Greither's maximal independent system of units in global function fields

by

JAEHYUN AHN and HWANYUP JUNG (Daejon)

1. Introduction and notations. In the number field case, many authors (Ramachandra [7], Levesque [6], Greither [2] and Kučera [5]) studied a certain maximal independent system of units. In the function field case, Feng and Yin [1] gave results analogous to those of Ramachandra and Levesque when the base field is a rational function field, and their results are generalized by Xu and Zhao [11] to any subfield of cyclotomic function field over a global function field. In [4], we gave results analogous to those of Greither and Kučera when the base field is a rational function field. In this paper, we extend our previous results to the global function field case.

We introduce some basic notations and facts which are needed later. Let k be a global function field with constant field \mathbb{F}_q of q elements, and let ∞ be a fixed place of k with degree d_{∞} . Let k_{∞} be the completion of k at ∞ , and Ω be the completion of an algebraic closure of k_{∞} . Let \mathbb{A} be the Dedekind ring of functions in k which are holomorphic away from ∞ . Let \mathbb{F}_{∞} $(\simeq \mathbb{F}_{q^{d_{\infty}}})$ be the residue field at ∞ and $W_{\infty} = |\mathbb{F}_{\infty}^*| = q^{d_{\infty}} - 1$. Throughout the paper we fix a sign-function sgn : $k_{\infty}^* \to \mathbb{F}_{\infty}^*$ (cf. [3, Section 12]). An element z of k_{∞}^* is called *positive* if sgn(z) = 1. For each integral ideal \mathfrak{m} of \mathbb{A} one uses a sgn-normalized Drinfeld module of rank one to construct a field extension $K_{\mathfrak{m}}$, called the \mathfrak{m} th cyclotomic function field, and its maximal real subfield $K_{\mathfrak{m}}^+$. For more details we refer to Hayes's article [3, Part II]. Let $\xi(\mathfrak{m}) \in \Omega$ be an invariant associated to the ideal \mathfrak{m} , which is characterized by the condition that the lattice $\xi(\mathfrak{m})\mathfrak{m}$ corresponds to some sgn-normalized Drinfeld module of rank one, say ρ . Let

$$\Lambda^{\varrho}_{\mathfrak{m}} = \{ \alpha \in \Omega : \varrho_x(\alpha) = 0 \text{ for } x \in \mathfrak{m} \}$$

be the set of m-torsion points associated to ρ , which is an A-module via ρ isomorphic to A/m. In fact, $\xi(\mathfrak{m})$ is determined up to a factor in \mathbb{F}_{∞}^{*} ([3, Proposition 13.1]). Thus we should fix the ξ -invariants as in [12, Section 2].

²⁰⁰⁰ Mathematics Subject Classification: 11R58, 11R60.

Let $e_{\mathfrak{m}}(z)$ be the exponential function associated to the lattice \mathfrak{m} , i.e.,

$$e_{\mathfrak{m}}(z) = z \prod_{a \in \mathfrak{m}, a \neq 0} (1 - z/a).$$

Let $\lambda_{\mathfrak{m}} = \xi(\mathfrak{m})e_{\mathfrak{m}}(1) \in K_{\mathfrak{m}}$. Then $\lambda_{\mathfrak{m}}$ is a generator of $\Lambda_{\mathfrak{m}}^{\varrho}$.

