Greither's maximal independent system of units in global function fields

by
Jaehyun Ahn and Hwanyup Jung (Daejon)

1. Introduction and notations. In the number field case, many authors (Ramachandra [7], Levesque [6], Greither [2] and Kučera [5]) studied a certain maximal independent system of units. In the function field case, Feng and Yin [1] gave results analogous to those of Ramachandra and Levesque when the base field is a rational function field, and their results are generalized by Xu and Zhao [11] to any subfield of cyclotomic function field over a global function field. In [4], we gave results analogous to those of Greither and Kučera when the base field is a rational function field. In this paper, we extend our previous results to the global function field case.

We introduce some basic notations and facts which are needed later. Let k be a global function field with constant field \mathbb{F}_{q} of q elements, and let ∞ be a fixed place of k with degree d_{∞}. Let k_{∞} be the completion of k at ∞, and Ω be the completion of an algebraic closure of k_{∞}. Let \mathbb{A} be the Dedekind ring of functions in k which are holomorphic away from ∞. Let \mathbb{F}_{∞} $\left(\simeq \mathbb{F}_{q^{d}}\right)$ be the residue field at ∞ and $W_{\infty}=\left|\mathbb{F}_{\infty}^{*}\right|=q^{d_{\infty}}-1$. Throughout the paper we fix a sign-function sgn : $k_{\infty}^{*} \rightarrow \mathbb{F}_{\infty}^{*}$ (cf. [3, Section 12]). An element z of k_{∞}^{*} is called positive if $\operatorname{sgn}(z)=1$. For each integral ideal \mathfrak{m} of \mathbb{A} one uses a sgn-normalized Drinfeld module of rank one to construct a field extension $K_{\mathfrak{m}}$, called the \mathfrak{m} th cyclotomic function field, and its maximal real subfield $K_{\mathfrak{m}}^{+}$. For more details we refer to Hayes's article [3, Part II]. Let $\xi(\mathfrak{m}) \in \Omega$ be an invariant associated to the ideal \mathfrak{m}, which is characterized by the condition that the lattice $\xi(\mathfrak{m}) \mathfrak{m}$ corresponds to some sgn-normalized Drinfeld module of rank one, say ϱ. Let

$$
\Lambda_{\mathfrak{m}}^{\varrho}=\left\{\alpha \in \Omega: \varrho_{x}(\alpha)=0 \text { for } x \in \mathfrak{m}\right\}
$$

be the set of \mathfrak{m}-torsion points associated to ϱ, which is an \mathbb{A}-module via ϱ isomorphic to $\mathbb{A} / \mathfrak{m}$. In fact, $\xi(\mathfrak{m})$ is determined up to a factor in $\mathbb{F}_{\infty}^{*}([3$, Proposition 13.1]). Thus we should fix the ξ-invariants as in [12, Section 2].

[^0]Let $e_{\mathfrak{m}}(z)$ be the exponential function associated to the lattice \mathfrak{m}, i.e.,

$$
e_{\mathfrak{m}}(z)=z \prod_{a \in \mathfrak{m}, a \neq 0}(1-z / a)
$$

Let $\lambda_{\mathfrak{m}}=\xi(\mathfrak{m}) e_{\mathfrak{m}}(1) \in K_{\mathfrak{m}}$. Then $\lambda_{\mathfrak{m}}$ is a generator of $\Lambda_{\mathfrak{m}}^{\varrho}$.
Let F / k be a finite abelian extension which is contained in a cyclotomic function field. Let \mathbb{F}_{F} be the constant field of F with $W_{F}=\left|\mathbb{F}_{F}^{*}\right|$, the order of nonzero elements of \mathbb{F}_{F}. By the conductor \mathfrak{m} of F, we mean the integral ideal \mathfrak{m} of \mathbb{A} such that $K_{\mathfrak{m}}$ is the smallest cyclotomic function field which contains F. If $\mathfrak{m}=\mathfrak{e}$, then F is unramified at every finite place $\mathfrak{p} \neq \infty$. Let F^{+}be the maximal real subfield of F in which ∞ splits completely. We say that F / k is a real extension if $F=F^{+}$. Let $G_{F}=\operatorname{Gal}(F / k)$ and $J_{F}=\operatorname{Gal}\left(F / F^{+}\right)$with $\delta_{F}=\left|J_{F}\right|$, its order. For any integral ideal \mathfrak{f} of \mathbb{A}, let $F_{\mathfrak{f}}=F \cap K_{\mathfrak{f}}$ and $F_{f}^{+}=F \cap K_{\mathfrak{f}}^{+}$. Let \widehat{G}_{F} be the character group of G_{F} with values in \mathbb{C}. A character χ is called real if $\chi\left(J_{F}\right)=1$ and nonreal otherwise. We denote by \widehat{G}_{F}^{+}the set of all real characters of G_{F} and $\widehat{G}_{F}^{-}=\widehat{G}_{F} \backslash \widehat{G}_{F}^{+}$. We also denote the conductor of a character $\chi \in \widehat{G}_{F}$ by \mathfrak{f}_{χ}, which is an integral ideal of \mathbb{A}. For $\chi \in \widehat{G}_{F}$ and an ideal \mathfrak{a} of \mathbb{A}, we define $\chi(\mathfrak{a})$ as follows. If $\left(\mathfrak{a}, \mathfrak{f}_{\chi}\right)=\mathfrak{e}$, we let $\chi(\mathfrak{a})=\chi\left(\sigma_{\mathfrak{a}}\right)$, where $\sigma_{\mathfrak{a}}=\left(\mathfrak{a}, F_{\mathfrak{f}_{\chi}} / k\right)$ is the Artin symbol. If $\left(\mathfrak{a}, \mathfrak{f}_{\chi}\right) \neq \mathfrak{e}$, we put $\chi(\mathfrak{a})=0$. Let $h(F)$ and $h\left(F^{+}\right)$be the divisor class number of F and F^{+}, respectively. We have the following analytic class number formulas (see [10, Chapter VII, $\S 6$, Theorem 4]):

