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On 2-extensions of the rationals with restricted ramification

by

Peter Schmid (Tübingen)

1. Introduction. For a finite set S of rational primes and a finite
group G let KS(G) denote the set of normal number fields (within C) with
Galois group G which are unramified outside S ∪ {∞}. We say that G be-
longs to KS if KS(G) 6= ∅, and we write Kp(G) if S = {p} consists of a
single prime p. Thus G belongs to KS if and only if it is a quotient group
of the absolute Galois group GS = Gal(QS/Q), where QS is the maximal
extension of Q unramified outside S ∪ {∞}. General facts on the structure
of the profinite group GS , and its maximal pro-p-quotient groups GS(p) for
primes p, can be found in the monographs [13], [10].

In this paper we are just concerned with the situation that G is a 2-group.
Thus G belongs to KS if and only if it is a quotient group of GS(2). This is
of interest per se but certainly also because of the lack of a simple approach
to the inverse problem of Galois theory for finite 2-groups (like that given
by Reichardt–Scholz in the odd case; see Serre [15, Chap. 2]). Recently
the groups GS(2) have been studied thorougly for sets S of odd rational
primes [11], and when S consists of certain pairs or triplets of odd primes
[2], [3], [5]. Here we shall treat the rather different, and special, situation
where S = {2}. In this case the structure of GS(2) is known since many
years (Markšaitis [12], Shafarevich [17], Koch [9]). This gives rise to the
following basic observation.

Theorem 0. Let G be a finite 2-group, and let Ω(G) denote the set
of ordered pairs (x, y) ∈ G × G such that G = 〈x, y〉 and y2 = 1. Then
K2(G) 6= ∅ if and only if Ω(G) 6= ∅; indeed the cardinalities satisfy |K2(G)| =
|Ω(G)|/|Aut(G)|.

Hence just those nontrivial finite 2-groups belong to K2 which can be
generated by two elements, one being an involution. Usually it is not easy to
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compute the cardinality of K2(G) in the way indicated above; we just carry
this out when G is dihedral (Lemma 2.3). It is more convenient to argue
on the basis of the theory of central group and field extensions (Fröhlich,
Shafarevich). Given K ∈ K2(G) we shall see that there exist just |M(G)|
normal number fields L ⊇ K whose Galois group is a Schur cover of G
(Proposition 3.3). Here M(G) = H2(G,Z) denotes the Schur multiplier of G.

We shall compute K2(G) explicitly (not only its cardinality) for certain
distinguished 2-groups G appearing. These groups come up as follows.

Theorem 1. Let G be a finite 2-group. Then K2(G) 6= ∅ if and only if
one of the following holds:

(i) G is cyclic or abelian of type (2n−2, 2) for some n ≥ 3.
(ii) G is a dihedral, semidihedral or modular 2-group.

(iii) There is a unique normal subgroup G∗ of G having index 2 in the
commutator subgroup G′ = [G,G] of G and G/G∗ is a semimodular
2-group. Either G∗ = 1 or some noncentral involution of G/G∗ lifts
to an involution in G.

Recall that the (generalized) quaternion group Q2n , the dihedral group
D2n , the semidihedral group SD2n and the modular group M2n are the only
nonabelian 2-groups of order 2n having a cyclic subgroup of index 2 [8, Satz
I.14.9]. They are pairwise nonisomorphic (letting n ≥ 4 in the latter two
cases). For G = M2n the commutator subgroup has order 2 and G/G′ is
of type (2n−2, 2). Up to isomorphism, the semimodular group SM2n is the
unique group of order 2n, n ≥ 4, with the corresponding properties but
having two conjugacy classes of noncentral involutions (and not just one as
for M2n ; see Lemma 4.2 below).

We shall describe K2(G) when G is dihedral, semidihedral, modular or
semimodular. For n ≥ 1 let En be the ring class field for the order Z[2ni] in
Q(i) and Fn that for the order Z[2n−1i

√
2] in Q(i

√
2) (i = ζ4, ζr = e2πi/r).

Then E1 = Q(i), F1 = Q(i
√

2) and E2 = F2 = Q(ζ8). Neither En nor Fn
contains the 16th roots of unity, and En ∩ Fn = Q(ζ8) for n ≥ 2 (Lemma

5.3). For n ≥ 3 let Ẽn be the field properly between En−1 and En(ζ16) and

distinct fom En and En−1(ζ16), and define F̃n similarly.

Theorem 2. For n ≥ 3 we have K2(D2n) = {En, Fn}, and we have

K2(SD2n) = {Ẽn, F̃n} for n ≥ 4. Also, K2(M2n) = {Q( 4
√

2 · ζ2n+1)} and
K2(SM2n) = {Q( 4

√
2 , ζ2n)} for n ≥ 4.

By complex multiplication we may generate ring class fields by singular
values of the modular j-function (cf. Cox [4, Theorem 11.1]). Thus we have
En = Q(i, j(2ni)) and Fn = Q(i

√
2, j(2n−1i

√
2)). The absolute values of

the coefficients of the minimum polynomials over Q of these singular j-
values are known to grow very rapidly (with n), and the same holds for the
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unique 3rd root γ2 of j which is real-valued on the imaginary axis (and has
the same generating property by [4, Theorem 12.2]; see also Schertz [14,
Theorem 6.3.1]). In the last section of the paper we give simple generating
polynomials for some of the fields appearing in Theorem 2.