Let F/k be a finite abelian extension which is contained in a cyclotomic function field. Let \mathbb{F}_F be the constant field of F with $W_F = |\mathbb{F}_F^*|$, the order of nonzero elements of \mathbb{F}_F . By the *conductor* \mathfrak{m} of F, we mean the integral ideal \mathfrak{m} of \mathbb{A} such that $K_{\mathfrak{m}}$ is the smallest cyclotomic function field which contains F. If $\mathfrak{m} = \mathfrak{e}$, then F is unramified at every finite place $\mathfrak{p} \neq \infty$. Let F^+ be the maximal real subfield of F in which ∞ splits completely. We say that F/k is a real extension if $F = F^+$. Let $G_F = \operatorname{Gal}(F/k)$ and $J_F = \operatorname{Gal}(F/F^+)$ with $\delta_F = |J_F|$, its order. For any integral ideal f of A, let $F_{\mathfrak{f}} = F \cap K_{\mathfrak{f}}$ and $F_{\mathfrak{f}}^+ = F \cap K_{\mathfrak{f}}^+$. Let \widehat{G}_F be the character group of G_F with values in \mathbb{C} . A character χ is called *real* if $\chi(J_F) = 1$ and *nonreal* otherwise. We denote by \widehat{G}_F^+ the set of all real characters of G_F and $\widehat{G}_F^- = \widehat{G}_F \setminus \widehat{G}_F^+$. We also denote the conductor of a character $\chi \in \widehat{G}_F$ by \mathfrak{f}_{χ} , which is an integral ideal of A. For $\chi \in \widehat{G}_F$ and an ideal \mathfrak{a} of A, we define $\chi(\mathfrak{a})$ as follows. If $(\mathfrak{a},\mathfrak{f}_{\chi}) = \mathfrak{e}$, we let $\chi(\mathfrak{a}) = \chi(\sigma_{\mathfrak{a}})$, where $\sigma_{\mathfrak{a}} = (\mathfrak{a}, F_{\mathfrak{f}_{\chi}}/k)$ is the Artin symbol. If $(\mathfrak{a}, \mathfrak{f}_{\chi}) \neq \mathfrak{e}$, we put $\chi(\mathfrak{a}) = 0$. Let h(F) and $h(F^+)$ be the divisor class number of F and F^+ , respectively. We have the following analytic class number formulas (see [10, Chapter VII, §6, Theorem 4]):

(1.1)
$$h(F) = \frac{W_F[\mathbb{F}_F : \mathbb{F}_q]}{q-1} h(k) \prod_{\substack{1 \neq \chi \in \widehat{G}_F}} L_k(0, \overline{\chi}),$$
$$h(F^+) = \frac{W_{F^+}[\mathbb{F}_{F^+} : \mathbb{F}_q]}{q-1} h(k) \prod_{\substack{1 \neq \chi \in \widehat{G}_F^+}} L_k(0, \overline{\chi}),$$

where $L_k(s, \chi)$ is the Artin *L*-function associated to the character χ .

Let \mathcal{O}_F be the integral closure of \mathbb{A} in F and \mathcal{O}_F^* be the unit group of \mathcal{O}_F . Let $h(\mathcal{O}_F)$ and $h(\mathcal{O}_{F^+})$ be the ideal class number of \mathcal{O}_F and \mathcal{O}_{F^+} , respectively. Then by [8, Lemma 4.1 and its Corollary], we have

$$d_{\infty}h(F) = R(F)h(\mathcal{O}_F), \quad d_{\infty}h(F^+) = R(F^+)h(\mathcal{O}_{F^+}),$$

where R(F) and $R(F^+)$ are the regulator of F and F^+ , respectively. Let $Q_0 = [\mathcal{O}_F^* : \mathcal{O}_{F^+}^*]$ be the index of units.

LEMMA 1.1.
$$R(F) = \delta_F^{[F^+:k]-1} R(F^+) / Q_0.$$

Proof. Following the proof of [12, Corollary 1.6], we get the result. We note that " κQ_0 " in [12] corresponds to Q_0 in our notation.

268

We recall the logarithm map l_F of F, which is defined by

$$l_F: F^* \to \mathbb{Q}[G_F], \quad x \mapsto l_F(x) = \sum_{\sigma \in G} v_\infty(x^{\sigma})\sigma^{-1},$$

where v_{∞} is the extension to Ω of the normalized valuation of k_{∞} at ∞ . We also write $l_F^* = (1 - e_1)l_F$. Here e_1 is the idempotent element associated to the trivial character. Let $e^+ = s(J_F)/\delta_F$. Let R_0 be the augmentation ideal of $R = \mathbb{Z}[G_F]$.

LEMMA 1.2. $(e^+R_0: l_F(\mathcal{O}_F^*)) = R(F).$

Proof. As in [12, §4, (4.1)], this follows from the definition of the logarithm map l_F and the regulator R(F).

2. Maximal independent system of units. In this section, we fix a finite abelian extension F/k with conductor $\mathfrak{m} = \prod_{i=1}^{s} \mathfrak{p}_{i}^{e_{i}}$ and let $G = G_{F}, R = \mathbb{Z}[G]$ for simplicity. For any ideal $\mathfrak{f} \neq \mathfrak{e}$, we define

$$\lambda_{\mathfrak{f},F} = N_{K_{\mathfrak{f}}/F_{\mathfrak{f}}}(\lambda_{\mathfrak{f}}).$$

