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1. Introduction and basic definitions. In this paper, we introduce
a new family of digital nets over finite fields. A net , or more precisely a
(t,m, s)-net , is a finite collection of points (also called a point set) in the
s-dimensional half-open unit cube [0, 1)s possessing equidistribution prop-
erties. A digital net is a net obtained by the linear algebra construction
described below. Various constructions of nets are already known, and most
of them are digital nets. Reviews of the theory of nets can be found in the
monograph [2] and in the recent survey article [7].

Let Fq be the finite field of order q, where q is an arbitrary prime power,
and let m and s be positive integers. In order to construct a digital (t,m, s)-
net over Fq, we choose m × m matrices C(1), . . . , C(s) over Fq, called the
generating matrices of the digital net. We write Zq = {0, 1, . . . , q − 1} ⊂ Z
for the set of digits in base q. We define the map Ψm : Fmq → [0, 1) by

Ψm(h>) =
m∑
j=1

ψ(hj)q
−j

for any column vector h> = (h1, . . . , hm)> ∈ Fmq , where ψ : Fq → Zq is

a chosen bijection. With a fixed column vector b> ∈ Fmq , we associate the
point

(1.1) (Ψm(C(1)b>), . . . , Ψm(C(s)b>)) ∈ [0, 1)s.

By letting b> range over all qm column vectors in Fmq , we arrive at a point
set consisting of qm points in [0, 1)s. This construction of digital nets can be
generalized somewhat by employing further bijections between Fq and Zq
(see [6, p. 63]), but this is not needed for our purposes since our results
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depend just on the generating matrices. For i = 1, . . . , s and j = 1, . . . ,m,

let c
(i)
j ∈ Fmq denote the jth row vector of the matrix C(i).

Definition 1.1. Let q be a prime power and let t, m, and s be integers
with 0 ≤ t ≤ m, m ≥ 1, and s ≥ 1. Then the point set consisting of the qm

points in (1.1) is a digital (t,m, s)-net over Fq if for any nonnegative integers

d1, . . . , ds with
∑s

i=1 di = m − t, the m − t vectors c
(i)
j ∈ Fmq with 1 ≤ j

≤ di and 1 ≤ i ≤ s are linearly independent over Fq (the empty collection
of vectors occurring in the case t = m is considered linearly independent
over Fq).

It is evident that the condition in Definition 1.1 becomes the stronger
the smaller the value of t. The main interest is therefore in constructing
digital (t,m, s)-nets over Fq with a small value of t. The number t is called
the quality parameter of a digital (t,m, s)-net over Fq.

Remark 1.2. The definition of a digital (t,m, s)-net over Fq can be
translated into an explicit equidistribution property of the points of the
digital net as follows. Consider any subinterval J of [0, 1)s of the form

J =
s∏
i=1

[aiq
−di , (ai + 1)q−di)

with ai, di ∈ Z, di ≥ 0, 0 ≤ ai < qdi for 1 ≤ i ≤ s, and with J having
s-dimensional volume qt−m. Then any such interval J contains exactly qt

points of the digital net. The proof of this fact can be found, for instance,
in [2, Section 4.4.2]. From this point of view, it is again clear that we are
interested in small values of t, because then the family of intervals J for
which the above equidistribution property holds becomes larger.

Our starting point for the construction of new digital nets is the sug-
gestion made in [7, Remark 6.3] to view the row vectors of the generating
matrices as elements of the finite field Fqm (which is isomorphic to Fmq as

an Fq-linear space). Thus, we consider elements γ
(i)
j ∈ Fqm , 1 ≤ i ≤ s,

1 ≤ j ≤ m, and the jth row of C(i) is then obtained as c
(i)
j = φ(γ

(i)
j ), where

φ : Fqm → Fmq is a fixed vector space isomorphism (or, equivalently, c
(i)
j is

the coordinate vector of γ
(i)
j relative to a fixed ordered basis of Fqm over Fq).

Again following [7, Remark 6.3], we arrange the γ
(i)
j into an s ×m matrix

C = (γ
(i)
j )1≤i≤s, 1≤j≤m over Fqm , and we then have a single matrix that

governs the construction of the digital net. Because of the vector space iso-
morphism between Fqm and Fmq , the following observation is an immediate
consequence of Definition 1.1.
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Lemma 1.3. The digital net obtained from C = (γ
(i)
j )1≤i≤s, 1≤j≤m over

Fqm is a digital (t,m, s)-net over Fq if and only if, for any integers d1, . . . , ds

≥ 0 with
∑s

i=1 di = m − t, the m − t elements γ
(i)
j ∈ Fqm with 1 ≤ j ≤ di

and 1 ≤ i ≤ s are linearly independent over Fq.