2. Basic observations. Recall that we regard number fields as subfields
of C (algebraic over the rationals). Following Gras–Jaulent [7] number fields
unramified outside {2,∞} are called 2-ramified.

Suppose G 6= 1 is a finite abelian 2-group belonging to K2. If G = Z2 is
the group of order 2, then K2(G) = {Q(i),Q(

√
2),Q(i

√
2)}, because these

are the unique quadratic number fields in which only the prime 2 ramifies.
If G is cyclic of order 2n−2 for some n ≥ 4, then K2(G) = {Q(ζ2n + ζ−12n ),
Q(ζ2n − ζ−12n )}. In all other cases G is of type (2n−2, 2) for some n ≥ 4 and
K2(G) = {Q(ζ2n)}. This follows from the Kronecker–Weber theorem and
known ramification in cyclotomic fields, and determines the structure of

GS(2)/GS(2)′ ∼= Z2 ⊕ Z2

for S = {2}. Observe that the (usual) commutator group GS(2)′ is closed in
GS(2), as is every finite-index subgroup (cf. [16, Exercise 6 in Section I.4.2]).

Lemma 2.1. Let K be a normal 2-ramified number field having a fi-
nite nonabelian Galois 2-group G = Gal(K/Q). Then K contains Q(ζ8) =
Q(i,
√

2) as the fixed field of the Frattini subgroup Φ(G) of G, and G = 〈x, y〉
where y is complex conjugation on K and x is any element of G which is
not trivial on Q(

√
2).

Proof. The fixed field of any maximal subgroup of G is one of Q(i),
Q(
√

2) or Q(i
√

2). Thus |G : Φ(G)| = 4 (as G is not abelian), and Q(ζ8) is
the fixed field of Φ(G). Complex conjugation y on K is an involution in G
having the fixed field Q(

√
2) when restricted to Q(ζ8). By Burnside’s basis

theorem [8, Satz III.3.15] there is x ∈ G such that G = 〈x, y〉 is generated by
x and y. We may choose x arbitrarily, just taking care that x is not trivial
on Q(

√
2) (so that x 6∈ Φ(G) and Φ(G)x 6= Φ(G)y).

Note that in the above situation K cannot be cyclic or quaternion over
Q(
√

2), because otherwise complex conjugation y on K would be a central
involution of G and G/〈y〉 would be cyclic, whence G would be abelian.

Proposition 2.2 (= Theorem 0). For a finite 2-group G we have |K2(G)|
= |Ω(G)|/|Aut(G)| (where Ω(G) = {(x, y) ∈ G×G | G = 〈x, y〉, y2 = 1}).

Proof. Let S = {2}. The absolute Galois group Γ = GS(2) of the maxi-
mal 2-ramified 2-extension QS(2) of the rationals is known to be the pro-2-
completion of the free product Z ∗Z2 or, equivalently, the pro-2-group with
two generators σ, τ and defining relation τ2 = 1 (say). For a proof we refer to
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the (classical) papers [12, 17, 9] already mentioned in the Introduction, or to
the recent paper [7]. One knows that τ represents the unique conjugacy class
of involutions in Γ ; it may be identified with complex conjugation on QS(2).

We may assume that G is nonabelian. By Lemma 2.1, K2(G) 6= ∅ only
if Ω = Ω(G) 6= ∅. Given (x, y) ∈ Ω there is a (continuous) epimorphism
π : Γ � G defined by π(σ) = x and π(τ) = y. By a standard argument this
gives G the structure of the Galois group of some normal number field K
unramified outside {2,∞}. Indeed, let K be the fixed field of the kernel of π,
and let G act on K through the inverse of the isomorphism Γ/Ker(π)

∼→ G
induced by π.

Suppose we have two pairs (xi, yi) in Ω (i = 1, 2). These pairs define
epimorphisms πi : Γ � G (via σ 7→ xi, τ 7→ yi). Then Ker(π1) = Ker(π2)
if and only if π2 = α ◦ π1 for some automorphism α ∈ Aut(G). Of course
Aut(G) acts semiregularly on Ω, that is, each orbit has size |Aut(G)|. Hence
|K2(G)| = |Ω|/|Aut(G)|, as desired.

Lemma 2.3. We have |K2(D2n)| = 2 (n ≥ 3).

Proof. Let G = D2n , and let N be its unique cyclic maximal subgroup.
There are 2n−1 noncentral involutions in G (outside N), and for each such
involution y there are 2n−1 elements x of G such that G = 〈x, y〉, namely the
2n−2 generators of N and the 2n−2 noncentral involutions of G not conjugate
to y in G. Thus Ω = Ω(G) has cardinality 22n−2. Let A = CAut(G)(N). Then

A ∼= Z1(G/N,N) acts regularly on the set of noncentral involutions [8, Hilfs-
satz VI.7.14]. Moreover, every automorphism of N can be extended to G as it
acts trivially onH2(G/N,N) (which has order 2 asG/N inverts the elements
of N). Hence Aut(G)/A has order 2n−2 and |Aut(G)| = 22n−3. Consequently,
|K2(G)| = |Ω|/|Aut(G)| = 2 by Proposition 2.2 (Theorem 0).

