-
dimensional volume of the basic domain {a ∈ O | |QP(a2)|, |HQP(a2)| ≤ 1}.
(The O-constant depends on ε.)

2. Preparation for the proof. If a = (a0, a1, a2, a3, a4, a5, a6, a7) ∈ O
let a = (a0,−a1,−a2,−a3,−a4,−a5,−a6,−a7) be the conjugate of a and
N(a) = aa = a2

0 + a2
1 + a2

2 + a2
3 + a2

4 + a2
5 + a2

6 + a2
7 the norm of a. Further

let ImO = {0} × R7 denote the imaginary space of the algebra O. Then

a2 = a((2a0, 0, 0, 0, 0, 0, 0, 0)− a) = 2a0a− (N(a), 0, 0, 0, 0, 0, 0, 0)

= (a2
0 − a2

1 − a2
2 − a2

3 − a2
4 − a2

5 − a2
6 − a2

7, 2a0a1, 2a0a2, 2a0a3,

2a0a4, 2a0a5, 2a0a6, 2a0a7).

Consequently, for a ∈ O we have

|CP(a2)|, |HCP(a2)| ≤ X iff a ∈ K1(X),

|QP(a2)|, |HQP(a2)| ≤ X iff a ∈ K2(X),

where

K1(X) = {(a0, a1, a2, a3, a4, a5, a6, a7) ∈ R8 |
(a2

0 − (a2
1 + a2

2 + a2
3 + a2

4 + a2
5 + a2

6 + a2
7))2 + 4a2

0a
2
1 ≤ X2

∧ 4a2
0(a2

2 + a2
3 + a2

4 + a2
5 + a2

6 + a2
7) ≤ X2}



256 G. Kuba

and

K2(X) = {(a0, a1, a2, a3, a4, a5, a6, a7) ∈ R8 |
(a2

0−(a2
1+a2

2+a2
3+a2

4+a2
5+a2

6+a2
7))2+4a2

0(a2
1+a2

2+a2
3) ≤ X2

∧ 4a2
0(a2

4 + a2
5 + a2

6 + a2
7) ≤ X2}.

Now define an equivalence relation ∼ on O by a ∼ b iff a2 = b2. Concerning
the equivalence classes we observe that (as in the world of Hamilton’s quater-
nions) [a]∼ = {a,−a} if a ∈ O\ ImO, and [a]∼ = {b ∈ ImO | N(b) = N(a)}
if a ∈ ImO. Hence, for i = 1, 2 we can write

Ai(X) = #(Ki(X) ∩ (N× Z7)) +O(X) (X →∞),

and our two distribution questions become eight-dimensional lattice point
problems. Note that the (bounded) domains Ki(X) are obtained by a ho-
mothetic dilatation, i.e. Ki(X) =

√
XKi(1), but neither is a convex body.

Now, for abbreviation throughout the paper, define constants

c1 :=

√√
2− 1
2

, c2 :=

√
1
2
, c3 := 4

√
1
2
, c4 :=

√√
2 + 1
2

,

so that 0 < c1 < c2 < c3 < 1 < c4 <
4
√

2.
Further (see also [8]), define functions α, β, η, and σ depending on our

parameter X →∞ by

α(X;u) :=
√
X − u2 (0 ≤ u ≤

√
X), β(X;u) :=

X

2u
(u > 0),

η(X;u) :=

{
α(X;u) (0 ≤ u ≤ c2

√
X),

β(X;u) (u ≥ c2
√
X)

and

σ(X;u) :=
√√

2X − u2 −X2/(4u2) (c1
√
X ≤ u ≤ c4

√
X).

Note that α(X;u) ≤ β(X;u) (with equality iff u = c2
√
X), α(X;

√
X) =

σ(X; c1
√
X) = σ(X; c4

√
X) = 0, β(X;u) ≥ σ(X;u) (with equality iff u =

c3
√
X), and α(X;u) = σ(X;u) iff u = c2c4

√
X, with α(X;u) {<>}σ(X;u)

when u {><} c2c4
√
X.