It is of apparent interest to consider a matrix C that is structured. In
this paper, we analyze what happens when we choose a matrix C that
has a Vandermonde-type structure. Concretely, we choose an s-tuple α =

(α1, . . . , αs)∈ Fsqm and then we set up the s×mmatrix C = (γ
(i)
j )1≤i≤s, 1≤j≤m

over Fqm defined by γ
(1)
j = αj−11 for 1 ≤ j ≤ m and (if s ≥ 2) γ

(i)
j = αji for

2 ≤ i ≤ s and 1 ≤ j ≤ m. We use the standard convention 00 = 1 ∈ Fq. For
obvious reasons, we call the digital net obtained from C a Vandermonde net
over Fq.

Remark 1.4. If s ≥ 2, then for 2 ≤ i ≤ s we do not want to put

γ
(i)
j = αj−1i for 1 ≤ j ≤ m, since otherwise the elements γ

(1)
1 = 1 ∈ Fq and

γ
(2)
1 = 1 ∈ Fq are linearly dependent over Fq, and so the least value of t such

that the resulting digital net is a digital (t,m, s)-net over Fq is t = m− 1.

Remark 1.5. A broad class of digital nets, namely that of hyperplane
nets, was introduced in [9] (see also [2, Chapter 11]). Choose α1, . . . , αs in
Fqm not all 0. Then for the corresponding hyperplane net relative to a fixed

ordered basis ω1, . . . , ωm of Fqm over Fq, the matrix C = (γ
(i)
j )1≤i≤s, 1≤j≤m

in Lemma 1.3 is given by γ
(i)
j = αiωj for 1 ≤ i ≤ s and 1 ≤ j ≤ m (see [2,

Theorem 11.5] and [7, Remark 6.4]). Thus, C is also a structured matrix,
but the structure is in general not a Vandermonde structure. Consequently,
Vandermonde nets are in general not hyperplane nets relative to a fixed
ordered basis of Fqm over Fq.

In this paper, we discuss various aspects of Vandermonde nets. Section 2
ensures the existence of Vandermonde nets having small quality parameter,
and as a by-product the existence of such nets satisfying good discrepancy
bounds. This by-product is improved in Section 3 by using averaging ar-
guments. Section 4 presents an explicit construction of Vandermonde nets
over Fq in dimensions s ≤ q+1 with best possible quality parameter. Finally,
Section 5 breaks the first ground for component-by-component constructions
of Vandermonde nets.

2. Existence results for a small quality parameter. For the inves-
tigation of the quality parameter of a Vandermonde net over Fq, we make
use of the following notation and conventions. We write Fq[x] for the ring of
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polynomials over Fq in the indeterminate x. For any integer m ≥ 1, we put

Hq,m := {h ∈ Fq[x] : deg(h) ≤ m, h(0) = 0},
H∗q,m := {h ∈ Fq[x] : deg(h) < m},

where deg(0) := 0. Furthermore, we define deg∗(h) := deg(h) for h ∈ Fq[x]
with h 6= 0 and deg∗(0) := −1. We write h := (h1, . . . , hs) ∈ Fq[x]s for a
given dimension s ≥ 1. Finally, for any α = (α1, . . . , αs) ∈ Fsqm , we put

Dq,m,α :=
{
h ∈ H∗q,m ×Hs−1

q,m :
s∑
i=1

hi(αi) = 0
}

and D′q,m,α := Dq,m,α \ {0}.
We define the following figure of merit. We use the standard convention

that an empty sum is equal to 0.

Definition 2.1. If D′q,m,α is nonempty, we define the figure of merit

%(α) := min
h∈D′q,m,α

(
deg∗(h1) +

s∑
i=2

deg(hi)
)
.

Otherwise, we define %(α) := m.

It is trivial that we always have %(α) ≥ 0. For s = 1 it is clear that
%(α) ≤ m. For s ≥ 2 the m + 1 elements 1, α1, . . . , α

m−1
1 , α2 ∈ Fqm are

linearly dependent over Fq, and so again %(α) ≤ m.

Theorem 2.2. Let q be a prime power, s,m∈N, and let α= (α1, . . . , αs)
be in Fsqm. Then the Vandermonde net determined by α ∈ Fsqm is a digital
(t,m, s)-net over Fq with t = m− %(α).