For any prime ideal \mathfrak{p} of \mathbb{A} , let $T_{\mathfrak{p}}$ and $D_{\mathfrak{p}}$ be the inertia group and decomposition group of \mathfrak{p} in G. Let $\mathcal{F}_{\mathfrak{p}} \in D_{\mathfrak{p}}$ be a Frobenius automorphism associated to \mathfrak{p} , which is determined modulo $T_{\mathfrak{p}}$. We set $\overline{\sigma}_{\mathfrak{p}} = \mathcal{F}_{\mathfrak{p}}^{-1}s(T_{\mathfrak{p}})/|T_{\mathfrak{p}}|$, which is the unique element of $\mathbb{C}[G]$ satisfying $\chi(\overline{\sigma}_{\mathfrak{p}}) = \overline{\chi}(\mathfrak{p})$ for any $\chi \in \widehat{G}$. For any subset T of G, we write $s(T) = \sum_{\sigma \in T} \sigma \in \mathbb{Z}[G]$. We also define

$$\omega_F = W_{\infty} \sum_{\chi \neq 1, \, \text{real}} L_k(0, \overline{\chi}) e_{\chi},$$

where $e_{\chi} = (1/|G|) \sum_{\sigma \in G} \chi(\sigma) \sigma^{-1}$ is the idempotent element associated to the character χ .

LEMMA 2.1. For any integral ideal \mathfrak{f} of \mathbb{A} , let $I_{\mathfrak{f}} = \operatorname{Gal}(F/F_{\mathfrak{f}})$. Then

(2.1)
$$l_F^*(\lambda_{\mathfrak{f},F}) = \omega_F s(I_{\mathfrak{f}}) \prod_{\mathfrak{p}|\mathfrak{f}} (1 - \overline{\sigma}_{\mathfrak{p}})$$

Moreover, for $\chi \neq 1$ real,

$$\chi(l_F(\lambda_{\mathfrak{f},F})) = W_{\infty}L_k(0,\overline{\chi})\chi(s(I_{\mathfrak{f}}))\prod_{\mathfrak{p}\mid\mathfrak{f}}(1-\overline{\chi}(\mathfrak{p})).$$

Proof. From [12, Proposition 3.1], we have $l_{K_{\mathfrak{f}}}^*(\lambda_{\mathfrak{f}}) = \omega_{K_{\mathfrak{f}}} \prod_{\mathfrak{p}|\mathfrak{f}} (1 - \overline{\sigma}_{\mathfrak{p}}) \in \mathbb{Q}[G_{K_{\mathfrak{f}}}]$. Applying the restriction map $\operatorname{res}_{K_{\mathfrak{f}}/F_{\mathfrak{f}}} : \mathbb{Q}[G_{K_{\mathfrak{f}}}] \to \mathbb{Q}[G_{F_{\mathfrak{f}}}]$ and the corestriction map $\operatorname{cor}_{F_{\mathfrak{f}}/F} : \mathbb{Q}[G_{F_{\mathfrak{f}}}] \to \mathbb{Q}[G]$, we get (2.1).

For any integral ideal $\mathfrak{n} \neq \mathfrak{e}$ of \mathbb{A} , let $N_{\mathfrak{n}}$ be the subgroup of $G_{F_{\mathfrak{e}}^+}$ generated by the Artin symbols $\tau_{\mathfrak{p}} = (\mathfrak{p}, F_{\mathfrak{e}}^+/k)$ for all primes $\mathfrak{p} \mid \mathfrak{n}$. We choose an ideal \mathfrak{m}' which is coprime to \mathfrak{m} and $N_{\mathfrak{m}\mathfrak{m}'} = G_{F_{\mathfrak{e}}^+}$. Let $\overline{\mathfrak{m}} = \mathfrak{m}\mathfrak{m}' = \prod_{i=1}^{s+t} \mathfrak{p}_i^{e_i}$. Let $S = \{1, \ldots, s+t\}$ and \mathbb{P}_S be the set of all proper subsets of S. For each $i \in S$, we write $T_i = T_{\mathfrak{p}_i}$, $D_i = D_{\mathfrak{p}_i}$ and $\mathcal{F}_i = \mathcal{F}_{\mathfrak{p}_i}$ for simplicity. Let $t_i = |T_i|, f_i = |D_i|/|T_i|$ and $g_i = |G|/|D_i|$ be the ramification degree, inertia degree and decomposition degree of \mathfrak{p}_i in F, respectively. We also set $\nu_i = \sum_{j=1}^{f_i} \mathcal{F}_i^j \in R$. For each subset I of S, we also introduce the following notations: $\overline{\mathfrak{m}}_I = \prod_{i \in I} \mathfrak{p}_i^{e_i}, T_I = \prod_{i \in I} T_i, D_I = \prod_{i \in I} D_i, \nu_I = \prod_{i \in I} \nu_i$ and $n_I = (\prod_{i \in I} t_i)/|T_I|$. For each $I \in \mathbb{P}_S$, we put