$$
\begin{align*}
h(F) & =\frac{W_{F}\left[\mathbb{F}_{F}: \mathbb{F}_{q}\right]}{q-1} h(k) \prod_{1 \neq \chi \in \widehat{G}_{F}} L_{k}(0, \bar{\chi}), \\
h\left(F^{+}\right) & =\frac{W_{F+}\left[\mathbb{F}_{F+}: \mathbb{F}_{q}\right]}{q-1} h(k) \prod_{1 \neq \chi \in \widehat{G}_{F}^{+}} L_{k}(0, \bar{\chi}), \tag{1.1}
\end{align*}
$$

where $L_{k}(s, \chi)$ is the Artin L-function associated to the character χ.
Let \mathcal{O}_{F} be the integral closure of \mathbb{A} in F and \mathcal{O}_{F}^{*} be the unit group of \mathcal{O}_{F}. Let $h\left(\mathcal{O}_{F}\right)$ and $h\left(\mathcal{O}_{F+}\right)$ be the ideal class number of \mathcal{O}_{F} and $\mathcal{O}_{F^{+}}$, respectively. Then by [8, Lemma 4.1 and its Corollary], we have

$$
d_{\infty} h(F)=R(F) h\left(\mathcal{O}_{F}\right), \quad d_{\infty} h\left(F^{+}\right)=R\left(F^{+}\right) h\left(\mathcal{O}_{F^{+}}\right)
$$

where $R(F)$ and $R\left(F^{+}\right)$are the regulator of F and F^{+}, respectively. Let $Q_{0}=\left[\mathcal{O}_{F}^{*}: \mathcal{O}_{F^{+}}^{*}\right]$ be the index of units.

LEMMA 1.1. $R(F)=\delta_{F}^{\left[F^{+}: k\right]-1} R\left(F^{+}\right) / Q_{0}$.
Proof. Following the proof of [12, Corollary 1.6], we get the result. We note that " κQ_{0} " in [12] corresponds to Q_{0} in our notation.

We recall the logarithm map l_{F} of F, which is defined by

$$
l_{F}: F^{*} \rightarrow \mathbb{Q}\left[G_{F}\right], \quad x \mapsto l_{F}(x)=\sum_{\sigma \in G} v_{\infty}\left(x^{\sigma}\right) \sigma^{-1}
$$

where v_{∞} is the extension to Ω of the normalized valuation of k_{∞} at ∞. We also write $l_{F}^{*}=\left(1-e_{1}\right) l_{F}$. Here e_{1} is the idempotent element associated to the trivial character. Let $e^{+}=s\left(J_{F}\right) / \delta_{F}$. Let R_{0} be the augmentation ideal of $R=\mathbb{Z}\left[G_{F}\right]$.

Lemma 1.2. $\left(e^{+} R_{0}: l_{F}\left(\mathcal{O}_{F}^{*}\right)\right)=R(F)$.
Proof. As in $[12, \S 4,(4.1)]$, this follows from the definition of the logarithm map l_{F} and the regulator $R(F)$.
2. Maximal independent system of units. In this section, we fix a finite abelian extension F / k with conductor $\mathfrak{m}=\prod_{i=1}^{s} \mathfrak{p}_{i}^{e_{i}}$ and let $G=$ $G_{F}, R=\mathbb{Z}[G]$ for simplicity. For any ideal $\mathfrak{f} \neq \mathfrak{e}$, we define

$$
\lambda_{\mathfrak{f}, F}=N_{K_{\mathfrak{f}} / F_{\mathfrak{f}}}\left(\lambda_{\mathrm{f}}\right) .
$$