Proof. The case %(α) = 0 is trivial by the parenthetical remark in Def-
inition 1.1, and so we can assume that %(α) ≥ 1. In view of Lemma 1.3, it
suffices to show that for any integers d1, . . . , ds ≥ 0 with

∑s
i=1 di = %(α),

the elements αj1 for 0 ≤ j ≤ d1 − 1 and αji for 1 ≤ j ≤ di, 2 ≤ i ≤ s,
are linearly independent over Fq. A purported nontrivial linear dependence
relation for these elements can be written in the form

s∑
i=1

hi(αi) = 0,

with a nonzero s-tuple h=(h1, . . . , hs)∈H∗q,m×Hs−1
q,m satisfying deg∗(h1)<d1

and deg(hi) ≤ di for 2 ≤ i ≤ s. It follows that

deg∗(h1) +
s∑
i=2

deg(hi) <

s∑
i=1

di = %(α).

But since h ∈ D′q,m,α, this contradicts the definition of %(α).
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Remark 2.3. It is of interest to compare Vandermonde nets with the
polynomial lattice point sets introduced in [5] (see also [2, Chapter 10],
[6, Section 4.4], and the recent survey article [8] for the theory of polyno-
mial lattice point sets). We consider polynomial lattice point sets with a
modulus f ∈ Fq[x] which is irreducible over Fq of degree m. An s-dimen-
sional polynomial lattice point set depends also on the choice of polynomi-
als g1, . . . , gs ∈ H∗q,m. One arrives at a digital (t,m, s)-net over Fq with a
quality parameter t depending on a figure of merit analogous to %(α) in
Definition 2.1. The crucial condition

∑s
i=1 hi(αi) = 0 in the definition of

Dq,m,α above is now replaced by

(2.1)

s∑
i=1

higi ≡ 0 (mod f).

Let θ ∈ Fqm be a root of f . Then each αi ∈ Fqm in the definition of a
Vandermonde (t,m, s)-net over Fq can be written as αi = fi(θ) with a
unique fi ∈ H∗q,m. Thus, we arrive at the condition 0 =

∑s
i=1 hi(αi) =∑s

i=1 hi(fi(θ)) in the definition of Dq,m,α, which is equivalent to

s∑
i=1

hi ◦ fi ≡ 0 (mod f).

This is similar to (2.1), but with the products higi replaced by the composi-
tions hi ◦fi. We note that polynomial lattice point sets belong to the family
of hyperplane nets (see [2, Theorem 11.7]), and so Vandermonde nets are in
general not polynomial lattice point sets (see Remark 1.5).

Remark 2.4. Since polynomial lattice point sets are available also for
a reducible modulus f ∈ Fq[x] (see [2, Definition 10.1]), we may extend the
definition of Vandermonde nets in an analogous way. For an arbitrary (and
thus not necessarily irreducible) f ∈ Fq[x] with deg(f) = m ≥ 1, we con-
sider the residue class ring Fq[x]/(f). Given a dimension s ≥ 1, we choose
g1, . . . , gs ∈ H∗q,m. Note that Fq[x]/(f) is a vector space over Fq, with the
canonical ordered basis B given by the residue classes of the monomials
1, x, . . . , xm−1 modulo f . Now we construct a digital net over Fq with gen-
erating matrices C(1), . . . , C(s) ∈ Fm×mq as follows. For 1 ≤ j ≤ m, the jth

row vector of C(1) is given by the coordinate vector of the residue class of
gj−11 modulo f relative to the ordered basis B. If s ≥ 2, then for 2 ≤ i ≤ s
and 1 ≤ j ≤ m, the jth row vector of C(i) is given by the coordinate vector
of the residue class of gji modulo f relative to the ordered basis B. We leave
the theory of these more general Vandermonde nets for future work. As for
polynomial lattice point sets, the theory of general Vandermonde nets will
be significantly more complicated for reducible moduli f .
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Now we establish existence results for Vandermonde (t,m, s)-nets over Fq
with a small quality parameter t. We use an elimination method which
is inspired by a similar method for polynomial lattice point sets (see [4,
Section 3] and [2, Section 10.1]). We first show a simple enumeration result.

Lemma 2.5. For a prime power q, for l ∈ N and n ∈ Z, the number
Aq(l, n) of (h1, . . . , hl) ∈ Fq[x]l with hi 6= 0 and hi(0) = 0 for 1 ≤ i ≤ l and∑l

i=1 deg(hi) = n is given by

Aq(l, n) =

(
n− 1

n− l

)
(q − 1)lqn−l,

where we use the convention for binomial coefficients that
(
m
k

)
= 0 whenever

k > m or k < 0.