Next we introduce functions F , G, and H depending on our parameter
X by

G(X;u, v) := u2 − v2 −
√
X2 − 4u2v2 (|uv| ≤ X/2),

H(X;u, v) := u2 − v2 +
√
X2 − 4u2v2 (|uv| ≤ X/2),

F (X;u) :=
X2

4u2 (u 6= 0).
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Note that (see also [8]) for 0 < u ≤ c4
√
X and 0 < v ≤ η(X;u),

G(X;u, v) ≤ 0 ⇔ u2 + v2 ≤ X ⇔ v ≤ α(X;u),

H(X;u, v) ≤ F (X;u)

⇔ (u ≤ c1
√
X) ∨ (c1

√
X ≤ u ≤ c3

√
X ∧ v ≥ σ(X;u)),

which immediately implies

(2.1) min{F (X;u),H(X;u, v)} � X

(0 < u ≤ c4
√
X, 0 < v ≤ η(X;u)),

and

0 ≤ G(X;u, v) ≤ F (X;u)

⇔ (c2
√
X ≤ u ≤ c3

√
X ∧ α(X;u) ≤ v ≤ β(X;u))

∨ (c3
√
X ≤ u ≤

√
X ∧ α(X;u) ≤ v ≤ σ(X;u))

∨ (u ≥
√
X ∧ v ≤ σ(X;u)).

3. Lattice points in n-dimensional balls. For n ∈ N and R ≥ 1 let
Bn(R) denote the closed n-dimensional ball with radius R and center at the
origin,

Bn(R) = {(x1, . . . , xn) ∈ Rn | x2
1 + . . .+ x2

n ≤ R2}.
Note that

(3.1) volBn(R) = νnR
n with νn := volBn(1) =

πn/2

Γ (1 + n/2)
,

specifically, ν6 = π3/6 and ν4 = π2/2. Further,

(3.2) #(Bn(R) ∩ Zn) =
∑

0≤k≤R2

rn(k)

where rn(k) equals the number of ways to write the integer k as a sum of n
squares.

Now, let Pn(R) := #(Bn(R) ∩ Zn) − volBn(R) denote the lattice rest
of the n-dimensional ball. Then it is well known (cf. Krätzel [5]) that, as
R→∞,

(3.3) P4(R)� R2(logR)2/3 and Pn(R)� Rn−2 (n ≥ 5),

and that the latter estimate is best possible, while the first one may be
improved only concerning the logarithmic factor.

In dimensions two and three the sharpest-known bounds are given by

(3.4) P2(R)� R131/208(logR)18627/8320

due to Huxley, and by

(3.5) P3(R)� R21/16+ε
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due to Chamizo, Iwaniec and Heath-Brown. Concerning the situation in
dimension two, nobody believes that (3.4) is the end of the story, not even the
limit of the method, while in dimension three there are absolutely convincing
arguments (see [1]) that (3.5) is indeed the limit of the method.

For the number of lattice points on the surface

∂Bn(R) := {(x1, . . . , xn) ∈ Rn | x2
1 + . . .+ x2

n = R2}
of the ball Bn(R) we have

(3.6) #(∂Bn(R) ∩ Zn)� Rn−2+ε (n ≥ 2),

with ε = 0 for n ≥ 5, since ∂Bn(R) ⊂ Bn(R) \ Bn(
√
R2 −R−n) and

volBn(R)− volBn(
√
R2 −R−n)� R−2 and rn(k)� kε+(n−2)/2.

4. Proof of Theorem 1. In order to count the lattice points in the
body K1(X) we define domains E6(X;u, v) for X ≥ 1 and u, v ∈ R, u 6= 0,
by

E6(X;u, v) :=
{

(x1, . . . , x6) ∈ R6

∣∣∣∣x2
1 + . . .+ x2

6 ≤
X2

4u2

∧ (u2 − v2 − (x2
1 + . . .+ x2

6))2 + 4u2v2 ≤ X2
}
,

so that

#(K1(X) ∩ (N× Z7)) =
∑

u∈N

∑

v∈Z
#(E6(X;u, v) ∩ Z6).

It is plain that

E6(X;u, v) = {(x1, . . . , x6) ∈ R6 |
G(X;u, v) ≤ x2

1 + . . .+ x2
6 ≤ min{F (X;u),H(X;u, v)}}

when |u| ≤ c4
√
X and |v| ≤ η(X; |u|), and that E6(X;u, v) = ∅ otherwise.