For any prime ideal \mathfrak{p} of \mathbb{A}, let $T_{\mathfrak{p}}$ and $D_{\mathfrak{p}}$ be the inertia group and decomposition group of \mathfrak{p} in G. Let $\mathcal{F}_{\mathfrak{p}} \in D_{\mathfrak{p}}$ be a Frobenius automorphism associated to \mathfrak{p}, which is determined modulo $T_{\mathfrak{p}}$. We set $\bar{\sigma}_{\mathfrak{p}}=\mathcal{F}_{\mathfrak{p}}^{-1} s\left(T_{\mathfrak{p}}\right) /\left|T_{\mathfrak{p}}\right|$, which is the unique element of $\mathbb{C}[G]$ satisfying $\chi\left(\bar{\sigma}_{\mathfrak{p}}\right)=\bar{\chi}(\mathfrak{p})$ for any $\chi \in \widehat{G}$. For any subset T of G, we write $s(T)=\sum_{\sigma \in T} \sigma \in \mathbb{Z}[G]$. We also define

$$
\omega_{F}=W_{\infty} \sum_{\chi \neq 1, \text { real }} L_{k}(0, \bar{\chi}) e_{\chi}
$$

where $e_{\chi}=(1 /|G|) \sum_{\sigma \in G} \chi(\sigma) \sigma^{-1}$ is the idempotent element associated to the character χ.

Lemma 2.1. For any integral ideal \mathfrak{f} of \mathbb{A}, let $I_{\mathfrak{f}}=\operatorname{Gal}\left(F / F_{\mathfrak{f}}\right)$. Then

$$
\begin{equation*}
l_{F}^{*}\left(\lambda_{\mathfrak{f}, F}\right)=\omega_{F} s\left(I_{\mathfrak{f}}\right) \prod_{\mathfrak{p} \mid \mathfrak{f}}\left(1-\bar{\sigma}_{\mathfrak{p}}\right) . \tag{2.1}
\end{equation*}
$$

Moreover, for $\chi \neq 1$ real,

$$
\chi\left(l_{F}\left(\lambda_{\mathfrak{f}, F}\right)\right)=W_{\infty} L_{k}(0, \bar{\chi}) \chi\left(s\left(I_{\mathfrak{f}}\right)\right) \prod_{\mathfrak{p} \mid \mathfrak{f}}(1-\bar{\chi}(\mathfrak{p}))
$$

Proof. From [12, Proposition 3.1], we have $l_{K_{\mathfrak{f}}}^{*}\left(\lambda_{\mathfrak{f}}\right)=\omega_{K_{\mathfrak{f}}} \prod_{\mathfrak{p} \mid \mathfrak{f}}\left(1-\bar{\sigma}_{\mathfrak{p}}\right)$ $\in \mathbb{Q}\left[G_{K_{\mathfrak{f}}}\right]$. Applying the restriction map $\operatorname{res}_{K_{\mathfrak{f}} / F_{\mathfrak{f}}}: \mathbb{Q}\left[G_{K_{\mathrm{f}}}\right] \rightarrow \mathbb{Q}\left[G_{F_{\mathrm{f}}}\right]$ and the corestriction map $\operatorname{cor}_{F_{\mathfrak{f}} / F}: \mathbb{Q}\left[G_{F_{\mathrm{f}}}\right] \rightarrow \mathbb{Q}[G]$, we get (2.1).

For any integral ideal $\mathfrak{n} \neq \mathfrak{e}$ of \mathbb{A}, let $N_{\mathfrak{n}}$ be the subgroup of $G_{F_{\mathfrak{e}}^{+}}$generated by the Artin symbols $\tau_{\mathfrak{p}}=\left(\mathfrak{p}, F_{\mathfrak{e}}^{+} / k\right)$ for all primes $\mathfrak{p} \mid \mathfrak{n}$. We choose an ideal \mathfrak{m}^{\prime} which is coprime to \mathfrak{m} and $N_{\mathfrak{m} \mathfrak{m}^{\prime}}=G_{F_{\mathfrak{e}}^{+}}$. Let $\overline{\mathfrak{m}}=\mathfrak{m} \mathfrak{m}^{\prime}=\prod_{i=1}^{s+t} \mathfrak{p}_{i}^{e_{i}}$. Let $S=\{1, \ldots, s+t\}$ and \mathbb{P}_{S} be the set of all proper subsets of S. For
each $i \in S$, we write $T_{i}=T_{\mathfrak{p}_{i}}, D_{i}=D_{\mathfrak{p}_{i}}$ and $\mathcal{F}_{i}=\mathcal{F}_{\mathfrak{p}_{i}}$ for simplicity. Let $t_{i}=\left|T_{i}\right|, f_{i}=\left|D_{i}\right| /\left|T_{i}\right|$ and $g_{i}=|G| /\left|D_{i}\right|$ be the ramification degree, inertia degree and decomposition degree of \mathfrak{p}_{i} in F, respectively. We also set $\nu_{i}=\sum_{j=1}^{f_{i}} \mathcal{F}_{i}^{j} \in R$. For each subset I of S, we also introduce the following notations: $\overline{\mathfrak{m}}_{I}=\prod_{i \in I} \mathfrak{p}_{i}^{e_{i}}, T_{I}=\prod_{i \in I} T_{i}, D_{I}=\prod_{i \in I} D_{i}, \nu_{I}=\prod_{i \in I} \nu_{i}$ and $n_{I}=\left(\prod_{i \in I} t_{i}\right) /\left|T_{I}\right|$. For each $I \in \mathbb{P}_{S}$, we put

