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1. Introduction and main results. According to the Langlands pro-
gram, the “most general” L-function should be a product of L-functions of
automorphic cuspidal representations of GL,,/Q. Therefore these automor-
phic L-functions do deserve deep investigation. The Hecke L-function is an
important automorphic L-function.

Let Si(I") be the space of holomorphic cusp forms of even integral weight
k for the full modular group I" = SL(2,Z). Suppose that f(z) is an eigen-
function of all the Hecke operators belonging to Si(I"). Then the Hecke
eigenform f(z) has the following Fourier expansion at the cusp oo:

f(z) = as(n)e*™n?,
n=1

where we normalize f(z) so that ay(1) = 1. Instead of ayf(n), one often
considers the normalized Fourier coefficient

af(n)
Arn) = G

It is well-known that Af(n) is real and has the multiplicative property
(1.1) Apm)Ap(n) = " Ap(mn/d?),

d|(m,n)
where m,n > 1 are any integers. The Fourier coefficients of cusp forms are

interesting objects. In 1974, P. Deligne [2] proved the Ramanujan—Petersson
conjecture

(1.2) [A(n)] < d(n),

where d(n) is the divisor function.
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The Hecke L-function attached to f € Si(I") is defined, for Re(s) > 1,
by

n

n=1

For the sum of the normalized Fourier coefficients over natural numbers,
Rankin [20] proved that

S(z) = Z Af(n) < 23 (log )79,

where 0 < § < 0.06.
In 2001, Ivié¢ [6] studied the sum of the normalized Fourier coefficients
over squares, i.e.

So(x) = Z Af(n?).

n<x

By using (1.1), the Rankin—Selberg method, and the zero-free region of
Riemann zeta function, he gave a nontrivial estimate

So(z) <5 exp(—A(]og x)3/5(log log w)_1/5),

where A is a suitable positive constant.
Later Fomenko [3] observed that

So(z) < 22 (log z)>.
Recently Sankaranarayanan [22] showed that
Sy(z) < 2*/*(log 2)'Y? log log =

uniformly for any holomorphic cusp form of even integral weight k for the
full modular group satisfying k < x'/3(log )?%/3.

Subsequently by using the properties of symmetric power L-functions,
Li [16] proved that for any € > 0,

Ss(@) =Y Ap(n?) <pe 2?15 Sy(w) =D Ap(nt) < 2T/
n<lx n<w

On the other hand, Rankin [I9] and Selberg [23] studied the average
behavior of )\% (n) over natural numbers and showed that

> N n) = crw + 0; (),
n<x

where c; is a positive constant depending on f. Recently we studied the
asymptotic formula for the sum

Y M), j=2,34.

n<x
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By using the properties of symmetric power L-functions and their Rankin—
Selberg L-functions (which have been established in [4], [7], [9], [10], [11],
[14], and [24]), in [I2] we proved that for any € > 0, we have

3 _ 2
(1.3) > " N(n!) = cjz + Of,e(xl Gy =234,
n<x

where ¢; are suitable constants depending on f.
In this paper we first improve these results by applying the convolution
method arguments and a classical lemma of Landau.

THEOREM 1.1. Let f(z) € Sk(I") be a Hecke eigenform of even integral
weight k for the full modular group, and let A¢(n) denote its nth normalized
Fourier coefficient. Then

) _ 2
DoAj) = e+ Op (G, =234
n<x

Furthermore by applying an identity among automorphic L-functions
and some techniques of analytic number theory, we can still improve Theo-
rem 1.1 for j = 2. More precisely, we prove:

THEOREM 1.2. Let f(z) € Sp(I") be a Hecke eigenform of even integral
weight k for the full modular group. Then for any e > 0,

D N (n?) = com + O (273/697%),
n<x

For comparison, we have 9/11 = 0.818... (for j =2 in (1.3)), 4/5 = 0.8
(for j = 2 by Theorem 1.1) and 53/69 = 0.768.....

