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1. Introduction and notations. In the number field case, many au-
thors (Ramachandra [7], Levesque [6], Greither [2] and Kučera [5]) studied a
certain maximal independent system of units. In the function field case, Feng
and Yin [1] gave results analogous to those of Ramachandra and Levesque
when the base field is a rational function field, and their results are gener-
alized by Xu and Zhao [11] to any subfield of cyclotomic function field over
a global function field. In [4], we gave results analogous to those of Greither
and Kučera when the base field is a rational function field. In this paper,
we extend our previous results to the global function field case.

We introduce some basic notations and facts which are needed later.
Let k be a global function field with constant field Fq of q elements, and
let ∞ be a fixed place of k with degree d∞. Let k∞ be the completion of k
at ∞, and Ω be the completion of an algebraic closure of k∞. Let A be the
Dedekind ring of functions in k which are holomorphic away from∞. Let F∞
(' Fqd∞ ) be the residue field at ∞ and W∞ = |F∗∞| = qd∞ − 1. Throughout
the paper we fix a sign-function sgn : k∗∞ → F∗∞ (cf. [3, Section 12]). An
element z of k∗∞ is called positive if sgn(z) = 1. For each integral ideal m of
A one uses a sgn-normalized Drinfeld module of rank one to construct a field
extension Km, called the mth cyclotomic function field, and its maximal real
subfield K+

m . For more details we refer to Hayes’s article [3, Part II]. Let
ξ(m) ∈ Ω be an invariant associated to the ideal m, which is characterized
by the condition that the lattice ξ(m)m corresponds to some sgn-normalized
Drinfeld module of rank one, say %. Let

Λ%m = {α ∈ Ω : %x(α) = 0 for x ∈ m}
be the set of m-torsion points associated to %, which is an A-module via %
isomorphic to A/m. In fact, ξ(m) is determined up to a factor in F∗∞ ([3,
Proposition 13.1]). Thus we should fix the ξ-invariants as in [12, Section 2].
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Let em(z) be the exponential function associated to the lattice m, i.e.,

em(z) = z
∏

a∈m, a6=0

(1− z/a).

Let λm = ξ(m)em(1) ∈ Km. Then λm is a generator of Λ%m.
Let F/k be a finite abelian extension which is contained in a cyclotomic

function field. Let FF be the constant field of F with WF = |F∗F |, the order
of nonzero elements of FF . By the conductor m of F , we mean the integral
ideal m of A such that Km is the smallest cyclotomic function field which
contains F . If m = e, then F is unramified at every finite place p 6= ∞.
Let F+ be the maximal real subfield of F in which ∞ splits completely.
We say that F/k is a real extension if F = F+. Let GF = Gal(F/k) and
JF = Gal(F/F+) with δF = |JF |, its order. For any integral ideal f of A, let
Ff = F ∩Kf and F+

f = F ∩K+
f . Let ĜF be the character group of GF with

values in C. A character χ is called real if χ(JF ) = 1 and nonreal otherwise.
We denote by Ĝ+

F the set of all real characters of GF and Ĝ−F = ĜF \Ĝ+
F . We

also denote the conductor of a character χ ∈ ĜF by fχ, which is an integral
ideal of A. For χ ∈ ĜF and an ideal a of A, we define χ(a) as follows. If
(a, fχ) = e, we let χ(a) = χ(σa), where σa = (a, Ffχ/k) is the Artin symbol.
If (a, fχ) 6= e, we put χ(a) = 0. Let h(F ) and h(F+) be the divisor class
number of F and F+, respectively. We have the following analytic class
number formulas (see [10, Chapter VII, §6, Theorem 4]):

h(F ) =
WF [FF : Fq]

q − 1
h(k)

∏

16=χ∈ĜF

Lk(0, χ),

h(F+) =
WF+ [FF+ : Fq]

q − 1
h(k)

∏

16=χ∈Ĝ+
F

Lk(0, χ),(1.1)

where Lk(s, χ) is the Artin L-function associated to the character χ.
Let OF be the integral closure of A in F and O∗F be the unit group

of OF . Let h(OF ) and h(OF+) be the ideal class number of OF and OF+ ,
respectively. Then by [8, Lemma 4.1 and its Corollary], we have

d∞h(F ) = R(F )h(OF ), d∞h(F+) = R(F+)h(OF+),

where R(F ) and R(F+) are the regulator of F and F+, respectively. Let
Q0 = [O∗F : O∗F+ ] be the index of units.

Lemma 1.1. R(F ) = δ
[F+:k]−1
F R(F+)/Q0.