$$\lambda_I = N_{K_{\overline{\mathfrak{m}}/\overline{\mathfrak{m}}_I}/F_{\overline{\mathfrak{m}}/\overline{\mathfrak{m}}_I}}(\lambda_{\overline{\mathfrak{m}}/\overline{\mathfrak{m}}_I}) = \lambda_{\overline{\mathfrak{m}}/\overline{\mathfrak{m}}_I,F}.$$

For any given function $\beta : \mathbb{P}_S \to R$, we define

$$\lambda(\beta) = \prod_{I \in \mathbb{P}_S} \lambda_I^{n_I \beta(I)}.$$

Since $\lambda_I^{\sigma-1} \in \mathcal{O}_F^*$ for any $\sigma \in G$, we have $\lambda(\beta)^{\sigma-1} \in \mathcal{O}_F^*$. Let \mathcal{R} be a system of representatives for G/J_F containing 1 and $\mathcal{R}^* = \mathcal{R} \setminus \{1\}$. Let C_β be the subgroup of \mathcal{O}_F^* generated by \mathbb{F}_F^* and $\{\lambda(\beta)^{\sigma-1} : \sigma \in \mathcal{R}^*\}$. Let $r = [F^+ : k] - 1$.

THEOREM 2.2. For any function $\beta : \mathbb{P}_S \to R$, we have

$$[\mathcal{O}_F^*:C_\beta] = \frac{Q_0(q-1)}{W_F[\mathbb{F}_F:\mathbb{F}_q]} \left(\frac{W_\infty}{\delta_F}\right)^r \frac{h(\mathcal{O}_{F^+})}{h(\mathbb{A})} i_\beta,$$

where

$$i_{\beta} = \Big| \prod_{\substack{\chi \neq 1 \\ real}} \sum_{\substack{I \in \mathbb{P}_{S} \\ (\mathfrak{f}_{\chi}, \overline{\mathfrak{m}}_{I}) = \mathfrak{e}}} n_{I} |T_{I}| \chi(\beta(I)) \prod_{i \notin I} (1 - \overline{\chi}(\mathfrak{p}_{i})) \Big|.$$

Furthermore if $i_{\beta} = 0$, then the index of C_{β} in \mathcal{O}_{F}^{*} is infinite.

Proof. Since ker $l_F \cap \mathcal{O}_F^* = \ker l_F \cap C_\beta = \mathbb{F}_F^*$, by Lemmas 1.1 and 1.2, we have

(2.2)
$$[\mathcal{O}_F^* : C_\beta] = [l_F(\mathcal{O}_F^*) : l_F(C_\beta)] = (l_F(\mathcal{O}_F^*) : e^+R_0)(e^+R_0 : l_F(C_\beta))$$
$$= \frac{\delta_F^{1-[F^+:k]}Q_0}{R(F^+)} (e^+R_0 : l_F(C_\beta)).$$

Now we consider the transition matrix of the generators $\{l_F(\lambda(\beta)^{\sigma-1}) : \sigma \in \mathcal{R}^*\}$ of $l(C_\beta)$ with respect to the basis $\{e^+(\sigma^{-1}-1) : \sigma \in \mathcal{R}^*\}$ of e^+R_0 . Since J_F is the inertia group of ∞ and $\lambda(\beta)^{\sigma-1}$ is a unit, we have

$$l_F(\lambda(\beta)^{\sigma-1}) = \sum_{\tau \in G} v_{\infty}(\lambda(\beta)^{(\sigma-1)\tau})\tau^{-1} = \sum_{\tau \in \mathcal{R}^*} \delta_F v_{\infty}(\lambda(\beta)^{(\sigma-1)\tau})e^+(\tau^{-1}-1)$$
$$= \sum_{\tau \in \mathcal{R}^*} \delta_F(v_{\infty}(\lambda(\beta)^{\sigma\tau}) - v_{\infty}(\lambda(\beta)^{\tau}))e^+(\tau^{-1}-1).$$