Proposition 2.4. Let G be a finite 2-group with d ≥ 2 generators, and
let K = Q(ζ2n) or Q(ζ2n+1 − ζ−1

2n+1) where 2n−2 + 1 ≥ d. Then G can be
realized as a 2-ramified Galois group over K.

Proof. In both cases K is 2-ramified with degree [K : Q] = 2n−1, so
that K ⊆ QS(2) for S = {2}. It follows that K is a 2-rational number
field (in the notation introduced in [7]). By assumption n ≥ 2 (as d ≥ 2),
so that K is totally imaginary admitting 2n−2 complex places. Hence from
[7, Theorem 0] it follows that Gal(QS(2)/K) is a free pro-2-group of rank
2n−2 + 1. Now use that 2n−2 + 1 ≥ d by hypothesis.

For the special case d = n = 2 see also [16, Exercise (f) in Section I.4.1].
So every 2-generator 2-group can be realized as a 2-ramified Galois group
over Q(i) and Q(i

√
2).
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3. Central group and field extensions. Let G be a finite group. The
Schur multiplier of G is defined as M(G) = H2(G,Z) (often identified with
its character group H2(G,C∗)). If R � Γ � G is any free presentation
of G, by the celebrated Hopf–Schur formula we have

M(G) ∼= (R ∩ Γ ′)/[R,Γ ]

(see [8, Hauptsatz V.23.5]). Of course M(G) is finite of exponent divid-
ing |G|. Let C � X � G be a central extension of G (with C ⊆ Z(X)).
Then we may choose Γ such that it maps onto X, and the universal property
of free groups gives rise to the natural exact sequence

C ⊗X/X ′ →M(X)→M(G)
%→ C → X/X ′ → G/G′ → 1

(see e.g. [1, Lemma 4.1]). Here C ⊗X/X ′ → M(X) is the so-called Ganea
map, and the remainder is known as the 5-term exact homology sequence,
% : M(G) → C = H1(C,Z) being the transgression map. The extension is
called stem if % is an epimorphism, that is, if C ⊆ X ′, and it is a Schur cover
of G (sometimes called covering or representation group, or stem cover) if
% is an isomorphism. (So X is a Schur cover of G provided C ⊆ X ′ ∩ Z(X)
and |C| = |M(G)|.)

Lemma 3.1. If X is a Schur cover of the group G, then M(X) is an
epimorphic image of M(G)⊗G/G′.

This is immediate from the above exact sequence noting that % is an
isomorphism (and X/X ′ ∼= G/G′). Using that R/(R∩Γ ′) ∼= RΓ ′/Γ ′ is a free
abelian group, there exist complements T/[R,Γ ] to (R∩Γ ′)/[R,Γ ] ∼= M(G)
in R/[R,Γ ], so that Γ/T is a Schur cover of G. Indeed, all Schur covers may
be obtained in this way (up to isomorphism).

Schur’s theory nicely extends from the category of finite groups to that
of profinite groups. If R � Γ � G is a free presentation of a profinite
group G, then we may describe (and define) M(G) by the very same Hopf–
Schur formula (taking topological closures for the commutator groups). In
particular M(Γ ) = 0 if Γ is a free profinite group.

Lemma 3.2. Let Γ be a profinite group. Then M(Γ ) = 0 if and only if
M(Γ/R) ∼= (R ∩ Γ ′)/[R,Γ ] for all open normal subgroups R of Γ .

The proof is standard (cf. Fröhlich [6, Proposition 4.1]).

Proposition 3.3. If G is a finite 2-group belonging to K2, then also
some Schur cover of G belongs to K2. In fact, given K ∈ K2(G) there are
exactly |M(G)| normal number fields L ⊇ K such that Gal(L/Q) is a Schur
cover of G of this kind. These fields L are the maximal central extensions
of K/Q which are unramified outside {2,∞} and contain the same roots of
unity as K.
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Proof. Let Γ = GS(2) be the Galois group of the maximal 2-extension
of the rationals unramified outside {2,∞} (S = {2}). Then Γ/Γ ′ ∼= Z2⊕Z2

(as seen in the previous section). From Theorem 4.9 and Proposition 4.2
in [6] it follows that M(Γ ) = 0. Regarding G = Γ/R as a quotient group
of Γ we therefore have M(G) ∼= (R ∩ Γ ′)/[R,Γ ] by Lemma 3.2. Let K be
the fixed field of R on QS(2) (so that G = Gal(K/Q)). Recall that every
finite-index subgroup of Γ is open (and closed).