Proof. Following the proof of [12, Corollary 1.6], we get the result. We
note that “κQ0” in [12] corresponds to Q0 in our notation.
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We recall the logarithm map lF of F , which is defined by

lF : F ∗ → Q[GF ], x 7→ lF (x) =
∑

σ∈G
v∞(xσ)σ−1,

where v∞ is the extension to Ω of the normalized valuation of k∞ at∞. We
also write l∗F = (1− e1)lF . Here e1 is the idempotent element associated to
the trivial character. Let e+ = s(JF )/δF . Let R0 be the augmentation ideal
of R = Z[GF ].

Lemma 1.2. (e+R0 : lF (O∗F )) = R(F ).

Proof. As in [12, §4, (4.1)], this follows from the definition of the loga-
rithm map lF and the regulator R(F ).

2. Maximal independent system of units. In this section, we fix
a finite abelian extension F/k with conductor m =

∏s
i=1 peii and let G =

GF , R = Z[G] for simplicity. For any ideal f 6= e, we define

λf,F = NKf/Ff
(λf).

For any prime ideal p of A, let Tp and Dp be the inertia group and
decomposition group of p in G. Let Fp ∈ Dp be a Frobenius automorphism
associated to p, which is determined modulo Tp. We set σp = F−1

p s(Tp)/|Tp|,
which is the unique element of C[G] satisfying χ(σp) = χ(p) for any χ ∈ Ĝ.
For any subset T of G, we write s(T ) =

∑
σ∈T σ ∈ Z[G]. We also define

ωF = W∞
∑

χ6=1, real

Lk(0, χ)eχ,

where eχ = (1/|G|)∑σ∈G χ(σ)σ−1 is the idempotent element associated to
the character χ.

Lemma 2.1. For any integral ideal f of A, let If = Gal(F/Ff). Then

l∗F (λf,F ) = ωF s(If)
∏

p|f
(1− σp).(2.1)

Moreover , for χ 6= 1 real ,

χ(lF (λf,F )) = W∞Lk(0, χ)χ(s(If))
∏

p|f
(1− χ(p)).

Proof. From [12, Proposition 3.1], we have l∗Kf
(λf) = ωKf

∏
p|f(1 − σp)

∈ Q[GKf
]. Applying the restriction map resKf/Ff

: Q[GKf
] → Q[GFf

] and
the corestriction map corFf/F : Q[GFf

]→ Q[G], we get (2.1).

For any integral ideal n 6= e of A, let Nn be the subgroup of GF+
e

gener-
ated by the Artin symbols τp = (p, F+

e /k) for all primes p | n. We choose an
ideal m′ which is coprime to m and Nmm′ = GF+

e
. Let m = mm′ =

∏s+t
i=1 peii .

Let S = {1, . . . , s + t} and PS be the set of all proper subsets of S. For
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each i ∈ S, we write Ti = Tpi , Di = Dpi and Fi = Fpi for simplicity. Let
ti = |Ti|, fi = |Di|/|Ti| and gi = |G|/|Di| be the ramification degree, iner-
tia degree and decomposition degree of pi in F , respectively. We also set
νi =

∑fi
j=1F

j
i ∈ R. For each subset I of S, we also introduce the following

notations: mI =
∏
i∈I peii , TI =

∏
i∈I Ti, DI =

∏
i∈I Di, νI =

∏
i∈I νi and

nI = (
∏
i∈I ti)/|TI |. For each I ∈ PS, we put

λI = NKm/mI
/Fm/mI

(λm/mI ) = λm/mI ,F .

For any given function β : PS → R, we define

λ(β) =
∏

I∈PS
λ
nIβ(I)
I .

Since λσ−1
I ∈ O∗F for any σ ∈ G, we have λ(β)σ−1 ∈ O∗F . Let R be a

system of representatives for G/JF containing 1 and R∗ = R\{1}. Let Cβ
be the subgroup of O∗F generated by F∗F and {λ(β)σ−1 : σ ∈ R∗}. Let
r = [F+ : k]− 1.

Theorem 2.2. For any function β : PS → R, we have

[O∗F : Cβ] =
Q0(q − 1)
WF [FF : Fq]

(
W∞
δF

)r h(OF+)
h(A)

iβ,

where
iβ =

∣∣∣
∏

χ6=1
real

∑

I∈PS
(fχ,mI)=e

nI |TI |χ(β(I))
∏

i6∈I
(1− χ(pi))

∣∣∣.

Furthermore if iβ = 0, then the index of Cβ in O∗F is infinite.

Proof. Since ker lF ∩ O∗F = ker lF ∩ Cβ = F∗F , by Lemmas 1.1 and 1.2,
we have

[O∗F : Cβ] = [lF (O∗F ) : lF (Cβ)] = (lF (O∗F ) : e+R0)(e+R0 : lF (Cβ))(2.2)

=
δ

1−[F+:k]
F Q0

R(F+)
(e+R0 : lF (Cβ)).