From the Dedekind determinant formula (cf. [9, Lemma 5.26]), we get

$$(2.3) \quad (e^{+}R_{0}: l_{F}(C_{\beta})) = |\det(\delta_{F}(v_{\infty}(\lambda(\beta)^{\sigma\tau}) - v_{\infty}(\lambda(\beta)^{\tau})): \sigma, \tau \in \mathcal{R}^{*})| \\ = \Big| \prod_{\substack{\chi \neq 1 \\ \text{real}}} \sum_{\sigma \in \mathcal{R}} \overline{\chi}(\sigma) \delta_{F} v_{\infty}(\lambda(\beta)^{\sigma}) \Big| \\ = \Big| \prod_{\substack{\chi \neq 1 \\ \text{real}}} \sum_{I \in \mathbb{P}_{S}} \sum_{\sigma \in G} \overline{\chi}(\sigma) v_{\infty}(\lambda_{I}^{\sigma n_{I}\beta(I)}) \Big|.$$

Fix $\chi \neq 1$ real and $I \in \mathbb{P}_S$. Since $\operatorname{Gal}(F/F_{\overline{\mathfrak{m}}/\overline{\mathfrak{m}}_I}) = T_I$, Lemma 2.1 yields

(2.4)
$$\sum_{\sigma \in G} \overline{\chi}(\sigma) v_{\infty}(\lambda_{I}^{\sigma n_{I}\beta(I)}) = \chi(\beta(I))\chi(l_{F}(\lambda_{\overline{\mathfrak{m}}/\overline{\mathfrak{m}}_{I},F}^{n_{I}}))$$
$$= \chi(\beta(I))n_{I}W_{\infty}L_{k}(0,\overline{\chi})\chi(s(T_{I}))\prod_{i \notin I}(1-\overline{\chi}(\mathfrak{p}_{i})).$$

Note that if $\mathfrak{f}_{\chi} \nmid \overline{\mathfrak{m}}/\overline{\mathfrak{m}}_{I}$, then $\chi(s(T_{I})) = 0$. Thus by combining (2.2)–(2.4), we get

$$(e^{+}R_{0}: l_{F}(C_{\beta})) = \left| \prod_{\substack{\chi \neq 1 \\ \text{real}}} W_{\infty}L_{k}(0, \overline{\chi}) \right| \cdot \left| \prod_{\substack{\chi \neq 1 \\ \text{real}}} \sum_{\substack{I \in \mathbb{P}_{S} \\ (\mathfrak{f}_{\chi}, \overline{\mathfrak{m}}_{I}) = \mathfrak{e}}} n_{I}|T_{I}|\chi(\beta(I)) \prod_{i \notin I} (1 - \overline{\chi}(\mathfrak{p}_{i})) \right|$$
$$= W_{\infty}^{r} \frac{(q-1)h(F^{+})}{W_{F}[\mathbb{F}_{F}: \mathbb{F}_{q}]h(k)} i_{\beta},$$

where the second equality comes from the class number formula (1.1). Since $h(F^+) = R(F^+)h(\mathcal{O}_{F^+})/d_{\infty}$ and $h(k) = h(\mathbb{A})/d_{\infty}$, we have completed the proof of the theorem.

A function $\beta : \mathbb{P}_S \to R$ is called *multiplicative* if $\beta(\emptyset) = 1$ and $\beta(I \cup J) = \beta(I)\beta(J)$ whenever both sides are defined and the intersection $I \cap J$ is empty. Clearly, a multiplicative function β is determined by the values $\beta(\{i\})$ and these can be assigned arbitrarily. We denote $\beta(\{i\})$ by $\beta(i)$ for simplicity.

PROPOSITION 2.3. For a multiplicative function $\beta : \mathbb{P}_S \to R$, we have

$$\begin{split} i_{\beta} &= \Big| \prod_{\substack{\chi \neq 1 \text{ real} \\ \mathfrak{f}_{\chi} \neq \mathfrak{e}}} \prod_{\mathfrak{p}_{i} \nmid \mathfrak{f}_{\chi}} (t_{i}\chi(\beta(i)) + 1 - \overline{\chi}(\mathfrak{p}_{i})) \\ &\times \prod_{\substack{\chi \neq 1 \text{ real} \\ \mathfrak{f}_{\chi} = \mathfrak{e}}} \Big(\prod_{i=1}^{s+t} (t_{i}\chi(\beta(i)) + 1 - \overline{\chi}(\mathfrak{p}_{i})) - \prod_{i=1}^{s+t} t_{i}\chi(\beta(i)) \Big) \Big|. \end{split}$$