Without loss we may assume that G is not cyclic (otherwise M(G) = 0).
Then G/G′ ∼= Γ/RΓ ′ is not cyclic. We infer that R/(R ∩ Γ ′) ∼= RΓ ′/Γ ′

is isomorphic to Z2 (which is the free pro-2-group of rank 1). Hence there
are complements T/[R,Γ ] to (R ∩ Γ ′)/[R,Γ ] ∼= M(G) in R/[R,Γ ], and the
number of these complements equals |Hom(Z2,M(G))| = |M(G)|. For such
a complement T the group X = Γ/T is a central extension of G = Γ/R
where R/T ⊆ X ′ (as TΓ ′ = RΓ ′) and R/T ∼= M(G). Hence X is a Schur
cover of G. The fixed field L of T on QS(2) is a 2-ramified normal number
field L ⊇ K with X = Gal(L/Q). From Gal(L/K) ⊆ X ′ we infer that each
root of unity contained in L already is in K (Kronecker–Weber).

Conversely, if L0 is a central extension of K/Q which is 2-ramified and
contains the same roots of unity (of 2-power order) as K, then X0 =
Gal(L0/Q) is a stem extension of G and X0 = Γ/T0 for some normal sub-
group T0 ⊆ R of Γ satisfying T0Γ

′ = RΓ ′. It follows that T0/(T0 ∩Γ ′) ∼= Z2

and that there is a complement T/[R,Γ ] to (T0 ∩ Γ ′)/[R,Γ ] in T0/[R,Γ ].
Thus X0 is an epimorphic image of the Schur cover X = Γ/T of G belonging
to K2 and L0 ⊆ L where L is the fixed field of T . This completes the proof.

Example 3.4. Let G = D4 = Z2⊕Z2 be the noncyclic group of order 4.
Then K2(G) = {Q(ζ8)} and |M(G)| = 2. Indeed, up to isomorphism Q8

and D8 are the unique Schur covers of G (see below). Since Q8 does not
belong to K2 (Lemma 2.1), there are just |M(G)| = 2 distinct 2-ramified
normal number fields E3 and F3 (say) with group D8. These fields cannot
be cyclic over Q(

√
2), for otherwise complex conjugation would give the

unique central involution in the Galois groups. The splitting field of the
polynomialX4−2 over the rationals must be one of these fields, say E3. Then
E3 = Q(i,

√
4) is cyclic over Q(i). Let Ẽ3 be the unique proper intermediate

field between Q(ζ8) and E3(ζ16) different from E3 and from Q(ζ16). Then

Ẽ3 is 2-ramified and nonabelian over Q of degree 8. Consequently, F3 = Ẽ3,
and this is cyclic over Q(i

√
2).

4. Some distinguished 2-groups. By a classical result of Olga Taussky
a finite nonabelian 2-group G with |G : G′| = 4 is isomorphic to Q2n , D2n or
SD2n for some n (see [8, Satz III.11.9]). These are the (nonabelian) 2-groups
of maximal class. We infer that we must have G′ = Φ(G), Z(G) ⊆ G′ and
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|Z(G)| = 2. Moreover, M(G/Z(G)) has order 2. It is easy to see that the
centre quotient groups of Q2n , D2n and SD2n are all dihedral, so that these
groups are all the distinct Schur covers of D2n−1 up to isomorphism. (For
n = 3 we identify SD8 = D8, and D4 is the elementary group of order 4.)
We may also deduce that Q2n for n ≥ 3 and SD2n for n ≥ 4 have trivial
Schur multiplier (which of course is well known). By Lemma 2.1 we have
K2(Q2n) = ∅.

We are going to define the semimodular group SM2n as a fibre product of
D8 and an abelian group of type (2n−2, 2). This will enable us to determine
K2(SM2n) quite easily.

Lemma 4.1. Let G = D2r for some r ≥ 3, and let A be an abelian
group of type (2n−2, 2) for some n ≥ 4. Up to isomorphism there is a
unique fibre product H = G f A of G and A amalgamating the Frattini
quotients and admitting a noncentral involution. The centre Z(H) is of type
(2n−3, 2), H ′ is cyclic of order 2r−2 and |Z(H) ∩ H ′| = 2. There are just
two conjugacy classes of noncentral involutions in H, which are all outside
Φ(H) = Z(H) ·H ′.

Proof. Two of the three elements of order 2 in G/G′ result from non-
central involutions y, y′ in G which are not conjugate (and are outside G′),
the remaining one from a generator x of the unique cyclic subgroup of G of
index 2. Let A = 〈a〉 × 〈b〉 with a of order 2n−2 and b of order 2. Two of
the three elements of order 2 in A/Φ(A) come from elements of order 2n−2

of A, namely from a and ab, the remaining one from an involution, namely
from b or a2

n−3
b. Let V be an elementary group of order 4. There are group

epimorphisms γ, δ from G and A to V , respectively, such that γ(y) = δ(b)

(= δ(a2
n−3

b)). Let H = G f A be the fibre product (pullback) of G and A
with respect to these epimorphisms, regarded as a subgroup of the direct
product G×A.

The centre Z(H) of H maps onto Z(G), which has order 2 and is con-
tained in G′ = Φ(G). Thus Z(H) and H ′ have the asserted structures. Also,
Φ(H) = Z(H)H ′ and |Z(H) ∩ H ′| = 2. By construction H admits the in-

volutions (y, b) and (y, a2
n−3

b), which are not contained in Φ(H) and are
not conjugate in H. These represent the two distinct conjugacy classes of
noncentral involutions in H.