Now we consider the transition matrix of the generators {lF (λ(β)σ−1) : σ ∈
R∗} of l(Cβ) with respect to the basis {e+(σ−1 − 1) : σ ∈ R∗} of e+R0.
Since JF is the inertia group of ∞ and λ(β)σ−1 is a unit, we have

lF (λ(β)σ−1) =
∑

τ∈G
v∞(λ(β)(σ−1)τ)τ−1 =

∑

τ∈R∗
δF v∞(λ(β)(σ−1)τ)e+(τ−1 − 1)

=
∑

τ∈R∗
δF (v∞(λ(β)στ)− v∞(λ(β)τ ))e+(τ−1 − 1).
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From the Dedekind determinant formula (cf. [9, Lemma 5.26]), we get

(e+R0 : lF (Cβ)) = |det(δF (v∞(λ(β)στ)− v∞(λ(β)τ )) : σ, τ ∈ R∗)|(2.3)

=
∣∣∣
∏

χ6=1
real

∑

σ∈R
χ(σ)δF v∞(λ(β)σ)

∣∣∣

=
∣∣∣
∏

χ6=1
real

∑

I∈PS

∑

σ∈G
χ(σ)v∞(λσnIβ(I)

I )
∣∣∣.

Fix χ 6= 1 real and I ∈ PS . Since Gal(F/Fm/mI
) = TI , Lemma 2.1 yields

(2.4)
∑

σ∈G
χ(σ)v∞(λσnIβ(I)

I ) = χ(β(I))χ(lF (λnI
m/mI ,F

))

= χ(β(I))nIW∞Lk(0, χ)χ(s(TI))
∏

i6∈I
(1− χ(pi)).

Note that if fχ - m/mI , then χ(s(TI)) = 0. Thus by combining (2.2)–(2.4),
we get

(e+R0 : lF (Cβ))

=
∣∣∣
∏

χ6=1
real

W∞Lk(0, χ)
∣∣∣ ·
∣∣∣
∏

χ6=1
real

∑

I∈PS
(fχ,mI)=e

nI |TI |χ(β(I))
∏

i6∈I
(1− χ(pi))

∣∣∣

= W r
∞

(q − 1)h(F+)
WF [FF : Fq]h(k)

iβ,

where the second equality comes from the class number formula (1.1). Since
h(F+) = R(F+)h(OF+)/d∞ and h(k) = h(A)/d∞, we have completed the
proof of the theorem.

A function β : PS → R is called multiplicative if β(∅) = 1 and β(I ∪J) =
β(I)β(J) whenever both sides are defined and the intersection I∩J is empty.
Clearly, a multiplicative function β is determined by the values β({i}) and
these can be assigned arbitrarily. We denote β({i}) by β(i) for simplicity.

Proposition 2.3. For a multiplicative function β : PS → R, we have

iβ =
∣∣∣
∏

χ6=1 real
fχ 6=e

∏

pi-fχ

(tiχ(β(i)) + 1− χ(pi))

×
∏

χ6=1 real
fχ=e

( s+t∏

i=1

(tiχ(β(i)) + 1− χ(pi))−
s+t∏

i=1

tiχ(β(i))
)∣∣∣.
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Proof. For any nontrivial real character χ, we consider the factor

Tχ =
∑

I∈PS
(fχ,mI)=e

nI |TI |χ(β(I))
∏

i6∈I
(1− χ(pi))

of iβ in Theorem 2.2. We also consider Uχ =
∏

pi-fχ(tiχ(β(i)) + 1 − χ(pi)).
Since β is multiplicative, nI |TI | =

∏
i∈I ti and

∏

i6∈I
(1− χ(pi)) =

∏

i6∈I
pi-fχ

(1− χ(pi)),

we have
Tχ =

∑

I∈PS
(fχ,mI)=e

∏

i∈I
tiχ(β(i))

∏

i6∈I
pi-fχ

(1− χ(pi)).

Let Sχ = {i ∈ S : pi - fχ}. Then, if fχ 6= e, the I which occur in the
summation for Tχ are exactly the subsets of Sχ. By expanding the product
Uχ, we get Tχ = Uχ. If fχ = e, then Sχ becomes S and so

∏
i∈S tiχ(β(i))

occurs in the expansion of Uχ. Therefore, we have Tχ = Uχ−
∏s+t
i=1 tiχ(β(i))

in the case fχ = e. From this, the proposition follows.