$$
\lambda_{I}=N_{K_{\overline{\mathfrak{m}} / \bar{m}_{I}} / F_{\overline{\bar{m}^{\prime}} / \bar{m}_{I}}\left(\lambda_{\overline{\mathfrak{m}} / \overline{\mathfrak{m}}_{I}}\right)=\lambda_{\overline{\mathfrak{m}} / \overline{\mathfrak{m}}_{I}, F}}
$$

For any given function $\beta: \mathbb{P}_{S} \rightarrow R$, we define

$$
\lambda(\beta)=\prod_{I \in \mathbb{P}_{S}} \lambda_{I}^{n_{I} \beta(I)}
$$

Since $\lambda_{I}^{\sigma-1} \in \mathcal{O}_{F}^{*}$ for any $\sigma \in G$, we have $\lambda(\beta)^{\sigma-1} \in \mathcal{O}_{F}^{*}$. Let \mathcal{R} be a system of representatives for G / J_{F} containing 1 and $\mathcal{R}^{*}=\mathcal{R} \backslash\{1\}$. Let C_{β} be the subgroup of \mathcal{O}_{F}^{*} generated by \mathbb{F}_{F}^{*} and $\left\{\lambda(\beta)^{\sigma-1}: \sigma \in \mathcal{R}^{*}\right\}$. Let $r=\left[F^{+}: k\right]-1$.

Theorem 2.2. For any function $\beta: \mathbb{P}_{S} \rightarrow R$, we have

$$
\left[\mathcal{O}_{F}^{*}: C_{\beta}\right]=\frac{Q_{0}(q-1)}{W_{F}\left[\mathbb{F}_{F}: \mathbb{F}_{q}\right]}\left(\frac{W_{\infty}}{\delta_{F}}\right)^{r} \frac{h\left(\mathcal{O}_{F^{+}}\right)}{h(\mathbb{A})} i_{\beta}
$$

where

$$
i_{\beta}=\left|\prod_{\substack{\chi \neq 1 \\ \text { real }}} \sum_{\substack{I \in \mathbb{P}_{S} \\\left(\mathfrak{f}_{\chi}, \bar{m}_{I}\right)=\mathfrak{e}}} n_{I}\right| T_{I}\left|\chi(\beta(I)) \prod_{i \notin I}\left(1-\bar{\chi}\left(\mathfrak{p}_{i}\right)\right)\right|
$$

Furthermore if $i_{\beta}=0$, then the index of C_{β} in \mathcal{O}_{F}^{*} is infinite.
Proof. Since $\operatorname{ker} l_{F} \cap \mathcal{O}_{F}^{*}=\operatorname{ker} l_{F} \cap C_{\beta}=\mathbb{F}_{F}^{*}$, by Lemmas 1.1 and 1.2, we have

$$
\begin{align*}
{\left[\mathcal{O}_{F}^{*}: C_{\beta}\right] } & =\left[l_{F}\left(\mathcal{O}_{F}^{*}\right): l_{F}\left(C_{\beta}\right)\right]=\left(l_{F}\left(\mathcal{O}_{F}^{*}\right): e^{+} R_{0}\right)\left(e^{+} R_{0}: l_{F}\left(C_{\beta}\right)\right) \tag{2.2}\\
& =\frac{\delta_{F}^{1-\left[F^{+}: k\right]} Q_{0}}{R\left(F^{+}\right)}\left(e^{+} R_{0}: l_{F}\left(C_{\beta}\right)\right)
\end{align*}
$$

Now we consider the transition matrix of the generators $\left\{l_{F}\left(\lambda(\beta)^{\sigma-1}\right): \sigma \in\right.$ $\left.\mathcal{R}^{*}\right\}$ of $l\left(C_{\beta}\right)$ with respect to the basis $\left\{e^{+}\left(\sigma^{-1}-1\right): \sigma \in \mathcal{R}^{*}\right\}$ of $e^{+} R_{0}$. Since J_{F} is the inertia group of ∞ and $\lambda(\beta)^{\sigma-1}$ is a unit, we have

$$
\begin{aligned}
l_{F}\left(\lambda(\beta)^{\sigma-1}\right) & =\sum_{\tau \in G} v_{\infty}\left(\lambda(\beta)^{(\sigma-1) \tau}\right) \tau^{-1}=\sum_{\tau \in \mathcal{R}^{*}} \delta_{F} v_{\infty}\left(\lambda(\beta)^{(\sigma-1) \tau}\right) e^{+}\left(\tau^{-1}-1\right) \\
& =\sum_{\tau \in \mathcal{R}^{*}} \delta_{F}\left(v_{\infty}\left(\lambda(\beta)^{\sigma \tau}\right)-v_{\infty}\left(\lambda(\beta)^{\tau}\right)\right) e^{+}\left(\tau^{-1}-1\right)
\end{aligned}
$$