It remains to prove uniqueness of H. There is a (noninner) automorphism
of G = D2r centralizing x and sending y to y′, and there is an automorphism
of A centralizing a and mapping b to a2

n−3
b. Hence uniqueness of H, up to

isomorphism, follows from the universal property of a pullback.

The above fibre product H = GfA belongs to K2 (Theorem 0). Indeed,
if K is a field in K2(G), then K(ζ2n) is in K2(H) (noting that K2(A) =
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{Q(ζ2n)}). There are other such fibre product constructions of groups be-
longing to K2, determining the composita of corresponding fields of realiza-
tion.

Definition. The fibre product SM2n = D8f(Z2n−2×Z2) (in the above
sense) is called the semimodular group of order 2n (n ≥ 4).

Lemma 4.2. Let n ≥ 4. The semimodular group G = SM2n is charac-
terized by any of the following equivalent conditions:

(i) G has order 2n and a noncentral involution but no cyclic subgroup
of index 2, and Z(G) = Φ(G) has order 2n−2.

(ii) G is a Schur cover of an abelian group of type (2n−2, 2) and has two
distinct conjugacy classes of noncentral involutions.

Proof. For G = SM2n we have Z(G) = Φ(G) by definition and Lemma
4.1, and this has index 4 in G. Further G′ has order 2 and G/G′ is of type
(2n−2, 2), and G has just two conjugacy classes of noncentral involutions. In
order to get (ii) use that the Schur multiplier of an abelian group of type
(2n−2, 2) has order 2 by the Künneth theorem [8, Satz V.25.10].

If G is a group of order 2n for which Z(G) = Φ(G) has order 2n−2, then
necessarily |G′| = 2, and G/G′ is of type (2n−2, 2) if there is a noncentral
involution in G. Also, if G is a Schur cover of an abelian group of type
(2n−2, 2), then Z(G) = Φ(G) (= G2) has order 2n−2 by Theorem 3.2 and
Proposition 7.3 in [1]. If in addition G has two conjugacy classes of noncen-
tral involutions, G cannot be of type M2n and so has no cyclic subgroup of
index 2.

In both cases (i), (ii) therefore G has a cyclic subgroup X = 〈x〉 of
order 2n−2 such that X ∩ G′ = 1, and an involution y such that G/G′ =
XG′/G′ × 〈G′y〉. Then N = X ∩ Φ(G) = X ∩ Z(G) is a normal subgroup
of G and G/N is nonabelian of order 8. We must have G/N ∼= D8 (as it
belongs to K2), so that G ∼= D8 f A where A ∼= G/G′ is of type (2n−2, 2).
This completes the proof.

Lemma 4.3. Suppose G is a finite nonabelian 2-group belonging to K2.
Assume that |G : G′| = 2n−1 for some n ≥ 4. Then G has a unique normal
subgroup G∗ having index 2 in G′, and G/G∗ is isomorphic either to M2n

or to SM2n.

Proof. We know that G/G′ is of type (2n−2, 2). Hence M(G/G′) has
order 2. Clearly there is a normal subgroup G∗ of G having index 2 in G′.
Then Ḡ = G/G∗ is a Schur cover of G/G′. By hypothesis, Ḡ belongs to K2.
Hence there is an involution in Ḡ outside Φ(Ḡ) by Lemma 2.1.

If Ḡ has a cyclic normal subgroup of index 2, then Ḡ ∼= M2n . Otherwise
Ḡ is isomorphic to the semimodular group SM2n by Lemma 4.2.



2-extensions of the rationals 119

It remains to prove the uniqueness statement for G∗. Assume there is a
further normal subgroup G� of G having index 2 in G′. Then N = G∗∩G� is
a normal subgroup of G having index 4 in G′. Clearly G′/N is in the centre
of G/N . Thus G/N is a stem extension of G/G′ and so |M(G/G′)| divisible
by 4. However, this is not true.

Proof of Theorem 1. It suffices to consider nonabelian groups. If G is a
nonabelian 2-group belonging to K2 which is neither dihedral nor semidihe-
dral, then by Lemma 4.3 there is a unique normal subgroup G∗ of G having
index 2 in G′, and G/G∗ is isomorphic to M2n or to SM2n for some n ≥ 4.
Assume G∗ 6= 1. We assert that then G/G∗ ∼= SM2n . Assume that this
is false. There is a normal subgroup N of G having index 2 in G∗. Since
G∗ ⊆ G′, the central extension Z2 � G/N � G/G∗ ∼= M2n is stem, and
this implies that the Schur multiplier of M2n is not trivial. However this is
not true. In fact, the (metacyclic) group M2n , having two distinct cyclic sub-
groups of index 2, can be presented by the generators x, y and the relations
x2

n−1
= 1, y2 = x2 and xy = x1+2n−2

. Now [1, Proposition 9.2] applies.