By applying (3.3) and (3.6) for n = 6, and (2.1) we derive

#(K1(X) ∩ (N× Z7)) =
∑

0<u≤c4
√
X

∑

|v|≤η(X;u)

volE6(X;u, v) +O(X3),

so that with ∑

0<u≤c4
√
X

volE6(X;u, 0) =: T (X)

and by symmetry we can write

(4.1) A1(X) = 2
∑

0<u≤c4
√
X

∑

0<v≤η(X;u)

volE6(X;u, v) + T (X) +O(X3).
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Now, making use of (3.1) for n = 6, we split the last double sum in the
following way:

∑

u

∑

v

volE6(X;u, v) =
π3

6

3∑

i=1

Si(X)− π3

6

6∑

i=4

Si(X) +
π3

6
S7(X),

where the terms Si(X) (i = 1, . . . , 7) are double sums of the form

Si(X) :=
∑

yi<u≤zi

∑

γi(u)<v≤δi(u)

fi(u, v)3,

with the summation limits yi, zi, γi(u), δi(u) and the functions fi all depend-
ing on our parameter X and given by the following table:

i yi zi γi(u) δi(u) fi(u, v)

1 0 c1
√
X 0 α(X;u) H(X;u, v)

2 c1
√
X c2

√
X σ(X;u) α(X;u) H(X;u, v)

3 c2
√
X c3

√
X σ(X;u) β(X;u) H(X;u, v)

4 c2
√
X c3

√
X α(X;u) β(X;u) G(X;u, v)

5 c3
√
X

√
X α(X;u) σ(X;u) G(X;u, v)

6
√
X c4

√
X 0 σ(X;u) G(X;u, v)

7 c1
√
X c4

√
X 0 σ(X;u) F (X;u)

In order to compute these seven double sums we apply the Euler sum-
mation formula (cf. [4]) twice, which yields

Si(X) = Vi(X) +Ri(X) + Ti(X) + Ui(X) +Wi(X) (i = 1, . . . , 7),

where for i = 1, . . . , 7 and abbreviating y := yi, z := zi, γ(u) := γi(u),
δ(u) := δi(u), and g(u, v) := fi(u, v)3, we set

Vi(X) :=
z�

y

δ(u)�

γ(u)

g(u, v) dv du,

Ri(X) := ψ(y)
δ(y)�

γ(y)

g(y, v) dv − ψ(z)
δ(z)�

γ(z)

g(z, v) dv,

Ti(X) :=
∑

y<u≤z
ψ(γ(u))g(u, γ(u))−

∑

y<u≤z
ψ(δ(u))g(u, δ(u)),

Ui(X) :=
∑

y<u≤z

δ(u)�

γ(u)

∂g

∂v
(u, v)ψ(v) dv,

Wi(X) :=
z�

y

(
∂

∂u

δ(u)�

γ(u)

g(u, v) dv
)
ψ(u) du.
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Of course, the terms Vi(X) (i = 1, . . . , 7) contribute to the main term in
Theorem 1 and we obviously have

π3

6

( 3∑

i=1

Vi(X)−
6∑

i=4

Vi(X) + V7(X)
)

=
c4
√
X�

0

η(X;u)�

0

volE6(X;u, v) dv du

=
1
4

volK1(X) = 64X4 vol(K1(1) ∩ R8
+).

With the help of the software package MATHEMATICA we derive

C1 := 128 vol(K1(1) ∩ R8
+) = 3.500550 . . .

Further, R7(X) = 0 and

3∑

i=1

Ri(X)−
6∑

i=4

Ri(X) = −1
2

√
X�

0

H(X; 0, v)3 dv = − 8
35
X7/2

contributes to the second main term in Theorem 1. Note that the first terms
of T1(X), T6(X), and T7(X) together annihilate the term T (X) in (4.1),
so that there is no further contribution to the second main term, while the
remaining terms of the Ti(X)’s are all weighted ψ-sums and thus� X3∆(X)
by Abel summation. Consequently,

A1(X) = C1X
4 − 8π3

105
X7/2 +O(X3∆(X)) +O(∆0(X)),

where ∆0(X) = max{|U1(X)|, . . . , |U7(X)|, |W1(X)|, . . . , |W7(X)|}.
By applying [8, Lemmata 1–3] we obtain

∆(X)� X23/73(logX)461/146,

and there is no problem to adapt the three lemmata in [8] according to the
new version [3] of Huxley’s method, so that the better estimate (1.3) follows
as well.

Finally, after a rather long but straightforward argument involving the
second mean value theorem and certain routine tricks (see [8]), we obtain
∆0(X)� X13/4. This finishes the proof of Theorem 1.

Remark. As in (1.1) and (1.2), the main term in Theorem 1 (and also,
as we claim, in Theorem 2) equals half the volume of the basic body. The
second main term reflects the influence of the imaginary space ImO. Actu-
ally, the term counterbalances the surplus of an ordinary counting of half of
the lattice points in the particular body which ignores the clotting effect of
the equivalence relation ∼ on the space ImO. Therefore, the second main
term in all four theorems is the same. In this connection it seems strange
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that concerning the quaternion problem, in [8, Theorem 1] there occurs a
second main term different from the ones in [6, Theorems 1 and 2]. The
reason for this is simple. The constant C2 in [8] has unfortunately been mis-
calculated! Indeed, this constant has to be replaced by −2π/3 and knowing
this, the reader will not find it hard to track down the error.