Proof. Note that hi 6= 0 and hi(0) = 0 imply deg(hi) ≥ 1, and so
trivially Aq(l, n) = 0 for n < l. For n ≥ l, we count the number of

l-tuples (d1, . . . , dl) ∈ Nl such that
∑l

i=1 di = n, or equivalently the num-

ber of l-tuples (d1 − 1, . . . , dl − 1) ∈ Nl0 such that
∑l

i=1(di − 1) = n − l.
The latter number of l-tuples is given by

(
n−1
n−l
)
. For each (d1, . . . , dl) ∈ Nl

with
∑l

i=1 di = n, there are (q − 1)lqd1−1 · · · qdl−1 = (q − 1)lqn−l different

(h1, . . . , hl) ∈ Fq[x]l satisfying hi(0) = 0 and deg(hi) = di for 1 ≤ i ≤ l, and
the result follows.

Next we estimate the number Mq(m, s, σ) of (α1, . . . , αs) ∈ Fsqm such that∑s
i=1 hi(αi) = 0 for at least one nonzero s-tuple (h1, . . . , hs) ∈ H∗q,m×Hs−1

q,m

satisfying

(2.2) deg∗(h1) +
s∑
i=2

deg(hi) ≤ σ.

We assume that σ ∈ Z and 0 ≤ σ ≤ m− 1. We have

(2.3) Mq(m, s, σ) ≤M (1)
q (m, s, σ) +M (2)

q (m, s, σ),

whereM
(1)
q (m, s, σ), respectivelyM

(2)
q (m, s, σ), is the number of (α1, . . . , αs)

∈ Fsqm such that
∑s

i=1 hi(αi) = 0 for at least one nonzero s-tuple (h1, . . . , hs)

∈ H∗q,m ×Hs−1
q,m with h1 = 0, respectively h1 6= 0, satisfying (2.2).

We first consider M
(1)
q (m, s, σ). Initially, we fix the number d of zero

entries in a nonzero s-tuple (0, h2, . . . , hs) ∈ H∗q,m × Hs−1
q,m . Note that 1 ≤

d ≤ s− 1 and that (2.2) yields

s− d ≤
s∑
i=2

deg(hi) =: n ≤ σ + 1.

There exists an index j ∈ {2, . . . , s} such that 1 ≤ deg(hj) ≤ bn/(s − d)c.
Then for each of the qm(s−1) choices of (α1, . . . , αj−1, αj+1, . . . , αs) ∈ Fs−1qm ,
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there are at most bn/(s− d)c choices of αj ∈ Fqm such that

(2.4) hj(αj) = −
s∑
i=1
i 6=j

hi(αi).

There are
(
s−1
d−1
)

choices for the positions of the zero entries in (0, h2, . . . , hs),
and for each such choice there are Aq(s− d, n) choices for the s− d nonzero
entries. Using Lemma 2.5, we arrive at the bound

M (1)
q (m, s, σ)

≤
s−1∑
d=1

(
s− 1

d− 1

) σ+1∑
n=s−d

(
n− 1

n−s+ d

)
(q−1)s−dqn−s+dqm(s−1)

⌊
n

s−d

⌋
.

The estimation of M
(2)
q (m, s, σ) proceeds in a similar way. Let d be the

number of zero entries in an s-tuple (h1, . . . , hs) ∈ H∗q,m×Hs−1
q,m with h1 6= 0.

Then 0 ≤ d ≤ s− 1 and

s− d− 1 ≤
s∑
i=1

deg(hi) =: n ≤ σ.

There exists an index j ∈ {1, . . . , s} with hj 6= 0 and deg(hj) ≤ bn/(s− d)c.
As above, each choice of (α1, . . . , αj−1, αj+1, . . . , αs) ∈ Fs−1qm leaves at most

bn/(s−d)c choices of αj ∈ Fqm satisfying (2.4). Since h1 6= 0, there are
(
s−1
d

)
choices for the positions of the zero entries in (h1, . . . , hs), and for each such
choice there are Aq(s−d, n+1) choices for the s−d nonzero entries (replace
h1(x) by xh1(x) in order to arrive at the counting problem in Lemma 2.5).
Using Lemma 2.5, we obtain

M (2)
q (m, s, σ)

≤
s−1∑
d=0

(
s−1

d

) σ∑
n=s−d−1

(
n

n+1−s+d

)
(q − 1)s−dqn+1−s+dqm(s−1)

⌊
n

s− d

⌋

≤
s−1∑
d=0

(
s− 1

d

) σ+1∑
n=s−d

(
n− 1

n− s+ d

)
(q − 1)s−dqn−s+dqm(s−1)

⌊
n

s− d

⌋
.