From the Dedekind determinant formula (cf. [9, Lemma 5.26]), we get

$$
\begin{align*}
\left(e^{+} R_{0}: l_{F}\left(C_{\beta}\right)\right) & =\left|\operatorname{det}\left(\delta_{F}\left(v_{\infty}\left(\lambda(\beta)^{\sigma \tau}\right)-v_{\infty}\left(\lambda(\beta)^{\tau}\right)\right): \sigma, \tau \in \mathcal{R}^{*}\right)\right| \tag{2.3}\\
& =\left|\prod_{\substack{\chi \neq 1 \\
\text { real }}} \sum_{\sigma \in \mathcal{R}} \bar{\chi}(\sigma) \delta_{F} v_{\infty}\left(\lambda(\beta)^{\sigma}\right)\right| \\
& =\left|\prod_{\substack{\chi \neq 1 \\
\text { real }}} \sum_{I \in \mathbb{P}_{S}} \sum_{\sigma \in G} \bar{\chi}(\sigma) v_{\infty}\left(\lambda_{I}^{\sigma n_{I} \beta(I)}\right)\right|
\end{align*}
$$

Fix $\chi \neq 1$ real and $I \in \mathbb{P}_{S}$. Since $\operatorname{Gal}\left(F / F_{\overline{\mathfrak{m}} / \overline{\mathfrak{m}}_{I}}\right)=T_{I}$, Lemma 2.1 yields

$$
\begin{align*}
\sum_{\sigma \in G} \bar{\chi}(\sigma) v_{\infty}\left(\lambda_{I}^{\sigma n_{I} \beta(I)}\right) & =\chi(\beta(I)) \chi\left(l_{F}\left(\lambda_{\overline{\mathfrak{m}} / \overline{\mathfrak{m}}_{I}, F}^{n_{I}}\right)\right) \tag{2.4}\\
= & \chi(\beta(I)) n_{I} W_{\infty} L_{k}(0, \bar{\chi}) \chi\left(s\left(T_{I}\right)\right) \prod_{i \notin I}\left(1-\bar{\chi}\left(\mathfrak{p}_{i}\right)\right)
\end{align*}
$$

Note that if $\mathfrak{f}_{\chi} \nmid \overline{\mathfrak{m}} / \overline{\mathfrak{m}}_{I}$, then $\chi\left(s\left(T_{I}\right)\right)=0$. Thus by combining (2.2)-(2.4), we get

$$
\begin{aligned}
\left(e^{+} R_{0}\right. & \left.: l_{F}\left(C_{\beta}\right)\right) \\
& =\left|\prod_{\substack{\chi \neq 1 \\
\text { real }}} W_{\infty} L_{k}(0, \bar{\chi})\right| \cdot\left|\prod_{\substack{\chi \neq 1 \\
\text { real }}} \sum_{\substack{I \in \mathbb{P}_{S} \\
\left(\mathfrak{f}_{\chi}, \overline{\mathfrak{m}}_{I}\right)=\mathfrak{e}}} n_{I}\right| T_{I}\left|\chi(\beta(I)) \prod_{i \notin I}\left(1-\bar{\chi}\left(\mathfrak{p}_{i}\right)\right)\right| \\
& =W_{\infty}^{r} \frac{(q-1) h\left(F^{+}\right)}{W_{F}\left[\mathbb{F}_{F}: \mathbb{F}_{q}\right] h(k)} i_{\beta},
\end{aligned}
$$

where the second equality comes from the class number formula (1.1). Since $h\left(F^{+}\right)=R\left(F^{+}\right) h\left(\mathcal{O}_{F^{+}}\right) / d_{\infty}$ and $h(k)=h(\mathbb{A}) / d_{\infty}$, we have completed the proof of the theorem.

A function $\beta: \mathbb{P}_{S} \rightarrow R$ is called multiplicative if $\beta(\emptyset)=1$ and $\beta(I \cup J)=$ $\beta(I) \beta(J)$ whenever both sides are defined and the intersection $I \cap J$ is empty. Clearly, a multiplicative function β is determined by the values $\beta(\{i\})$ and these can be assigned arbitrarily. We denote $\beta(\{i\})$ by $\beta(i)$ for simplicity.