Proof. For any nontrivial real character χ , we consider the factor

$$T_{\chi} = \sum_{\substack{I \in \mathbb{P}_S \\ (\mathfrak{f}_{\chi}, \overline{\mathfrak{m}}_I) = \mathfrak{e}}} n_I |T_I| \chi(\beta(I)) \prod_{i \notin I} (1 - \overline{\chi}(\mathfrak{p}_i))$$

of i_{β} in Theorem 2.2. We also consider $U_{\chi} = \prod_{\mathfrak{p}_i \nmid \mathfrak{f}_{\chi}} (t_i \chi(\beta(i)) + 1 - \overline{\chi}(\mathfrak{p}_i))$. Since β is multiplicative, $n_I |T_I| = \prod_{i \in I} t_i$ and

$$\prod_{i \notin I} (1 - \overline{\chi}(\mathfrak{p}_i)) = \prod_{\substack{i \notin I \\ \mathfrak{p}_i \nmid \mathfrak{f}_{\chi}}} (1 - \overline{\chi}(\mathfrak{p}_i)),$$

we have

$$T_{\chi} = \sum_{\substack{I \in \mathbb{P}_S \\ (\mathfrak{f}_{\chi}, \overline{\mathfrak{m}}_I) = \mathfrak{e}}} \prod_{i \in I} t_i \chi(\beta(i)) \prod_{\substack{i \notin I \\ \mathfrak{p}_i \nmid \mathfrak{f}_{\chi}}} (1 - \overline{\chi}(\mathfrak{p}_i)).$$

Let $S_{\chi} = \{i \in S : \mathfrak{p}_i \nmid \mathfrak{f}_{\chi}\}$. Then, if $\mathfrak{f}_{\chi} \neq \mathfrak{e}$, the *I* which occur in the summation for T_{χ} are exactly the subsets of S_{χ} . By expanding the product U_{χ} , we get $T_{\chi} = U_{\chi}$. If $\mathfrak{f}_{\chi} = \mathfrak{e}$, then S_{χ} becomes *S* and so $\prod_{i \in S} t_i \chi(\beta(i))$ occurs in the expansion of U_{χ} . Therefore, we have $T_{\chi} = U_{\chi} - \prod_{i=1}^{s+t} t_i \chi(\beta(i))$ in the case $\mathfrak{f}_{\chi} = \mathfrak{e}$. From this, the proposition follows.

Now we choose a multiplicative function $\beta : \mathbb{P}_S \to R$ with $\beta(i) = \nu_i$ for each $i \in S$. Since $\lambda_I \in F_{\overline{\mathfrak{m}}/\overline{\mathfrak{m}}_I}$ and $\beta(I)$ is uniquely determined modulo $T_I = \operatorname{Gal}(F/F_{\overline{\mathfrak{m}}/\overline{\mathfrak{m}}_I}), C_\beta$ is independent of the choice of \mathcal{F}_i . Then as in the rational function field case [4, Theorem 4.1], we have the following result.

PROPOSITION 2.4. Let β be as above. Let $z_i = |(J_F \cap D_i)/(J_F \cap T_i)|$. Then

$$i_{\beta} = \prod_{i=1}^{s+t} t_i^{[G:J_F D_i]-1} f_i^{2[G:J_F D_i]-1} z_i^{-[G:J_F D_i]}.$$

In particular, if F/k is real, then $i_{\beta} = \prod_{i=1}^{s+t} t_i^{g_i-1} f_i^{2g_i-1}$.

Proof. Any unramified nontrivial character χ may be viewed as a nontrivial character of $G_{F_{\epsilon}^+}$. Since $N_{\overline{\mathfrak{m}}} = G_{F_{\epsilon}^+}$, we have $\chi(\mathfrak{p}_i) \neq 1$ for some $i \in S$. Thus $\chi(\nu_i) = 0$ for such $i \in S$ and so $\prod_{i=1}^{s+t} \chi(\beta(i)) = 0$. We follow the argument in the proof of [4, Theorem 4.1] to get the result.