Now we use (2.3) and
(
s−1
d−1
)

+
(
s−1
d

)
=
(
s
d

)
for 0 ≤ d ≤ s− 1, and this yields

Mq(m, s, σ) ≤
s−1∑
d=0

(
s

d

) σ+1∑
n=s−d

(
n− 1

n− s+ d

)
(q − 1)s−dqn−s+dqm(s−1)

⌊
n

s− d

⌋

= qm(s−1)
s−1∑
d=0

(
s

d

)
(q − 1)s−d

σ−s+d+1∑
n=0

(
n+ s− d− 1

n

)⌊
n+ s− d
s− d

⌋
qn.
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We define

∆q(s, σ) :=
s−1∑
d=0

(
s

d

)
(q − 1)s−d

σ−s+d∑
n=0

(
n+ s− d− 1

n

)⌊
n+ s− d
s− d

⌋
qn.

Now we come to the crucial step: if ∆q(s, σ + 1) < qm and therefore
Mq(m, s, σ) < qms, then it follows that there exists at least one α =
(α1, . . . , αs) ∈ Fsqm such that

∑s
i=1 hi(αi) 6= 0 for every nonzero s-tuple

(h1, . . . , hs) ∈ H∗q,m×Hs−1
q,m satisfying (2.2). Hence, for such α, the figure of

merit %(α) satisfies %(α) ≥ σ + 1. From Theorem 2.2 we deduce that the
corresponding Vandermonde net satisfies t ≤ m−σ−1. We have thus shown
the following theorem.

Theorem 2.6. Let q be a prime power and let s,m ∈ N. If ∆q(s, σ) < qm

for some σ ∈ N with σ ≤ m, then there exists an α ∈ Fsqm with
%(α) ≥ σ. This α generates a Vandermonde (t,m, s)-net over Fq with
t ≤ m− σ.

Corollary 2.7. Let q be a prime power and let s,m ∈ N. Then there
exists an α ∈ Fsqm with

%(α) ≥ bm− s logqm− 3c,
where logq denotes the logarithm to the base q.

Proof. For s = 1 we can achieve %(α) = %((α1)) = m by choosing
α1 ∈ Fqm as a root of an irreducible polynomial over Fq of degree m. If
s ≥ 2, it suffices to prove by Theorem 2.6 that for

σ1 := bm− s logqm− 3c
we have ∆q(s, σ1) < qm. We can assume that σ1 ≥ 1, for otherwise the result
is trivial. In the following, we derive a general upper bound on ∆q(s, σ) for
σ ≥ 1 and then in a second step we use the specific form of σ1. First of all,
we have

∆q(s, σ) ≤
s−1∑
d=0

(
s

d

)⌊
σ

s− d

⌋
(q − 1)s−d

σ−s+d∑
n=0

(
n+ s− d− 1

s− d− 1

)
qn

≤
s−1∑
d=0

(
s

d

)
σ

s− d
(q − 1)s−d−1

(
σ − 1

s− d− 1

)
qσ−s+d+1

≤ qσ−s+1
s−1∑
d=0

(
s

d

)
σ

s− d
(q − 1)s−d−1

(σ − 1)s−d−1

(s− d− 1)!
qd

= sσqσ−s+1
s−1∑
d=0

(
s− 1

d

)
1

(s− d) · (s− d)!
[(q − 1)(σ − 1)]s−d−1qd.
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Now (k + 1) · (k + 1)! ≥ 4k for k ≥ 0, and so (s− d) · (s− d)! ≥ 4s−d−1 for
d = 0, 1, . . . , s− 1. It follows that

∆q(s, σ) ≤ sσqσ−s+1
s−1∑
d=0

(
s− 1

d

)[
q − 1

4
(σ − 1)

]s−d−1
qd

= sσqσ−s+1

(
q − 1

4
(σ − 1) + q

)s−1
= sσqσ

(
q − 1

4q
(σ − 1) + 1

)s−1
,

and so

∆q(s, σ) ≤ sσqσ
(
σ + 3

4

)s−1
for σ ≥ 1.

Now we use s ≥ 2 and the special form of σ1 to obtain

∆q(s, σ1) < σ1q
σ1(σ1 + 3)s−1 < mqmm−sms−1 = qm,

and this yields the desired result.

We recall the definition of the star discrepancy D∗N of any N points
y1, . . . ,yN ∈ [0, 1)s, namely

D∗N = sup
J

∣∣∣∣Z(J)

N
− λs(J)

∣∣∣∣,
where the supremum is extended over all subintervals J of [0, 1)s with one
vertex at the origin, where Z(J) is the number of integers n with 1 ≤ n ≤ N
and yn ∈ J , and where λs denotes the s-dimensional Lebesgue measure.
Point sets with small star discrepancy are crucial ingredients of quasi-Monte
Carlo methods for numerical integration (see [2, Chapter 2]).

Using the well-known star discrepancy bound for (t,m, s)-nets in base q
(see [6, Theorem 4.10]) together with Theorem 2.2 and Corollary 2.7, we
arrive at the following result.