2. Some lemmas. According to Deligne [2], for any prime number p
there are af(p) and Bf(p) such that

(21)  As(p) = ay(p) + Bs(p) and |ay(p)| = ay(p)Bs(p) =
The jth symmetric power L-function attached to f € Si(I") is defined as

(2.2) L(sym’ f,s) == [ | H L—az(p) "B (p)"p~*)

p m=0
for Re(s) > 1. In particular,
L(sym” f,s) = ((s), L(sym' f,s) = L(f,s).
In the half-plane Re(s) > 1, we can write L(sym’ f, s) as a Dirichlet series
, > Agvmi £(n)
L(sym? f,s) = Z == -

ns
n=1
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The Rankin—Selberg L-function associated to sym’ f x sym’ f is defined
as

(2.3)  L(sym? f x sym? £, s)

J o
=TT TI TTCt = er @) B¢ (0) ™ cp(p)? " Bs (p)“p~*) "

p m=0u=0
for Re(s) > 1.
LEMMA 2.1 (Lao and Sankaranarayanan [12, Lemma 2.1]). Let f(z) €

Si(I") be a Hecke eigenform of even integral weight k for the full modular
group. For j = 2,3,4, we introduce

0o 2 j
(2.4) Lj(s) = ; )\f:;]) for Re(s) > 1.
Then
(2.5) Lj(s) = L(sym’ f x sym? f, s)U;(s)  for Re(s) > 1,

where Uj(s) converges uniformly and absolutely in the half-plane Re(s) >
1/2 + ¢ for any € > 0.

LEMMA 2.2. For Re(s) > 1, we have

L(sym®f x sym®f, s) = ((s)L(sym®f, s) L(sym®f, s).
Proof. This follows from (2.2) with j = 0,2,4, and from (2.3) with
j=3. m
Based on the work of Cogdell and Michel [I], Lau and Wu [14] showed
that for j = 2, 3,4, L(sym? f,s) and L(sym? f xsym’ f, s) have meromorphic
continuations to the whole complex plane, and satisfy a functional equation.
LEMMA 2.3 (Cogdell and Michel [I, Section 3.2.1]). Let f(z) € Si(I")

be a Hecke eigencuspform of even integral weight k. For j = 2,3,4, the
archimedean local factor of L(sym’ f, s) is

: [Io—o (s + (v+1/2)(k — 1)) if j=2n+1,

LOO(Sym]fv 5) = n o

Ir(s+ 52m) I[Ih_i Ic(s+v(k—1)) if j=2n,
where Iy = 7~%/2I'(5/2), I'c = 2(27)~*I'(s), and ot is 1 when 2 does not
divide n, and 0 otherwise.

For 2 < j <4, the complete L-function
A(sym? f, s) = Loo(sym’ f, s) L(sym’ f, 5)

is an entire function on C, and satisfies the functional equation

A(Sym]fa S) = Esymij(Symjfa 1- S)’

where € +1.

symJ f =
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LEMMA 2.4 (Lau and Wu [14, Proposition 2.1]). Let f(z) € Sk(I") be a
Hecke eigenform of even integral weight k. For j = 2,3, 4, the archimedean
local factor of L(sym’ f x sym/ f, s) is

Loo(sym? f x sy f,5) = Ti()% ()72 T Te(s + ol — 1)y,
v=1
where 0g; =1 — d9y;. The complete L-function
A(sym? f x sym? f,s) := Loo(sym? f x sym? f, s)L(sym’ f x sym? f, s)
is entire except possibly for simple poles at s = 0,1 and satisfies the func-
tional equation
A(sym? f x sym? f,s) = €symd fxsym? f/l(symj fxsym! f,1—s)
With |€symi fxsymi fl = 1
LEMMA 2.5. For anye >0, 0 > 1/2, and |t| > 2, we have
Clo +it) <o (14 [zt 0+,
Lisym® f,0 +it) < e (1+ [t)m(5 070005,
L(sym? f,o +it) <so (14 [t))mex{z 0-0)0e 534
Proof. For any € > 0, we have (see [1§])
Clo+it) <e (L+]t))s=%e 1/2<o <1, Jt| >2.
The estimate
L(sym? f,o +it) <sc (L+[t) 50 1/2<o<1, |t >2,
is due to X. Q. Li [15]. From Lemma 2.3, we have

Lisym’ fo+it) <z (14 |t)" T 0 1/2<o <1, [t|>2,j =34

The claim for o > 1 holds by the absolute convergence of the Dirichlet series
involved, which follows from (1.2). =

LEMMA 2.6. Let j = 2,3,4. Then for T > Ty (where Ty is sufficiently
large),
2T

| 1Lsym? £,1/2 4+ ¢ +it) P dt <p. T F,
T
where € is any positive constant.