Now we choose a multiplicative function β : PS → R with β(i) = νi
for each i ∈ S. Since λI ∈ Fm/mI and β(I) is uniquely determined modulo
TI = Gal(F/Fm/mI

), Cβ is independent of the choice of Fi. Then as in the
rational function field case [4, Theorem 4.1], we have the following result.

Proposition 2.4. Let β be as above. Let zi = |(JF ∩ Di)/(JF ∩ Ti)|.
Then

iβ =
s+t∏

i=1

t
[G:JFDi]−1
i f

2[G:JFDi]−1
i z

−[G:JFDi]
i .

In particular , if F/k is real , then iβ =
∏s+t
i=1 t

gi−1
i f2gi−1

i .

Proof. Any unramified nontrivial character χ may be viewed as a non-
trivial character of GF+

e
. Since Nm = GF+

e
, we have χ(pi) 6= 1 for some

i ∈ S. Thus χ(νi) = 0 for such i ∈ S and so
∏s+t
i=1 χ(β(i)) = 0. We follow

the argument in the proof of [4, Theorem 4.1] to get the result.

Suppose F/k is a real extension. For any divisor n of m, letK+
n = K+

n ·Ke,
the compositum of K+

n and Ke. Then λσ−1
n ∈ K+

n as in [12, Section 2] and

NKn/Fn
(λn)σ−1 = NK+

n /Fn
(NKn/K

+
n

(λσ−1))

= NK+
n /Fn

((λσ−1
n )q−1) = (NK+

n /Fn
(λσ−1

n ))q−1.

Thus for σ ∈ G, there exists εσ ∈ O∗F such that εq−1
σ = λ(β)σ−1 and one can

construct εσ explicitly from the above relation and the definition of λ(β). We
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define C ′β as the subgroup ofO∗F generated by F∗F∪{εσ : σ ∈ G,σ 6= 1}. Then
it is easy to see that both Cβ and C ′β are isomorphic to the augmentation
ideal R0 of R as R-module.

Corollary 2.5. When F/k is a real extension, we have

[O∗F : C ′β] =
q − 1

WF [FF : Fq]

(
W∞
q − 1

)[F :k]−1h(OF )
h(A)

s+t∏

i=1

tgi−1
i f2gi−1

i .

3. Comparison of indices. To compare our index with Xu–Zhao’s [11,
Theorem 1], we change the notations in [11] to ours. Then the index in [11,
Theorem 1] reads

[O∗F+ : C(n,D)] =
q − 1
WF

(
W∞
δF

)r h(OF+)
h(A)

i(n,D),

with m | n. We also note that the constant field of k in [11] is enlarged so that
[FF : Fq] = 1 in the Xu–Zhao’s index. Thus it suffices to compare iβ in our
index with i(n,D). Note that our choice of m satisfies the condition i(m,D) 6=
0 in [11, Theorem 2]. Define T0 = {i ∈ S : χ(pi) = 1 for some nontrivial
χ ∈ ĜF+}. For T0 ⊆ T ⊆ S, we let D = D(T ) = {m/mI 6= e : I ⊆ T}. For
any integral ideal a of A, let Φ(a) = |(A/a)∗|. Then i(m,D) in [11, Theorem
1] can be written as

i(m,D) =
∣∣∣
∏

χ6=1
real

∑

I⊆T,I 6=S
(mI ,fχ)=e

Φ(mI)
∏

i6∈I
(1− χ(pi))

∣∣∣

=
∣∣∣
∏

χ6=1 real
fχ 6=e

∏

i∈T
pi-fχ

(Φ(peii ) + 1− χ(pi))
∏

i6∈T
(1− χ(pi))

∣∣∣

×
∣∣∣
∏

χ6=1 real
fχ=e

(∏

i∈T
(Φ(peii ) + 1− χ(pi))− δT,SΦ(m)

)∏

i6∈T
(1− χ(pi))

∣∣∣

where δT,S = 1 if T = S and 0 otherwise. If T = S, the above index is
difficult to compute. Thus we assume that T ( S. For simplicity, we also
assume that F is real. Note that T0 is just the set of all i ∈ I with gi > 1
(cf. [9, Theorem 3.7]). Thus for i 6∈ T , both factors in iβ and i(m,D) are
equal to fi. For i ∈ T, as in the proof of Proposition 2.4, we see that

∏

χ6=1,pi-fχ

(Φ(peii ) + 1− χ(pi)) =
((Φ(peii ) + 1)fi − 1)gi

Φ(peii )
.

Note that ti ≤ Φ(peii ) and ti = 1 for i > s. It is easy to see that this factor
is greater than our factor tgi−1

i f2gi−1
i as in the rational function field case.
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So we have iβ ≤ i(m,D(T )). We also note that both iβ and i(m,D) depend
on the choice of m.
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