Corollary 2.8. Let q be a prime power and let s,m ∈ N. Then there
exists an α ∈ Fsqm such that the star discrepancy of the corresponding Van-
dermonde net satisfies

D∗N = Oq,s(N
−1(logN)2s−1),

where N = qm.

3. Further existence results for small discrepancy. Throughout
this section, we assume that q is a prime, that Fq is identified with Zq, and
that ψ : Fq → Zq is the identity map. Then we know from [2, Theorem 5.34]
that the star discrepancy of a digital net generated by C(1), . . . , C(s) ∈ Fm×mq

satisfies

(3.1) D∗qm ≤ 1−
(

1− 1

qm

)s
+Rq(C

(1), . . . , C(s)),
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where

Rq(C
(1), . . . , C(s)) :=

∑
(k1,...,ks)∈F ′

ρ(s)q (k1, . . . ,ks)

with

F ′ = {(k1, . . . ,ks) : k1C
(1) + · · ·+ ksC

(s) = 0} \ {0}.

Here ki ∈ Fmq for 1 ≤ i ≤ s. Furthermore ρ
(s)
q (k1, . . . ,ks) :=

∏s
i=1 ρq(ki),

where for k = (k1, . . . , km) ∈ Fmq we put

ρq(k) :=

{
1 if k = 0,

1

qr sin(πkr/q)
if k = (k1, . . . , kr, 0, . . . , 0), kr 6= 0.

Lemma 3.1. Let C(1), . . . , C(s) ∈ Fm×mq be the generating matrices of
the Vandermonde net corresponding to α = (α1, . . . , αs) ∈ Fsqm. Then

Rq(α) := Rq(C
(1), . . . , C(s)) =

∑
h∈D′q,m,α

ρ(s)q (h),

where for h ∈ H∗q,m × Hs−1
q,m we put ρ

(s)
q (h) = ρq(xh1(x))ρq(h2) · · · ρq(hs).

Here for h ∈ Hq,m we define

ρq(h) =

{
1 if h = 0,

1

qr sin(πkr/q)
if h = k1x+ · · ·+ krx

r, kr 6= 0.

Proof. This follows immediately from the form of the generating matrices
C(1), . . . , C(s) of a Vandermonde net and from the definition of D′q,m,α.

Lemma 3.2. For every prime q and every v,m ∈ N, we have∑
h∈Hq,m

ρq(h) ≤
{
m/2 + 1 if q = 2,

((2/π) log q + 2/5)m+ 1 if q > 2,

and ∑
h∈H∗q,m×H

v−1
q,m

ρ(v)q (h) ≤
{

(m/2 + 1)v if q = 2,

(((2/π) log q + 2/5)m+ 1)v if q > 2.

Proof. This follows from the proof of [6, Lemma 3.13].

Theorem 3.3. Let q be a prime and let s,m ∈ N. Then there exists an
α ∈ Fsqm such that the star discrepancy of the corresponding Vandermonde
net satisfies

D∗qm < 1−
(

1− 1

qm

)s
+
m

qm

{
(m/2 + 1)s if q = 2,

(((2/π) log q + 2/5)m+ 1)s if q > 2.
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Proof. We consider the average Ms,q,m of Rq(α) over all α ∈ Fsqm , that
is,

Ms,q,m =
1

qms

∑
α∈Fsqm

Rq(α)

=
1

qms

∑
α∈Fsqm

∑
h∈D′q,m,α

ρ(s)q (h)

=
1

qms

∑
h∈(H∗q,m×H

s−1
q,m )\{0}

A(h)ρ(s)q (h),

where A(h) is the number of α = (α1, . . . , αs) ∈ Fsqm such that
∑s

i=1 hi(αi)

= 0. Now for every h ∈ (H∗q,m × Hs−1
q,m ) \ {0}, A(h) is at most mqm(s−1).

Hence

Ms,q,m ≤
m

qm

∑
h∈(H∗q,m×H

s−1
q,m )\{0}

ρ(s)q (h) <
m

qm

∑
h∈H∗q,m×H

s−1
q,m

ρ(s)q (h).

The last sum can be bounded using Lemma 3.2. The result of the theorem
follows now from (3.1).

In terms of the number N = qm of points, the bound on the star dis-
crepancy D∗N in Theorem 3.3 is of the form D∗N = Os(N

−1(logN)s+1).

4. An explicit construction. In this section, q is again an arbitrary
prime power. For any dimension s with 1 ≤ s ≤ q + 1 and any integer
m ≥ 2, we construct a Vandermonde (t,m, s)-net over Fq with the least
possible quality parameter t = 0. It is well known (see [6, Corollary 4.21])
that for m ≥ 2, a (0,m, s)-net in base q cannot exist for s ≥ q + 2, and so
our construction is best possible in terms of the dimension s.