Proof. From (2.2), the L-function L (sym’ f,s) is of degree j + 1. Lem-
ma 2.4 shows that the L-function L (symj f, 8) can be extended as an entire
function and also satisfy a nice functional equation of the Riemann zeta
type. Thus we can write the functional equation here as

L(sym’ f,5) = x(s)L(sym’ f,1 — s),
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where _

()] = 30727 as [t = oo
uniformly in any fixed strip a < ¢ < b. Now we follow the arguments of
Sankaranarayanan [21, Theorem 4.1(i)]. The only necessary changes are that
we need the free parameters Y and Y; therein to be Y = Y] = ¢T0+1/2,
where ¢ is a suitable positive constant. This leads to the estimate of this
lemma. =

LEMMA 2.7 (Heath-Brown [5]). For T > 1,

T
Vlc/2+it)|"? dt < T2t
1

LEMMA 2.8. Let a, > 0 and set

[e.9]

flo) =

n=1

an

Suppose f(s) is convergent in some half-plane and has an analytic continu-
ation, except for a pole at s = « of order k, to the entire complex plane and
it satisfies a functional equation

cCA(s)f(s) = ! AL = 5) f(1 = 5),
where ¢ is a positive constant and A(s) = [T, I'(ais + Bi) (a; > 0). Then

Z an = x%Py_1(logz) + O(xa(l—ﬁ) logkﬂ z),
n<lzx
where A = Zfil a; and Py_1(y) is a polynomial in y of degree k — 1.

Proof. This is one of the many possible versions of a classical lemma of
Landau. See for e.g. Murty [17, Lemma 1]. m

3. Proof of Theorem 1.1. The product over primes in (2.3) gives a
Dirichlet series representation

> )‘symj fxsymi f(n)

L(sym’ f x sym? f,s) = Z e

n=1

for Re(s) > 1,

where Ay fxsymi £(77) is nonnegative in view of [I3, Lemma 3.1(a)]. By
Lemma 2.4, L(sym/ f x sym’ f, s) satisfies the conclusion of Lemma 2.8
with @ =1, k =1, and 24 = (5 + 1)%2. Then we have

1——2_
Z Asymi fxsyms f(n) = djz + O(x (a+1)2+1)’

n<x
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where d; is a suitable constant depending on f. By Lemma 2.1,

)‘2 n] Z )‘sme fxsymJ f( ) (l)7

n=ml

where

It <1 forv>1/2+e.

<z
Hence
Z )‘?‘(nj) = Z )‘symﬂ fxsymi f Zu] Z Asymj fxsymJ f(m)
n<z mi<z <z m<z/l

2
= " w(){dj(z/l) + O((x/1) T 7))

<z
12
= cjx—}-O(;p (j+1)2+1)_
This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2. Recall that
e’} )\2 n2
Lo(s) = Z # for Re(s) > 1
n
n=1

From Lemmas 2.1 and 2.2, we observe that

Ly(s) = L(sym? f x sym® f,s)Us(s) = ¢(s)L(sym® f, s) L(sym" f, s)Us(s)
can be meromorphically continued to the half-plane Re(s) > 1/2. In this
region, Ls(s) has only a simple pole at s = 1.

Now, we begin to prove Theorem 1.2. By Perron’s formula (see [8, Propo-
sition 5.54]), we have

1 b+iT e
§ 20,2\ __ 1+
n<w)\f(n ) = mb_SiTLQ(S)SdS"—O(l' 6/T),

where b=1+¢ and 1 < T < x is a parameter to be chosen later. Here we
have used (1.2).