5. Proof of Theorem 2. In order to count the lattice points in the
body K2(X) we define domains E4(X;u, v) for X ≥ 1 and u, v ∈ R, u 6= 0,
by

E4(X;u, v) :=
{

(x1, . . . , x4) ∈ R4

∣∣∣∣x2
1 + . . .+ x2

4 ≤
X2

4u2

∧ (u2 − v2 − (x2
1 + . . .+ x2

4))2 + 4u2v2 ≤ X2
}
,

so that the setsE4(X;u,v) have the same construction as the setsE6(X;u,v)
and hence

(5.1) E4(X;u, v) = {(x1, x2, x3, x4) ∈ R4 |
G(X;u, v) ≤ x2

1 + x2
2 + x2

3 + x2
4 ≤ min{F (X;u),H(X;u, v)}}

when |u| ≤ c4
√
X and |v| ≤ η(X; |u|), and E4(X;u, v) = ∅ otherwise. Addi-

tionally, for technical reasons set

E4(X; 0, v) = {(x1, x2, x3, x4) ∈ R4 | x2
1 + x2

2 + x2
3 + x2

4 ≤ H(X; 0, v)}
for |v| ≤

√
X. Then

#(K2(X) ∩ (N× Z7)) =
∑

u∈N

∑

m∈N0

r3(m)#(E4(X;u,
√
m) ∩ Z4).

Since the contribution coming from the summand with m = 0 is trivially
� X5/2 we can rewrite

#(K2(X) ∩ (N× Z7))

=
∑

0<u≤c4
√
X

∑

0<m≤η(X;u)2

r3(m)#(E4(X;u,
√
m) ∩ Z4) +O(X5/2).

By definition, η(X;u) ≤
√
X, hence r3(m)� X1/2+ε uniformly in 1 ≤ m ≤

η(X;u)2. Thus, by (3.3) and (3.6) for n = 4 we obtain

#(K2(X) ∩ (N× Z7))

=
∑

0<u≤c4
√
X

∑

0<m≤η(X;u)2

r3(m) volE4(X;u,
√
m) +O(X3+ε).

Next we are going to apply an integral version of Abel summation given
by the following lemma. (Cf. [4, Theorem 1.2].)
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Lemma. Let z : N → R be a number-theoretical function and , for
0 ≤ a < b, let ϕ : [a, b] → R, a continuous function whose derivative ϕ′

exists on ]a, b[ and is (improperly) integrable on [a, b]. Further let Z(t) :=∑
1≤k≤t z(k) (t ∈ R). Then

∑

a<k≤b
ϕ(k)z(k) = ϕ(b)Z(b)− ϕ(a)Z(a)−

b�

a

ϕ′(t)Z(t) dt.

Now let Q(t) :=
∑

1≤k≤t r3(k), so that by (3.2),

1 +Q(t) =
4π
3
t3/2 + P3(

√
t) for t ≥ 1.

Then, by the Lemma, for every u ∈ ]0, c4
√
X],

∑

0<m≤η(X;u)2

r3(m) volE4(X;u,
√
m)

= −
η(X;u)2�

0

(
d

dt
volE4(X;u,

√
t)
)
Q(t) dt,

because Q(0) = 0 by definition, and obviously volE4(X;u, η(X;u)) = 0 for
0 < u ≤ c4

√
X.

Since Q(t) is constant on every interval k ≤ t < k + 1 (k ∈ Z), by
(3.5) there exists a function Φ : [0,∞[ → R integrable on every compact
subinterval of [0,∞[ and such that for every ε > 0 there is a positive constant
Cε such that for all t ≥ 0,

Q(t) =
4π
3
t3/2 + Φ(t) and |Φ(t)| ≤ Cε(1 + t21/32+ε).

Consequently, uniformly in 0 < u ≤ c4
√
X and X ≥ 1,

∑

0<m≤η(X;u)2

r3(m) volE4(X;u,
√
m)

=
4π
3

η(X;u)2�

0

L(t)t3/2 dt+O
(

max
0≤t≤X

|Φ(t)|
η(X;u)2�

0

|L(t)| dt
)
,

where (depending on X and u)

L(t) := − d

dt
volE4(X;u,

√
t).