Suppose F/k is a real extension. For any divisor \mathfrak{n} of $\overline{\mathfrak{m}}$, let $\overline{K}_{\mathfrak{n}}^+ = K_{\mathfrak{n}}^+ \cdot K_{\mathfrak{e}}$, the compositum of $K_{\mathfrak{n}}^+$ and $K_{\mathfrak{e}}$. Then $\lambda_{\mathfrak{n}}^{\sigma-1} \in \overline{K}_{\mathfrak{n}}^+$ as in [12, Section 2] and

$$\begin{split} N_{K_{\mathfrak{n}}/F_{\mathfrak{n}}}(\lambda_{\mathfrak{n}})^{\sigma-1} &= N_{\overline{K}_{\mathfrak{n}}^{+}/F_{\mathfrak{n}}}(N_{K_{\mathfrak{n}}/\overline{K}_{\mathfrak{n}}^{+}}(\lambda^{\sigma-1})) \\ &= N_{\overline{K}_{\mathfrak{n}}^{+}/F_{\mathfrak{n}}}((\lambda_{\mathfrak{n}}^{\sigma-1})^{q-1}) = (N_{\overline{K}_{\mathfrak{n}}^{+}/F_{\mathfrak{n}}}(\lambda_{\mathfrak{n}}^{\sigma-1}))^{q-1}. \end{split}$$

Thus for $\sigma \in G$, there exists $\varepsilon_{\sigma} \in \mathcal{O}_F^*$ such that $\varepsilon_{\sigma}^{q-1} = \lambda(\beta)^{\sigma-1}$ and one can construct ε_{σ} explicitly from the above relation and the definition of $\lambda(\beta)$. We

272

define C'_{β} as the subgroup of \mathcal{O}_F^* generated by $\mathbb{F}_F^* \cup \{\varepsilon_{\sigma} : \sigma \in G, \sigma \neq 1\}$. Then it is easy to see that both C_{β} and C'_{β} are isomorphic to the augmentation ideal R_0 of R as R-module.

COROLLARY 2.5. When F/k is a real extension, we have

$$[\mathcal{O}_F^*:C_\beta'] = \frac{q-1}{W_F[\mathbb{F}_F:\mathbb{F}_q]} \left(\frac{W_\infty}{q-1}\right)^{[F:k]-1} \frac{h(\mathcal{O}_F)}{h(\mathbb{A})} \prod_{i=1}^{s+t} t_i^{g_i-1} f_i^{2g_i-1}.$$

3. Comparison of indices. To compare our index with Xu–Zhao's [11, Theorem 1], we change the notations in [11] to ours. Then the index in [11, Theorem 1] reads

$$[\mathcal{O}_{F^+}^*:\mathfrak{C}(\mathfrak{n},\mathcal{D})] = \frac{q-1}{W_F} \left(\frac{W_\infty}{\delta_F}\right)^r \frac{h(\mathcal{O}_{F^+})}{h(\mathbb{A})} i(\mathfrak{n},\mathcal{D}),$$

with $\mathfrak{m} \mid \mathfrak{n}$. We also note that the constant field of k in [11] is enlarged so that $[\mathbb{F}_F : \mathbb{F}_q] = 1$ in the Xu–Zhao's index. Thus it suffices to compare i_β in our index with $i(\mathfrak{n}, \mathcal{D})$. Note that our choice of $\overline{\mathfrak{m}}$ satisfies the condition $i(\overline{\mathfrak{m}}, \mathcal{D}) \neq 0$ in [11, Theorem 2]. Define $T_0 = \{i \in S : \chi(\mathfrak{p}_i) = 1 \text{ for some nontrivial } \chi \in \widehat{G}_{F^+}\}$. For $T_0 \subseteq T \subseteq S$, we let $\mathcal{D} = \mathcal{D}(T) = \{\overline{\mathfrak{m}}/\overline{\mathfrak{m}}_I \neq \mathfrak{e} : I \subseteq T\}$. For any integral ideal \mathfrak{a} of \mathbb{A} , let $\Phi(\mathfrak{a}) = |(\mathbb{A}/\mathfrak{a})^*|$. Then $i(\overline{\mathfrak{m}}, \mathcal{D})$ in [11, Theorem 1] can be written as