Next we move the integration to the parallel segment with Re(s) =
1/2 4+ e. By Cauchy’s residue theorem, we have

1/2+4e+iT biT 1/24e—iT

RIS P VIUS s G U N T Y O par2

n<z 1/24e—iT  1/24e+iT b—iT
+ Resg—1(La(s)z®/s) + O(x1 T /T)
=L+ 1o+ I3+ cox + O(azHE/T).
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For Iy, by Lemma 2.1,

T
a2 [ [L(sym? £ x sym® f,1/2 + &+ 00U (1/2 + ¢ + i)t dt
1
T

< x1/2+5 + .’E1/2+E S ‘L(Sme f X Sym2 f’ 1/2 + e+ Zt)‘t_l dt.
1
Therefore
Il <<1,1/2+€
T/29-1
+ gl/?te Z S |L(sym? f x sym? f,1/2 + € + it)[t " dt
1<G<[ET+1 T/
< x1/2+€
1
+ 2t/ log Tmax § — | |L(sym® f x sym® £,1/2 + & + it)| dt 5.
n<r |Th T2
1

Using the decomposition in Lemma 2.2, by Hélder’s inequality, we have

1/2+€ 1/2+81 T 1 o 1/2 - 12d 1/12
L < +x og %%?{TI( S IC(1/2 4 ¢ +it)| t)

Ty /2
T 5/12
x( | \L(smef,1/2+€—|—z’t)|12/5dt)
Ty /2
T 1/2
x( { \L(sym4f,1/2+e+it)|2dt) }
Ti/2

Furthermore,

Ty
1 1/12
Il<<x1/2+€+x1/2+510ngaX{( S ‘C(1/2+8+it>‘12dt)

<1 (T} /2
2 2/5 i 2 2 5/12
><< max_ |L(sym? f,1/2+e+it)*/> | |Lsym? f,1/2+¢+it)| dt)
T1/2<t<Th /2
1

T

. 1/2
><< S ]L(sym4f,1/2+5+zt)|2dt) }
T /2
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After applying Lemmas 2.5-2.7, we have
(42) I, <<$1/2+s+z1/2+aTé+(§x}—é+%)x%+%—1+a < g1/ 2+e3T/32+e

For the integrals over the horizontal segments, we use Lemmas 2.2 and 2.5
to get
b
(4.3) L+L<< S 27| L(sym? f x sym? f, o +iT)|T~ ' do
1/24¢
< max l’aT(%+%+g)(1_g)+€T_l + IL‘1+€/T
1/24e<0<b

& 7 101/24—1+ alte

< max — | T R R

1/2+e<0<b <T101/24) T
1+e

" b 21 " 1/2+4¢ a1 "
101/24—1+4e 101/24—1+4¢
< <T101/24> T + <T101/24> T - T

14
< JET 4 pl/2+eq53/a8+e.

From (4.1)—(4.3), we have
(4.4) Z )\?c(nQ) = cox + O(x 5 /T) + O(z1/2+e737/32+<),

n<x

On taking T = 2'6/%9 in (4.4), we conclude that
Z )\?c(TLQ) = cox + O($53/69+E).

n<x

Acknowledgements. This research was supported by NSF (grant no.
11101249). The authors would like to thank the referee for detailed sugges-
tions and valuable comments.

References

[1] J. Cogdell and P. Michel, On the complex moments of symmetric power L-functions
at s = 1, Int. Math. Res. Notices 31 (2004), 1562-1618.

[2] P. Deligne, La Conjecture de Weil, Inst. Hautes Etudes Sci. Publ. Math. 43 (1974),
29-39.

[3] O.M. Fomenko, On the behavior of automorphic L-functions at the center of the crit-
ical strip, Zap. Nauchn. Sem. POMI 276 (2001), 300-311; English transl.: J. Math.
Sci. (N.Y.) 118 (2003), 4910-4917.

[4] S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2)
and GL(3), Ann. Sci. Ecole Norm. Sup. 11 (1978), 471-552.

[5] D. R. Heath-Brown, The twelfth power moment of the Riemann-function, Quart. J.
Math. (Oxford) 29 (1978), 443-462.

[6] A.Ivié, On sums of Fourier coefficients of cusp form, in: IV International Conference
“Modern Problems of Number Theory and its Applications”: Current Problems,
part II (Tula, 2001), Moskov. Gos. Univ. Mekh.-Mat. Fak., Moscow, 2002, 92-97.


http://dx.doi.org/10.1093/qmath/29.4.443

110 H. X. Lao and A. Sankaranarayanan

[7] H. Iwaniec, Topics in Classical Automorphic Forms, Amer. Math. Soc., Providence,
RI, 1997.