Now, since L(t) is always algebraic, whence there is a fixed number N such
that for every X and every u the function L changes its sign at most N

times on 0 ≤ t ≤ η(X;u)2, and since E4(X;u,
√
t) ⊂ B4(

√
H(X; c4

√
X, 0)),
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whence volE4(X;u,
√
t) < 25X2 by (3.1), we get

η(X;u)2�

0

|L(t)| dt < (N + 1)25X2 (0 < u ≤ c4
√
X,X ≥ 1)

and thus arrive at

(5.2) A2(X) =
4π
3

∑

0<u≤c4
√
X

η(X;u)2�

0

L(t)t3/2 dt+Oε(X101/32+ε).

Applying partial integration we can write

η(X;u)2�

0

L(t)t3/2 dt =
η(X;u)2�

0

volE4(X;u,
√
t)

3
2

√
t dt,

since volE4(X;u, η(X;u)) = 0, so that after a substitution,

4π
3

η(X;u)2�

0

L(t)t3/2 dt = 4π
η(X;u)�

0

volE4(X;u, v)v2 dv.

Thus, by the Euler summation formula the main term in (5.2) equals the
sum of

4π
c4
√
X�

0

η(X;u)�

0

volE4(X;u, v)v2 dv du,(5.3)

4πψ(0)
η(X;0)�

0

volE4(X; 0, v)v2 dv,(5.4)

−4πψ(c4
√
X)

η(X;c4
√
X)�

0

volE4(X; c4
√
X, v)v2 dv,(5.5)

and

(5.6) 4π
c4
√
X�

0

(
d

du

η(X;u)�

0

volE4(X;u, v)v2 dv

)
ψ(u) du.

Clearly, (5.3) yields the main term in Theorem 2. It is plain that it equals

c4
√
X�

0

�����

x2+y2+z2≤η(X;u)2

volE4(X;u,
√
x2 + y2 + z2)d(x, y, z) du

=
1
2

volK2(X),
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so that, again with the help of MATHEMATICA, (5.3) equals

128X4 vol(K2(1) ∩ R8
+) = C2X

4, C2 = 3.284604 . . .

Further, (5.5) vanishes since E4(X; c4
√
X, v) = ∅ for v > 0, whilst (5.4)

yields the second main term and equals

−2π
X�

0

π2

2
H(X; 0, v)2v2 dv = −π3X7/2

1�

0

(1− t2)2t2 dt = −8π3

105
X7/2.

Finally, we claim that (5.6) is O(X3), which finishes the proof of Theo-
rem 2. In order to verify this estimate we set

I(X;u) :=
d

du

η(X;u)�

0

volE4(X;u, v)v2 dv (0 ≤ u ≤ c4
√
X),

whence by differentiation of a parameter integral

I(X;u) =
η(X;u)�

0

(
∂

∂u
volE4(X;u, v)

)
v2 dv (0 ≤ u ≤ c4

√
X),

since volE4(X;u, η(X;u)) = 0 on 0 ≤ u ≤ c4
√
X.

By (5.1) it is clear that (for fixed X) the function I(X;u) is piece-
wise monotonic in u (with an absolutely bounded number of pieces). Con-
sequently, by making use of the oscillation of the rounding error function ψ,
it suffices to show that I(X;u)� X3 uniformly in u.

Now, since ∂
∂u (F (X;u)2) � X3/2 uniformly in u ≥ c1

√
X, it suffices to

look carefully at ∂
∂u(H(X;u, v)2) and ∂

∂u(G(X;u, v)2). We compute

∂

∂u
((u2 − v2 ±

√
X2 − 4u2v2)2)

= 4u(u2 − 3v2 ±
√
X2 − 4u2v2 ∓ 2v2K(X;u, v)),

where

K(X;u, v) :=
u2 − v2

√
X2 − 4u2v2

(|uv| < X/2).

Hence, by trivial estimation, we certainly have

I(X;u)� X3 +X5/2
η(X;u)�

0

|K(X;u, v)| dv

uniformly in 0 ≤ u ≤ c4
√
X. Finally, when c2

√
X ≤ u ≤ c4

√
X,

η(X;u)�

0

|K(X;u, v)| dv =
β(X;u)�

0

K(X;u, v) dv = π
8u4 −X2

32u3 ≤
√
X,
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whilst when 0 ≤ u ≤ c2
√
X,

η(X;u)�

0

|K(X;u, v)| dv =
u�

0

K(X;u, v) dv −
α(X;u)�

u

K(X;u, v) dv

=
√
X · λ

(
u√
X

)
,

where t 7→ λ(t) is a function which is continuous on the compact interval
0 ≤ t ≤ c2. This concludes the proof of Theorem 2.
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