Proposition 2.3. For a multiplicative function $\beta: \mathbb{P}_{S} \rightarrow R$, we have

$$
\begin{aligned}
i_{\beta}=\mid & \prod_{\substack{\chi \neq 1 \text { real } \\
\mathfrak{f}_{\chi} \neq \mathfrak{e}}} \prod_{\mathfrak{p} i \nmid \mathfrak{f} \chi}\left(t_{i} \chi(\beta(i))+1-\bar{\chi}\left(\mathfrak{p}_{i}\right)\right) \\
& \times \prod_{\substack{\chi \neq 1 \text { real } \\
\mathfrak{f}_{\chi}=\mathfrak{e}}}\left(\prod_{i=1}^{s+t}\left(t_{i} \chi(\beta(i))+1-\bar{\chi}\left(\mathfrak{p}_{i}\right)\right)-\prod_{i=1}^{s+t} t_{i} \chi(\beta(i))\right) \mid .
\end{aligned}
$$

Proof. For any nontrivial real character χ, we consider the factor

$$
T_{\chi}=\sum_{\substack{I \in \mathbb{P}_{S} \\\left(\mathfrak{f}_{\chi}, \mathfrak{m}_{I}\right)=\mathfrak{e}}} n_{I}\left|T_{I}\right| \chi(\beta(I)) \prod_{i \notin I}\left(1-\bar{\chi}\left(\mathfrak{p}_{i}\right)\right)
$$

of i_{β} in Theorem 2.2. We also consider $U_{\chi}=\prod_{\mathfrak{p}_{i} \nmid f_{\chi}}\left(t_{i} \chi(\beta(i))+1-\bar{\chi}\left(\mathfrak{p}_{i}\right)\right)$. Since β is multiplicative, $n_{I}\left|T_{I}\right|=\prod_{i \in I} t_{i}$ and

$$
\prod_{i \notin I}\left(1-\bar{\chi}\left(\mathfrak{p}_{i}\right)\right)=\prod_{\substack{i \notin I \\ \mathfrak{p}_{i} \nmid f}}\left(1-\bar{\chi}\left(\mathfrak{p}_{i}\right)\right)
$$

we have

$$
T_{\chi}=\sum_{\substack{I \in \mathbb{P}_{S} \\\left(\mathfrak{f}_{\chi}, \bar{m}_{I}\right)=\mathfrak{e}}} \prod_{i \in I} t_{i} \chi(\beta(i)) \prod_{\substack{i \notin I \\ \mathfrak{p}_{i} \nmid f_{\chi}}}\left(1-\bar{\chi}\left(\mathfrak{p}_{i}\right)\right)
$$

Let $S_{\chi}=\left\{i \in S: \mathfrak{p}_{i} \nmid \mathfrak{f}_{\chi}\right\}$. Then, if $\mathfrak{f}_{\chi} \neq \mathfrak{e}$, the I which occur in the summation for T_{χ} are exactly the subsets of S_{χ}. By expanding the product U_{χ}, we get $T_{\chi}=U_{\chi}$. If $\mathfrak{f}_{\chi}=\mathfrak{e}$, then S_{χ} becomes S and so $\prod_{i \in S} t_{i} \chi(\beta(i))$ occurs in the expansion of U_{χ}. Therefore, we have $T_{\chi}=U_{\chi}-\prod_{i=1}^{s+t} t_{i} \chi(\beta(i))$ in the case $\mathfrak{f}_{\chi}=\mathfrak{e}$. From this, the proposition follows.

Now we choose a multiplicative function $\beta: \mathbb{P}_{S} \rightarrow R$ with $\beta(i)=\nu_{i}$ for each $i \in S$. Since $\lambda_{I} \in F_{\overline{\mathfrak{m}} / \bar{m}_{I}}$ and $\beta(I)$ is uniquely determined modulo $T_{I}=\operatorname{Gal}\left(F / F_{\overline{\mathfrak{m}}^{\prime} / \overline{\mathfrak{m}}_{I}}\right), C_{\beta}$ is independent of the choice of \mathcal{F}_{i}. Then as in the rational function field case [4, Theorem 4.1], we have the following result.

Proposition 2.4. Let β be as above. Let $z_{i}=\left|\left(J_{F} \cap D_{i}\right) /\left(J_{F} \cap T_{i}\right)\right|$. Then

$$
i_{\beta}=\prod_{i=1}^{s+t} t_{i}^{\left[G: J_{F} D_{i}\right]-1} f_{i}^{2\left[G: J_{F} D_{i}\right]-1} z_{i}^{-\left[G: J_{F} D_{i}\right]}
$$

In particular, if F / k is real, then $i_{\beta}=\prod_{i=1}^{s+t} t_{i}^{g_{i}-1} f_{i}^{2 g_{i}-1}$.
Proof. Any unramified nontrivial character χ may be viewed as a nontrivial character of $G_{F_{\mathrm{e}}^{+}}$. Since $N_{\overline{\mathfrak{m}}}=G_{F_{\mathrm{e}}^{+}}$, we have $\chi\left(\mathfrak{p}_{i}\right) \neq 1$ for some $i \in S$. Thus $\chi\left(\nu_{i}\right)=0$ for such $i \in S$ and so $\prod_{i=1}^{s+t} \chi(\beta(i))=0$. We follow the argument in the proof of [4, Theorem 4.1] to get the result.

