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Generators and integral points on twists of the Fermat cubic
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Yasutsugu Fujita (Narashino) and Tadahisa Nara (Tagajo)

1. Introduction. Consider a cubic twist of the Fermat cubic x3+y3 = 1.
Let m be a non-zero integer and

(1.1) Cm : x3 + y3 = m

the elliptic curve. In this paper we study integral points on Cm (i.e. inte-
gral solutions of (1.1)) and generators for the Mordell–Weil group when we
vary m. In what follows, we assume that m is positive and cube-free, since
Cm is isomorphic over Q to the elliptic curve x3 + y3 = mu3 for u ∈ Q×.
The coordinate transformation

x 7→ 36m+ y

6x
, y 7→ 36m− y

6x

gives a birational equivalence between Cm and the elliptic curve

(1.2) Em : y2 = x3 − 432m2.

The transformation Cm → Em, denoted by ϕ, can be expressed as

ϕ(x, y) =
(
12(x2 − xy + y2), 36(x− y)(x2 − xy + y2)

)
,

and via the birational equivalence the addition law on Cm is defined. Note
that if P = (x, y) ∈ Cm, then −P = (y, x).

Jędrzejak [5] estimated the canonical height on the elliptic curve Em,
which resulted in showing that a rank one subgroup of the Mordell–Weil
group contains no integral arithmetic progressions if the defining equation is
global minimal.

The first main theorem of this paper is the following.

Theorem 1.3. Let m be a positive cube-free integer. If P1 ∈ Cm(Q) is
an integral point, then P1 can be in a system of generators for Cm(Q). In
particular, if the rank of Cm(Q) is one, then P1 generates Cm(Q).
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Corollary 1.4 ([3, Corollary 1.3]). Letm be a positive cube-free integer.
If the rank of Cm(Q) is one, then Cm has at most two integral points, either
of which generates Cm(Q).

In [3], Everest, Ingram and Stevens studied an elliptic divisibility se-
quence on the curve

X3 + Y 3 = mZ3,

that is, the sequence Wn defined by

n(U : V :W ) = (Un : Vn :Wn),

where n(U : V : W ) is the n-fold multiple of the point (U : V : W ) on the
curve. They showed that Wn has a primitive divisor for n > 1, from which
Corollary 1.4 immediately follows (see Remark 1.9 below).

The second main theorem is concerned with the case where the rank of
Cm is greater than one.

Theorem 1.5. Let m be a positive cube-free integer. If P1 and P2 are
integral points on Cm such that P1 6= ±P2, then they can be in a system of
generators for Cm(Q). In particular, if the rank of Cm(Q) is two, then P1

and P2 generate Cm(Q).

Corollary 1.6. Let m be a positive cube-free integer. If the rank of
Cm(Q) is two, then Cm has at most six integral points, which can be expressed
as ±P1,±P2,±(P1 + P2) with generators P1 and P2 for Cm(Q).

Remark 1.7. (1) The upper bound of 6 for integral points on Cm in
Corollary 1.6 is optimal. In fact, if m = 3367, then the rank of Cm(Q) is two
and the set of integral points on Cm equals {±P1,±P2,±(P1 + P2)}, where
P1 = (15,−2), P2 = (−9, 16) and P1 + P2 = (34,−13).

(2) Several parameterizations of the equation a31 + b31 = a32 + b32 (coming
from two integral points on Cm) with binary quadratic forms are known. For
example, Ramanujan found

(3a2+5ab−5b2)3+(4a2−4ab+6b2)3 = (6a2−4ab+4b2)3+(−5a2+5ab+3b2)3

(see [4, p. 260]). For further examples, see Womack’s thesis [13].

In general, Silverman [8] showed that if f(x, y) is a cubic form with
non-zero discriminant and m is a cube-free integer, then the elliptic curve
Cf,m : f(x, y) = m has at most κRf,m + 1 integral points for some absolute
constant κ, where Rf,m is the rank of Cf,m(Q).

The third main theorem of the paper is an explicit version of the above
mentioned result of Silverman in the case when f(x, y) = x3 + y3.

Theorem 1.8. Letm be a positive cube-free integer. If the rank of Cm(Q)
is r, then Cm has at most 3r − 1 integral points.
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Remark 1.9. Ifm = 2, then it is easy to see that Cm(Q) = {O, (1, 1)} '
Z/2Z by using the Magma function “MordellWeilGroup” [1]. Moreover this
is the only case where Cm(Q) has a non-trivial torsion point by [6, p. 134,
Theorem 5.3]. So we may assume m > 2 in our proofs.