Let θ ∈ Fqm be a root of an irreducible polynomial over Fq of degree
m ≥ 2. In the construction of Vandermonde nets in Section 1, we put α1 = θ
and (if s ≥ 2) αi = (θ + ci)

−1 for i = 2, . . . , s, where c2, . . . , cs are distinct
elements of Fq. Note that θ+ ci 6= 0 for 2 ≤ i ≤ s since θ /∈ Fq. Furthermore,
the condition s ≤ q + 1 guarantees that we can find s− 1 distinct elements
c2, . . . , cs ∈ Fq.

Theorem 4.1. Let q be a prime power and let s,m ∈ N with s ≤ q + 1
and m ≥ 2. Then the construction above yields a Vandermonde (t,m, s)-net
over Fq with t = 0.

Proof. We proceed by Lemma 1.3. The case s = 1 is trivial by the defi-
nition of θ, and so we can assume that s ≥ 2. For any integers d1, . . . , ds ≥ 0
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with
∑s

i=1 di = m, we show that the m elements θj , 0 ≤ j ≤ d1 − 1, and
(θ + ci)

−j for 1 ≤ j ≤ di and 2 ≤ i ≤ s are linearly independent over Fq.
Consider a linear dependence relation

d1−1∑
j=0

e1jθ
j +

s∑
i=2

di∑
j=1

eij(θ + ci)
−j = 0

with all e1j , eij ∈ Fq. Multiply by
∏s
k=2(θ + ck)

dk and put

p1(x) =

d1−1∑
j=0

e1jx
j ∈ Fq[x] and pi(x) =

di∑
j=1

eij(x+ ci)
di−j ∈ Fq[x]

for 2 ≤ i ≤ s. Then

(4.1) p1(θ)

s∏
k=2

(θ + ck)
dk +

s∑
i=2

pi(θ)

s∏
k=2
k 6=i

(θ + ck)
dk = 0.

Assume that for some integer r with 2 ≤ r ≤ s we have pr(x) 6= 0. Then
dr ≥ 1 and deg(pr(x)) < dr. On the left-hand side of (4.1) we have a
polynomial in θ of degree <

∑s
i=1 di = m, and so this polynomial is the zero

polynomial. Thus, we get the polynomial identity

(4.2) p1(x)
s∏

k=2

(x+ ck)
dk +

s∑
i=2

pi(x)
s∏

k=2
k 6=i

(x+ ck)
dk = 0

in Fq[x]. By considering this identity modulo (x+ cr)
dr , we obtain

pr(x)

s∏
k=2
k 6=r

(x+ ck)
dk ≡ 0 (mod (x+ cr)

dr).

The product over k on the left-hand side is coprime to the modulus, and
so it follows that (x + cr)

dr divides pr(x). But deg(pr(x)) < dr, thus we
arrive at a contradiction. Therefore pi(x) = 0 for 2 ≤ i ≤ s, and so (4.2)
shows that p1(x) = 0. Hence all coefficients e1j , eij ∈ Fq in the original linear
dependence relation are equal to 0.

The fact that we can explicitly construct optimal Vandermonde (t,m, s)-
nets over Fq for all dimensions s ≤ q + 1 represents an advantage over
polynomial lattice point sets (see Remark 2.3 for the latter point sets).
Explicit constructions of good polynomial lattice point sets are known only
for s = 1 and s = 2 (see [2, p. 305]), whereas for s ≥ 3 one has to resort to
search algorithms in order to obtain good s-dimensional polynomial lattice
point sets.
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5. Component-by-component constructions. As in Section 3 we
assume that q is a prime, that Fq is identified with Zq, and that ψ : Fq → Zq
is the identity map. Therefore the discrepancy bound in (3.1) as well as
Lemmas 3.1 and 3.2 are valid. In the following, we introduce two component-
by-component search algorithms for good Vandermonde nets in arbitrarily
high dimensions, in the spirit of the search algorithms introduced in [3]
and [10] for good lattice point sets and in [1] for good polynomial lattice
point sets.

Algorithm 5.1. Given a prime q and s,m ∈ N.

1. Choose α1 ∈ Fqm as a root of an irreducible polynomial over Fq of
degree m.

2. For d ∈ N with 2 ≤ d ≤ s, assume that we have already constructed
α1, . . . , αd−1 ∈ Fqm . We find αd ∈ Fqm that minimizes the quantity

Rq((α1, . . . , αd−1, αd))

as a function of αd.