Thus G/G∗ ∼= SM2n , and from Lemma 2.1 it follows that some involu-
tion of G must map to a noncentral involution of G/G∗. Conversely, from
Theorem 0 we see that the groups described in (ii) belong to K2, and if (iii)
holds, then either G ∼= SM2n for some n ≥ 4, where Theorem 0 applies
again, or G has a unique normal subgroup G∗ 6= 1 having index 2 in G′ and
G/G∗ ∼= SM2n for some n ≥ 4 (as seen above). In the latter case by hypoth-
esis some involution in G maps to a noncentral involution of G/G∗. Since
the Frattini quotient groups of G and G/G∗ are isomorphic (of order 4),
application of Theorem 0 shows that G belongs to K2 also in case (iii).

For convenience we give presentations G = 〈x, y | R〉 of the 2-generator
2-groups we are concerned here, as well as the structure of the multiplier
M(G).

G R MG

Q2n x2n−2

= y2, xy = x−1 0

D2n x2n−1

= y2 = 1, xy = x−1 Z2

SD2n x2n−1

= y2 = 1, xy = x−1+2n−2

0

M2n x2n−1

= y2 = 1, xy = x1+2n−2

0

SM2n x2n−2

= y2 = [x, y, x] = [x, y, y] = 1 Z2 ⊕ Z2

Here n ≥ 3 for the quaternion and dihedral groups, and n ≥ 4 otherwise.
We use the commutators [x, y] = x−1y−1xy = x−1xy and [x, y, z] = [[x, y], z].
To obtain the presentation of M2n used above one has to replace y by xy
and x by x1+2n−3

. The presentation of SM2n is obtained by taking x, y as
in the proof of Lemma 4.2.



120 P. Schmid

It remains to show that M(SM2n) ∼= Z2 ⊕ Z2. We know that SM2n is a
Schur cover of the abelian group A of type (2n−2, 2). Hence by Lemma 3.1
its Schur multiplier is an epimorphic image of M(A) ⊗ A ∼= Z2 ⊕ Z2. By
definition and by Example 3.4, E3(ζ2n) = F3(ζ2n) is a field in K2(SM2n).
The fields E3, F3 are ring class fields, and from Lemma 5.3 below it will
follow that Gal(E4F4(ζ2n)/Q) represents a central stem extension of SM2n

with kernel of order [E4F4 : E3F3] = 4. Hence the result.

5. Ring class fields. For convenience we summarize some basic facts
needed in this paper. Let K be an imaginary quadratic number field, and
let o be an order in K with conductor f , that is, f = |oK : o| where oK is
the maximal order in K. Then, by class field theory, one can associate to
o an abelian extension L/K such that Gal(L/K) ∼= Cl(o), where the ideal
class group Cl(o) has order

h(o) =
h(oK)f

|o∗K : o∗|
∏
p|f

(
1−

(
dK
p

)
1

p

)
(see [4, Theorem 7.24]); here

( ·
p

)
denotes the Kronecker symbol, which van-

ishes if p is ramified in K, and dK is the discriminant of K (or oK). One
knows that L is Galois over Q and that the conductor f(L/K) in the sense
of class field theory agrees with foK when 2 is ramified in K, except when
f = 2 and K = Q(i). (In the exceptional case o = Z[2i] has class num-
ber 1.) By the Ramification Theorem of class field theory just the primes
(places) dividing the conductor are ramified in the corresponding class field.
If K = Q(

√
−d) for some positive integer d and o = Z[

√
−d], then −4d is

the discriminant of o and so −4d = f2dK . Using the fact that h(oK) = 1 for
K = Q(

√
−1) = Q(

√
−22n) and for Q(

√
−2) = Q(

√
−22n+1) this yields the

following.

Lemma 5.1 Let En be the ring class field of Z[2ni] in Q(i), and let Fn
be the ring class field of Z[2n−1i

√
2] in Q(i

√
2) (n ≥ 1). Then En, Fn are

2-ramified Galois extensions of the rationals of degree 2n.

We observe that E1 = Q(i), F1 = Q(i
√

2) and E2 = F2 = Q(ζ8). One
knows that the Galois group of a ring class field L to some order in K over
the rationals is generalized dihedral, that is, a semidirect product of the
abelian group A = Gal(L|K) by some group 〈y〉 of order 2 where y inverts
the elements of A [4, Lemma 9.3]. In the present situation A is even cyclic:

Lemma 5.2. Both En and Fn have D2n as Galois group over the ratio-
nals, where En is cyclic over Q(i) and Fn over Q(i

√
2) (n ≥ 3). In particular,

En and Fn do not contain the 16th roots of unity.
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Proof. LetG=Gal(En/Q); Fn is treated similarly.ThenA=Gal(En/Q(i))
is an abelian subgroup of G of index 2 and G = A〈y〉 for some involution y
inverting the elements of A. Thus (ay)2 = a(yay) = aay = aa−1 = 1 for all
a ∈ A. Consequently, Φ(G) = G2 = A2 has index 2|A : A2| in G. By Lemma
5.1 we know that G belongs to K2. Hence |G : Φ(G)| = 4 by Lemma 2.1.
This implies that |A : A2| = 2, and therefore A is cyclic. The last statement
follows from the Kronecker–Weber theorem.

Lemma 5.3. For n,m ≥ 3 we have En∩Fm = Q(ζ8), and the compositum
EnFm contains the 24th but not the 25th roots of unity.