[8] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Collog.
Publ. 53, Amer. Math. Soc., Providence, RI, 2004.

[9] H. Kim, Functoriality for the exterior square of GL4 and the symmetric fourth of
GL2 (with appendices by D. Ramakrishnan and by H. Kim and P. Sarnak), J. Amer.
Math. Soc. 16 (2003), 139-183.

[10] H. Kim and F. Shahidi, Functorial products for GLa x GL3 and functorial symmetric
cube for GL2 (with an appendix by C. J. Bushnell and G. Henniart), Ann. of Math.
155 (2002), 837-893.

[11] H. Kim and F. Shahidi, Cuspidality of symmetric powers with applications, Duke
Math. J. 112 (2002), 177-197.

[12]] H. X. Lao and A. Sankaranarayanan, The average behavior of Fourier coefficients of
cusp forms over sparse sequences, Proc. Amer. Math. Soc. 137 (2009), 2557-2565.

[13]] Y.-K. Lau and G. S. Lii, Sums of Fourier coefficients of cusp forms, Quart. J. Math.
(Oxford) 62 (2011), 687-716.

[14] Y.-K. Lau and J. Wu, A density theorem on automorphic L-functions and some
applications, Trans. Amer. Math. Soc. 359 (2006), 441-472.

[15]] X. Q. Li, Bounds for GL(3) x GL(2) L-functions and GL(3) L-functions, Ann. of
Math. (2) 173 (2011), 301-336.

[16] G. S. Lii, On an open problem of Sankaranarayanan, Sci. China Ser. A Math. 39
(2009), 1023-1028.

[17] M. R. Murty, On the estimation of eigenvalues of Hecke operators, Rocky Mountain
J. Math. 15 (1985), 521-534.

[18] C.D. Pan and C. B. Pan, Fundamentals of Analytic Number Theory, Science Press,
Beijing, 1991 (in Chinese).

[19] R. A. Rankin, Contributions to the theory of Ramanujan’s function 7(n) and similar
arithmetical functions I1. The order of the Fourier coefficients of the integral modular
forms, Proc. Cambridge Philos. Soc. 35 (1939), 357-372.

[20] R. A. Rankin, Sums of cusp form coefficients, in: Automorphic Forms and Ana-
lytic Number Theory (Montreal, PQ, 1989), Univ. Montréal, Montreal, QC, 1990,
115-121.

[21] A. Sankaranarayanan, Fundamental properties of symmetric square L-functions I,
Illinois J. Math. 46 (2002), 23—43.

[22] A. Sankaranarayanan, On a sum involving Fourier coefficients of cusp forms, Lithua-
nian Math. J. 46 (2006), 459-474.

[23] A. Selberg, Bemerkungen iber eine Dirichletsche Reihe, die mit der Theorie der
Modulformen nahe verbunden ist, Arch. Math. Naturvid. 43 (1940), 47-50.

[24] F. Shahidi, Third symmetric power L-functions for GL(2), Compos. Math. 70 (1989),
245-273.

Huixue Lao Ayyadurai Sankaranarayanan

Department of Mathematics School of Mathematics

Shandong Normal University Tata Institute of Fundamental Research

250014 Jinan, China 400005 Mumbai, India

E-mail: huixuelao@gmail.com E-mail: sank@math.tifr.res.in

Received on 15.9.2012
and in revised form on 17.10.2013 (7194)


http://dx.doi.org/10.1090/S0894-0347-02-00410-1
http://dx.doi.org/10.2307/3062134
http://dx.doi.org/10.1215/S0012-9074-02-11215-0
http://dx.doi.org/10.1090/S0002-9939-09-09855-4
http://dx.doi.org/10.1093/qmath/haq012
http://dx.doi.org/10.4007/annals.2011.173.1.8
http://dx.doi.org/10.1216/RMJ-1985-15-2-521
http://dx.doi.org/10.1017/S0305004100021101

	1 Introduction and main results
	2 Some lemmas
	3  Proof of Theorem 1.1
	4  Proof of Theorem 1.2
	References