Suppose F / k is a real extension. For any divisor \mathfrak{n} of $\overline{\mathfrak{m}}$, let $\bar{K}_{\mathfrak{n}}^{+}=K_{\mathfrak{n}}^{+} \cdot K_{\mathfrak{e}}$, the compositum of $K_{\mathfrak{n}}^{+}$and $K_{\mathfrak{e}}$. Then $\lambda_{\mathfrak{n}}^{\sigma-1} \in \bar{K}_{\mathfrak{n}}^{+}$as in [12, Section 2] and

$$
\begin{aligned}
N_{K_{\mathfrak{n}} / F_{\mathfrak{n}}}\left(\lambda_{\mathfrak{n}}\right)^{\sigma-1} & =N_{\bar{K}_{\mathfrak{n}}^{+} / F_{\mathfrak{n}}}\left(N_{K_{\mathfrak{n}} / \bar{K}_{\mathfrak{n}}^{+}}\left(\lambda^{\sigma-1}\right)\right) \\
& =N_{\bar{K}_{\mathfrak{n}}^{+} / F_{\mathfrak{n}}}\left(\left(\lambda_{\mathfrak{n}}^{\sigma-1}\right)^{q-1}\right)=\left(N_{\bar{K}_{\mathfrak{n}}^{+} / F_{\mathfrak{n}}}\left(\lambda_{\mathfrak{n}}^{\sigma-1}\right)\right)^{q-1} .
\end{aligned}
$$

Thus for $\sigma \in G$, there exists $\varepsilon_{\sigma} \in \mathcal{O}_{F}^{*}$ such that $\varepsilon_{\sigma}^{q-1}=\lambda(\beta)^{\sigma-1}$ and one can construct ε_{σ} explicitly from the above relation and the definition of $\lambda(\beta)$. We
define C_{β}^{\prime} as the subgroup of \mathcal{O}_{F}^{*} generated by $\mathbb{F}_{F}^{*} \cup\left\{\varepsilon_{\sigma}: \sigma \in G, \sigma \neq 1\right\}$. Then it is easy to see that both C_{β} and C_{β}^{\prime} are isomorphic to the augmentation ideal R_{0} of R as R-module.

Corollary 2.5. When F / k is a real extension, we have

$$
\left[\mathcal{O}_{F}^{*}: C_{\beta}^{\prime}\right]=\frac{q-1}{W_{F}\left[\mathbb{F}_{F}: \mathbb{F}_{q}\right]}\left(\frac{W_{\infty}}{q-1}\right)^{[F: k]-1} \frac{h\left(\mathcal{O}_{F}\right)}{h(\mathbb{A})} \prod_{i=1}^{s+t} t_{i}^{g_{i}-1} f_{i}^{2 g_{i}-1}
$$

3. Comparison of indices. To compare our index with $\mathrm{Xu}-\mathrm{Zhao}$'s [11, Theorem 1], we change the notations in [11] to ours. Then the index in [11, Theorem 1] reads

$$
\left[\mathcal{O}_{F^{+}}^{*}: \mathfrak{C}(\mathfrak{n}, \mathcal{D})\right]=\frac{q-1}{W_{F}}\left(\frac{W_{\infty}}{\delta_{F}}\right)^{r} \frac{h\left(\mathcal{O}_{F^{+}}\right)}{h(\mathbb{A})} i(\mathfrak{n}, \mathcal{D})
$$

with $\mathfrak{m} \mid \mathfrak{n}$. We also note that the constant field of k in [11] is enlarged so that $\left[\mathbb{F}_{F}: \mathbb{F}_{q}\right]=1$ in the Xu-Zhao's index. Thus it suffices to compare i_{β} in our index with $i(\mathfrak{n}, \mathcal{D})$. Note that our choice of $\overline{\mathfrak{m}}$ satisfies the condition $i(\overline{\mathfrak{m}}, \mathcal{D}) \neq$ 0 in [11, Theorem 2]. Define $T_{0}=\left\{i \in S: \chi\left(\mathfrak{p}_{i}\right)=1\right.$ for some nontrivial $\left.\chi \in \widehat{G}_{F^{+}}\right\}$. For $T_{0} \subseteq T \subseteq S$, we let $\mathcal{D}=\mathcal{D}(T)=\left\{\overline{\mathfrak{m}} / \overline{\mathfrak{m}}_{I} \neq \mathfrak{e}: I \subseteq T\right\}$. For any integral ideal \mathfrak{a} of \mathbb{A}, let $\Phi(\mathfrak{a})=\left|(\mathbb{A} / \mathfrak{a})^{*}\right|$. Then $i(\overline{\mathfrak{m}}, \mathcal{D})$ in [11, Theorem 1] can be written as