Proof. Let K = En ∩ Fm. We know that K ⊇ Q(ζ8). By Lemma 5.2,
Gal(K/Q) has two distinct cyclic subgroups of index 2, namely Gal(K/Q(i))
and Gal(K/Q(i

√
2). This forces that Gal(K/Q), being an epimorphic image

of a dihedral 2-group, is elementary of order 4, whence K = Q(ζ8).

Let L = EnFm and G = Gal(L/Q). By Lemma 5.1, L is 2-ramified, so
that Q(ζ8) is the fixed field of Φ(G) (Lemma 2.1). Let N = Gal(L/En) and
M = Gal(L/Fm). By the preceding paragraph, Φ(G) = N ×M . Now G′

is a proper subgroup of Φ(G), because otherwise G is of maximal class by
Taussky’s theorem (and so dihedral or semidihedral). On the other hand,
[N,G] has index 2 in N since N ∼= Φ(G)/M as G-modules and G/M ∼= D2m

is of maximal class. Similarly |M : [M,G]| = 2. Using the fact that G′ ⊇
[Φ(G), G] = [N,G] × [M,G] and NG′ = Φ(G) = MG′ (as G/N and G/M
are dihedral) we obtain |Φ(G) : G′| = 2. Hence G/G′ has order 8, giving the
result (in view of Kronecker–Weber).

Remark. Clearly En ⊂ En+1 and Fn ⊂ Fn+1 for all n. Let E∞ =⋃
n≥1En, and define F∞ similarly. Then, besides the cyclotomic Z2-exten-

sion, E∞ is the unique further Z2-extension of E1 = Q(i) (in agreement
with the Leopoldt conjecture). A similar statement holds for F1 = Q(i

√
2)

and F∞. Both E∞ and F∞ are normal over Q having a pro-dihedral Galois
2-group, and E∞ ∩ F∞ = Q(ζ8).

6. Proof of Theorem 2. We have to determine the fields in K2(G)
for the groups G = D2n , SD2n , M2n and SM2n . In view of Example 3.4 we
may assume that n ≥ 4. Recall that both D2n and SD2n are Schur covers
of D2n−1 , and both M2n and SM2n are Schur covers of an abelian group of
type (2n−2, 2).

{D2n , SD2n}: It follows from Lemmas 5.1 and 5.2 that K2(D2n) ⊇
{En, Fn}. By Lemma 2.3 we must have equality. This may also be obtained

on the basis of Proposition 3.3, arguing by induction. The fields Ẽn, F̃n,
defined in the Introduction, are normal over the rationals of degree 2n, and
they are unramified outside {2,∞}. Moreover, the fields do not contain the
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16th root of unity (but the 8th ones). It follows that their Galois groups
over the rationals are either dihedral or semidihedral. By Lemma 5.3 the
fields are distinct from En, Fn. Hence

{Ẽn, F̃n} ⊆ K2(SD2n).

This inclusion again must be an equality, because if L ∈ K2(SD2n), then L

must contain one of En−1 or Fn−1, and Proposition 3.3 implies that L = Ẽn
or L = F̃n.

{M2n , SM2n}: Let A be an abelian group of type (2n−2, 2), and let K =
Q(ζ2n). We know that K2(A) = {K}. By Proposition 3.3 (and Theorem 0),
M2n and SM2n are the unique Schur covers of A belonging to K2, and
both K2(M2n) = {L̃} and K2(SM2n) = {L} must consist of single fields
(as the groups are not isomorphic). We assert that L = K( 4

√
2) and that

L̃ = Q( 4
√

2 · ζ2n+1).

It follows from the definition of SM2n , as a fibre product of D8 and A,
that L = E3(ζ2n). We have already seen that E3 is the splitting field of X4−2

over the rationals (Example 3.4). Consequently L is as asserted. Now L̃ must
be the unique field properly between K and L(ζ2n+1) but different from L

and from Q(ζ2n+1). It follows that L̃ is generated over K by α = 4
√

2 · ζ2n+1 .

Since
√

2 ∈ Q(ζ8) ⊂ K we see that K = Q(α2) and L̃ = Q(α). This
completes the proof.

Remark. The maximal subgroups of SD2n are cyclic, dihedral and
quaternion. Now Ẽn is cyclic over Q(i) (as is En) and cannot be quater-

nion over Q(
√

2). Thus Ẽn is quaternion over Q(i
√

2). A similar statement

holds for F̃n. (The noncyclic maximal subgroups of D2n are dihedral.)

7. Some defining polynomials. The field L = Q( 4
√

2 , ζ2n) appear-
ing in the statement of Theorem 2 is the splitting field of the binomial
X2n − 22

n−2
= (X2n−1−22

n−3
)(X2n−1

+22
n−3

) over the rationals (n ≥ 4). For

if β is a root of the first factor and γ of the second one, then (γ/β)2
n−1

= −1
and so γ/β is a primitive 2nth root of unity. The splitting field contains 4

√
2

and has degree 2 over Q(ζ2n) by Kummer theory (as
√

2 ∈ Q(ζ2n)).