$$i(\overline{\mathfrak{m}}, \mathcal{D}) = \left| \prod_{\substack{\chi \neq 1 \\ \text{real}}} \sum_{\substack{I \subseteq T, I \neq S \\ (\overline{\mathfrak{m}}_I, \mathfrak{f}_{\chi}) = \mathfrak{e}}} \Phi(\overline{\mathfrak{m}}_I) \prod_{i \notin I} (1 - \chi(\mathfrak{p}_i)) \right|$$
$$= \left| \prod_{\substack{\chi \neq 1 \text{ real} \\ \mathfrak{f}_{\chi} \neq \mathfrak{e}}} \prod_{\substack{i \in T \\ \mathfrak{p}_i \nmid \mathfrak{f}_{\chi}}} (\Phi(\mathfrak{p}_i^{e_i}) + 1 - \chi(\mathfrak{p}_i)) \prod_{i \notin T} (1 - \chi(\mathfrak{p}_i)) \right|$$
$$\times \left| \prod_{\substack{\chi \neq 1 \text{ real} \\ \mathfrak{f}_{\chi} = \mathfrak{e}}} \left(\prod_{i \in T} (\Phi(\mathfrak{p}_i^{e_i}) + 1 - \chi(\mathfrak{p}_i)) - \delta_{T,S} \Phi(\overline{\mathfrak{m}}) \right) \prod_{i \notin T} (1 - \chi(\mathfrak{p}_i)) \right|$$

where $\delta_{T,S} = 1$ if T = S and 0 otherwise. If T = S, the above index is difficult to compute. Thus we assume that $T \subsetneq S$. For simplicity, we also assume that F is real. Note that T_0 is just the set of all $i \in I$ with $g_i > 1$ (cf. [9, Theorem 3.7]). Thus for $i \notin T$, both factors in i_β and $i(\overline{\mathfrak{m}}, \mathcal{D})$ are equal to f_i . For $i \in T$, as in the proof of Proposition 2.4, we see that

$$\prod_{\chi \neq 1, \mathfrak{p}_i \nmid \mathfrak{f}_{\chi}} (\varPhi(\mathfrak{p}_i^{e_i}) + 1 - \chi(\mathfrak{p}_i)) = \frac{((\varPhi(\mathfrak{p}_i^{e_i}) + 1)^{f_i} - 1)^{g_i}}{\varPhi(\mathfrak{p}_i^{e_i})}$$

Note that $t_i \leq \Phi(\mathbf{p}_i^{e_i})$ and $t_i = 1$ for i > s. It is easy to see that this factor is greater than our factor $t_i^{g_i-1} f_i^{2g_i-1}$ as in the rational function field case.

So we have $i_{\beta} \leq i(\overline{\mathfrak{m}}, \mathcal{D}(T))$. We also note that both i_{β} and $i(\overline{\mathfrak{m}}, \mathcal{D})$ depend on the choice of $\overline{\mathfrak{m}}$.

References

- K. Feng and L. Yin, Maximal independent system of units in cyclotomic function fields, Sci. China Ser. A 34 (1991), 908–919.
- [2] C. Greither, Improving Ramachandra's and Levesque's unit index, in: Number Theory (Ottawa, ON, 1996), CRM Proc. Lecture Notes 19, Amer. Math. Soc., Providence, RI, 1999, 111–120.
- [3] D. Hayes, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields (Columbus, OH, 1991), Ohio State Univ. Math. Res. Inst. Publ. 2, de Gruyter, Berlin, 1992, 1–32.
- H. Jung and J. Ahn, Maximal independent systems of units in function fields, Bull. Austral. Math. Soc. 65 (2002), 385–392.
- [5] R. Kučera, A generalization of a unit index of Greither, Acta Math. Inform. Univ. Ostraviensis 6 (1998), 149–154.
- [6] C. Levesque, On improving Ramachandra's unit index, in: Number Theory, 1st Conference of the Canadian Number Theory Association, Banff (Alberta), 1988, de Gruyter, 1990, 325–338.
- [7] K. Ramachandra, On the units of cyclotomic fields, Acta Arith. 12 (1966), 165–173.
- [8] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365–378.
- [9] L. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1997.
- [10] A. Weil, Basic Number Theory, reprint of the second (1973) edition, Classics in Mathematics, Springer, Berlin, 1995.
- F. Xu and J. Zhao, Maximal independent systems of units in global function fields, Acta Arith. 78 (1996), 1–10.
- [12] L. Yin, On the index of cyclotomic units in characteristic p and its applications, J. Number Theory 63 (1997), 302–324.

Department of Mathematics	Current address of H. Jung:
KAIST	Department of Mathematical Education
Daejon, South Korea 305-701	Chungbuk National University
E-mail: jaehyun@mathx.kaist.ac.kr hyjung@mathx.kaist.ac.kr	Cheongju, Chungbuk, South Korea 361-763

Received on 4.3.2002 and in revised form on 27.6.2002 (4244)