Theorem 5.2. Let q be a prime and let s,m ∈ N. Suppose that α =
(α1, . . . , αs) is constructed according to Algorithm 5.1. Then for all d ∈ N
with 1 ≤ d ≤ s we have

Rq((α1, . . . , αd)) ≤
m

qm

{
(m/2 + 1)d if q = 2,

(((2/π) log q + 2/5)m+ 1)d if q > 2.

Proof. The proof is carried out by induction on d. For d = 1 we have

Rq((α1)) =
∑

h∈D′
q,m,(α1)

ρq(h) = 0,

since D′q,m,(α1)
is an empty set (note that α1 ∈ Fqm is a root of an irreducible

polynomial over Fq of degree m and therefore not a root of a nonzero poly-
nomial h ∈ H∗q,m).

Suppose now that for some 1 ≤ d < s, we have already constructed
(α1, . . . , αd) ∈ Fdqm and the bounds in the theorem hold. Then consider
(α1, . . . , αd, αd+1). We have

Rq((α1, . . . , αd, αd+1)) =
∑

(h,hd+1)∈D′q,m,(α1,...,αd,αd+1)

ρ(d)q (h)ρq(hd+1)

=
∑

h∈D′
q,m,(α1,...,αd)

ρ(d)q (h) + θ(αd+1)

= Rq((α1, . . . , αd)) + θ(αd+1),



158 R. Hofer and H. Niederreiter

where we split off the terms with hd+1 = 0 and where

θ(αd+1) =
∑

hd+1∈Hq,m\{0}

ρq(hd+1)
∑

h∈H∗q,m×H
d−1
q,m

(h,hd+1)∈D′q,m,(α1,...,αd,αd+1)

ρ(d)q (h).

Note that αd+1 is a minimizer of Rq((α1, . . . , αd, · )) and the only dependence
on αd+1 is in θ. Therefore αd+1 is a minimizer of θ. We obtain

θ(αd+1) ≤
1

qm

∑
β∈Fqm

θ(β)

=
1

qm

∑
β∈Fqm

∑
hd+1∈Hq,m\{0}

ρq(hd+1)
∑

h∈H∗q,m×H
d−1
q,m

(h,hd+1)∈D′q,m,(α1,...,αd,β)

ρ(d)q (h)

=
1

qm

∑
hd+1∈Hq,m\{0}

ρq(hd+1)
∑

h∈H∗q,m×H
d−1
q,m

ρ(d)q (h)
∑

β∈Fqm
(h,hd+1)∈D′q,m,(α1,...,αd,β)

1.

The condition (h, hd+1) ∈ D′q,m,(α1,...,αd,β)
is equivalent to the equation

hd+1(β) = −
d∑
i=1

hi(αi).

Since hd+1 ∈ Hq,m \ {0}, this equation has at most m different solutions
β ∈ Fqm . Altogether we arrive at the bound

Rq((α1, . . . , αd, αd+1)) ≤ Rq((α1, . . . , αd))

+
m

qm

∑
hd+1∈Hq,m\{0}

ρq(hd+1)
∑

h∈H∗q,m×H
d−1
q,m

ρ(d)q (h).

The proof is completed by using the induction hypothesis and Lemma 3.2.

Theorem 5.2 ensures that Algorithm 5.1 produces vectors α ∈ Fsqm whose
existence was guaranteed by Theorem 3.3 in Section 3. But Algorithm 5.1
does not make use of the explicit construction in Section 4 for low dimen-
sions. The following algorithm suggests as initial values the explicitly con-
structed α1, . . . , αq+1 of Section 4 for a component-by-component proce-
dure.

Algorithm 5.3. Given are a prime q and s,m ∈ N with s > q + 1 and
m ≥ 2.

1. Choose α1, . . . , αq+1 ∈ Fqm as in the explicit construction of Section 4.
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2. For d ∈ N with q+2 ≤ d ≤ s, assume that we have already constructed
α1, . . . , αd−1 ∈ Fqm . We find αd ∈ Fqm that minimizes the quantity
Rq((α1, . . . , αd−1, αd)) as a function of αd.

Although Algorithm 5.3 starts from an (in the quality parameter point

of view) optimal vector in Fq+1
qm , one cannot be certain that the algorithm

is competitive with Algorithm 5.1. A straightforward generalization of the
proof of Theorem 5.2 would involve an upper bound for Rq(C

(1), . . . , C(q+1)),

where C(1), . . . , C(q+1) are the generating matrices of a (0,m, q + 1)-net
over Fq. However, the known bound for Rq(C

(1), . . . , C(q+1)) in [6, Theo-
rem 4.34] is not strong enough for all settings. Unfortunately, particularly
for large values of q, one will obtain a weaker bound than in Theorem 5.2.
It will be an interesting project for the future to implement Algorithms 5.1
and 5.3 and compare their performance.
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