$$
\begin{aligned}
i(\overline{\mathfrak{m}}, \mathcal{D})= & \left|\prod_{\substack{\chi \neq 1 \\
\text { real }}} \sum_{\substack{I \subseteq T, I \neq S \\
\left(\overline{\mathfrak{m}}_{I}, \mathfrak{f}_{\chi}\right)=\mathfrak{e}}} \Phi\left(\overline{\mathfrak{m}}_{I}\right) \prod_{i \notin I}\left(1-\chi\left(\mathfrak{p}_{i}\right)\right)\right| \\
= & \left|\prod_{\substack{\chi \neq 1 \text { real } \\
\mathfrak{f}_{\chi} \neq \mathfrak{e}}} \prod_{\substack{i \in T \\
\mathfrak{p}_{i} \nmid \mathfrak{f}_{\chi}}}\left(\Phi\left(\mathfrak{p}_{i}^{e_{i}}\right)+1-\chi\left(\mathfrak{p}_{i}\right)\right) \prod_{i \notin T}\left(1-\chi\left(\mathfrak{p}_{i}\right)\right)\right| \\
& \times\left|\prod_{\substack{\chi \neq 1 \text { real } \\
\mathfrak{f}_{\chi}=\mathfrak{e}}}\left(\prod_{i \in T}\left(\Phi\left(\mathfrak{p}_{i}^{e_{i}}\right)+1-\chi\left(\mathfrak{p}_{i}\right)\right)-\delta_{T, S} \Phi(\overline{\mathfrak{m}})\right) \prod_{i \notin T}\left(1-\chi\left(\mathfrak{p}_{i}\right)\right)\right|
\end{aligned}
$$

where $\delta_{T, S}=1$ if $T=S$ and 0 otherwise. If $T=S$, the above index is difficult to compute. Thus we assume that $T \subsetneq S$. For simplicity, we also assume that F is real. Note that T_{0} is just the set of all $i \in I$ with $g_{i}>1$ (cf. [9, Theorem 3.7]). Thus for $i \notin T$, both factors in i_{β} and $i(\overline{\mathfrak{m}}, \mathcal{D})$ are equal to f_{i}. For $i \in T$, as in the proof of Proposition 2.4, we see that

$$
\prod_{\chi \neq 1, \mathfrak{p}_{i} \not \mathfrak{f}_{\chi}}\left(\Phi\left(\mathfrak{p}_{i}^{e_{i}}\right)+1-\chi\left(\mathfrak{p}_{i}\right)\right)=\frac{\left(\left(\Phi\left(\mathfrak{p}_{i}^{e_{i}}\right)+1\right)^{f_{i}}-1\right)^{g_{i}}}{\Phi\left(\mathfrak{p}_{i}^{e_{i}}\right)}
$$

Note that $t_{i} \leq \Phi\left(\mathfrak{p}_{i}^{e_{i}}\right)$ and $t_{i}=1$ for $i>s$. It is easy to see that this factor is greater than our factor $t_{i}^{g_{i}-1} f_{i}^{2 g_{i}-1}$ as in the rational function field case.

So we have $i_{\beta} \leq i(\overline{\mathfrak{m}}, \mathcal{D}(T))$. We also note that both i_{β} and $i(\overline{\mathfrak{m}}, \mathcal{D})$ depend on the choice of $\overline{\mathfrak{m}}$.

References

[1] K. Feng and L. Yin, Maximal independent system of units in cyclotomic function fields, Sci. China Ser. A 34 (1991), 908-919.
[2] C. Greither, Improving Ramachandra's and Levesque's unit index, in: Number Theory (Ottawa, ON, 1996), CRM Proc. Lecture Notes 19, Amer. Math. Soc., Providence, RI, 1999, 111-120.
[3] D. Hayes, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields (Columbus, OH, 1991), Ohio State Univ. Math. Res. Inst. Publ. 2, de Gruyter, Berlin, 1992, 1-32.
[4] H. Jung and J. Ahn, Maximal independent systems of units in function fields, Bull. Austral. Math. Soc. 65 (2002), 385-392.
[5] R. Kučera, A generalization of a unit index of Greither, Acta Math. Inform. Univ. Ostraviensis 6 (1998), 149-154.
[6] C. Levesque, On improving Ramachandra's unit index, in: Number Theory, 1st Conference of the Canadian Number Theory Association, Banff (Alberta), 1988, de Gruyter, 1990, 325-338.
[7] K. Ramachandra, On the units of cyclotomic fields, Acta Arith. 12 (1966), 165-173.
[8] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378.
[9] L. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1997.
[10] A. Weil, Basic Number Theory, reprint of the second (1973) edition, Classics in Mathematics, Springer, Berlin, 1995.
[11] F. Xu and J. Zhao, Maximal independent systems of units in global function fields, Acta Arith. 78 (1996), 1-10.
[12] L. Yin, On the index of cyclotomic units in characteristic p and its applications, J. Number Theory 63 (1997), 302-324.

Department of Mathematics
KAIST
Daejon, South Korea 305-701
E-mail: jaehyun@mathx.kaist.ac.kr hyjung@mathx.kaist.ac.kr

Current address of H. Jung:
Department of Mathematical Education
Chungbuk National University
Cheongju, Chungbuk, South Korea 361-763

Received on 4.3.2002
and in revised form on 27.6.2002

[^0]: 2000 Mathematics Subject Classification: 11R58, 11R60.