The field L̃ = Q( 4
√

2 · ζ2n+1) is the splitting field of the normal binomial

f = X2n +22
n−2

over the rationals (n ≥ 4). Just observe that α = 4
√

2 ·ζ2n+1

is a root of f , and that we know from Theorem 2 that L̃ is Galois over
the rationals of degree 2n. (For a direct proof note that f is irreducible

over Q, because a = −22
n−2

is not a rational square and a 6∈ −4Q4. Further
(α4/2)2

n−2
= α2n/22

n−2
= −1. Hence α4/2 is a primitive 2n−1th root of unity

contained in Q(α). In particular Q(ζ8) = Q(i,
√

2) ⊆ Q(α). Now (α2/
√

2)2 =
α4/2 and so even Q(ζ2n) ⊆ Q(α).)
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In principle the minimal polynomials over the rationals of the real al-
gebraic integers γ2(2

ni) and γ2(2
n−1i
√

2) can be computed on the basis of
[14, Theorem 6.3.1]. Their splitting fields are En respectively Fn (n ≥ 3).
However, the absolute values of the coefficients (except the leading ones)
of these polynomials increase very rapidly with n. One might suspect that
certain (double) η-quotients as described in Sections 6.4 and 6.6 of [14] give
rise to simpler generators (Schertz).

Lemma. Suppose that En = Q(ζ8, α) for some α satisfying α2 ∈ En−1
(n ≥ 3). Then Ẽn = Q(ζ8, ζ16 ·α). An analogous statement holds for Fn, F̃n.

Proof. Let K = Q(ζ8, ζ16 · α). We know that En−1 and En contain the
8th but not the 16th roots of unity (as n ≥ 3). It follows that K 6⊆ En =
Q(ζ8, α). By assumption (ζ16 ·α)2 = ζ8 ·α2 ∈ En−1(ζ8) = En−1. We infer that
En−1 = Q(ζ8, α

2) ⊆ K and that [K : En−1] = 2. We have K 6= En−1(ζ16),
because otherwise K = Q(ζ16, α) = En(ζ16). Clearly K ⊆ En(ζ16). Hence

K = Ẽn by definition.

E3: The minimal polynomial of γ2(8i) over Q is X4 − 18909120X3 −
2115244152X2−72777744864X−1021025075202. However, we already know
that E3 is the splitting field of X4− 2 over the rationals (see also [4, Propo-
sition 9.5]). Since 23 = (−2)(1 + i)4, by Kummer theory it is the splitting
field of X4 + 2 as well.

F3: The minimal polynomial of γ2(4i
√

2) over Q is X4 − 139760X3 −
112700X2 −329092000X−7016042500. But we know that F3 = Ẽ3 and that
E3 = Q(i, α) where α = 4

√
2. Let β = ζ16 · α. Then β2 = ζ8

√
2 = 1 + i and

(β2 − 1)2 = i2 = −1, and α2 =
√

2 ∈ E2. Hence Ẽ3 = Q(ζ8, β) by the above
lemma. Now β is a root of X4−2X2+2 (which is (X2−(1+i))(X2−(1−i))
over Q(i)). The splitting field of this polynomial contains i and

√
2, hence ζ8.

Consequently, F3 is the splitting field of X4 − 2X2 + 2.

E4: We do not give the polynomial for γ2(16i) (since it would take too
much space, e.g. 29 digits for the constant term, and since we have a simpler
generator). Indeed, we claim that E4 is (also) the splitting field of f = X8+2
over Q. Let K denote this splitting field, and let α ∈ K be a root of f . Of
course f is irreducible over Q and its discriminant is divisible only by the
prime 2. Hence K is 2-ramified. Since

f = (X4 − i
√

2)(X4 + i
√

2)

over Q(i
√

2), and since (i
√

2)5 = −i
√

2(1 + i)4 is not a square in Q(ζ8) =
Q(i, i

√
2), by Kummer theory K/Q(ζ8) is cyclic of degree 4. Now α2 is

a root of X4 + 2, so that Q(i, α2) = E3 as seen above. Of course E3 is
cyclic over Q(i). It follows that K = E3(α) is cyclic over Q(i), because
G = Gal(K/Q(i)) is a group of order 8 having normal subgroups X ⊂ Y
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such that G/X and Y are cyclic of order 4. The above decomposition of f
over Q(i

√
2) shows that K/Q(i

√
2) is dihedral. We know that K cannot be

quaternion over Q(
√

2) (as K is 2-ramified). Consequently, Gal(K/Q) ∼= D16

and K = E4 (Lemma 5.2).

Ẽ4: Since E4 = Q(i, α) where α8 = −2 and (ζ16 · α)8 = 2, and since

α2 ∈ E3, from the lemma it follows that Ẽ4 is the splitting field of X8 − 2
over the rationals.

F4: We finally give the minimal polynomial of γ2(8i
√

2) over the ratio-
nals:

X8 − 19533082240X7 − 106834200105200X6 − 182265445467992000X5

− 59112489110638397500X4 − 1896606188766024800000X3

− 27026062035224818500000X2 − 224737731040319150000000X

− 9306960658513592851562500.
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