The theoretical key to proving the above theorems is to obtain “good”
estimates for the canonical heights ĥ. In particular, it is essential to give a
uniform lower bound for ĥ (see Remark 2.16), since the known lower bound,
Lemma 2.13 (see [5, Proposition 1] or [3, Lemma 4.3]), is of little use in
proving Theorem 1.5, as one can see even from “the main term” of the esti-
mate (see Remark 4.3). On the other hand, we cannot complete the proofs of
theorems without numerical devices, among which the hardest part is check-
ing P + Q 6∈ 2Cm(Q) for integral points P and Q on Cm in the proof of
Theorem 1.5.

The organization of this paper is as follows. In Section 2 after reviewing
the canonical height and the local height function, we estimate their values
on our elliptic curve (1.2). In Section 3 by an algebraic argument we consider
divisibility of integral points, which leads us to showing the independence of
integral points. In Section 4 we prove the main theorems.

Remark 1.10. After this paper had been submitted, P. Voutier informed
us that together with M. Yabuta they recently obtained the best possible
results on lower bounds for the canonical heights on the Mordell curves in
[12, Theorem 1.4], where they give a better estimate on error terms than
ours in Proposition 2.15. We would like to thank Professor Voutier for this
helpful information.

2. Estimates of the canonical heights. The notion of the canoni-
cal height is important to consider integral points or generators on elliptic
curves. For a rational point P = (n/d, ∗) (gcd(n, d) = 1) on an elliptic curve
over Q, we define the naïve height h by

h(P ) = logmax{|n|, |d|}

and the canonical height ĥ by

ĥ(P ) =
1

2
lim
k→∞

h(2kP )

4k
.

For estimates of the canonical height, we usually consider the local height
functions λp for places p, because of the equality over Q (see [10, Section VI])

ĥ(P ) =
∑
p≤∞

λp(P ).

2.1. The reduction of Em. In order to compute the local height func-
tions, it is useful to know the reduction type of the elliptic curve. The follow-
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ing lemma summarizes the considerations in [5, p. 180], which used Tate’s
algorithm (cf. [10, p. 364]).

Lemma 2.1. Let Em be the elliptic curve defined by the equation
(2.2) y2 = x3 − 432m2.

Then the reduction type (the Kodaira symbol) of Em is given in Tables 1–3,
where Em(Qp)

0 is the subgroup of Em(Qp) consisting of points with non-
singular reduction modulo p, cp = |Em(Qp)/Em(Qp)

0| and [u, r, s, t] denotes
the transformation

x 7→ u2x+ r, y 7→ u3y + su2x+ t

of Em which is performed in Tate’s algorithm.

Table 1. The reduction of Em modulo 3

m (mod 9) 0 ±1 ±2 ±3 ±4

reduction type II IV∗ III∗ II∗ IV∗

c3 1 3 2 1 1
[u, r, s, t] [3, 0, 0, 0] [1,−6, 0, 0] [1,−6, 0, 0] [1, 0, 0, 0] [1,−6, 0, 0]

Table 2. The reduction of Em modulo 2

m (mod 4) 0 ±1 2

reduction type IV∗ I0 IV
c2 1 1 1

[u, r, s, t] [2, 0, 0, 16] [2, 0, 0,−4] [2, 0, 0, 8]

Table 3. The reduction of Em modulo p (> 3)

m (mod p2) 0 p, 2p, . . . , (p− 1)p otherwise
reduction type IV∗ IV I0

cp 1 or 3 1 or 3 1
[u, r, s, t] [1, 0, 0, 0] [1, 0, 0, 0] [1, 0, 0, 0]

Remark 2.3. In Table 3, we have cp = 3 if and only if
(−3

p

)
= 1.

2.2. Height bounds for integral points on Cm. Letm be a cube-free
positive integer, and let P = (X,Y ) be an integral point on the curve

Cm : x3 + y3 = m.

Then P ′ = ϕ(P ) = (12(X2 −XY + Y 2), 36(X2 −XY + Y 2)(X − Y )) is an
integral point on the curve
(2.4) Em : y2 = x3 − 432m2.

Note that if m ≡ ±3,±4 (mod 9), then there is no integral point on Cm.
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Now we set U = X2 −XY + Y 2 (≥ 0), V = X − Y , and so

P ′ = (12U, 36UV ).

Since m is cube-free, we have U ≡ 1 (mod 2) and

(2.5) ord3 U =

{
1 if m ≡ 0 (mod 9),

0 if m ≡ ±1,±2 (mod 9).

Proposition 2.6. Let P be an integral point on Cm. Then for P ′=ϕ(P ),

ĥ(P ′) < 1
6 logU + 0.1832 ≤ 1

6 logm+ 0.1832.

Further if XY > 0, then

ĥ(P ′) < 1
9 logm+ 0.1832.

Proof. Using Tate’s series [9, Theorem 1.2] we have

(2.7) λ∞(P ′) = 1
2 log |x(P

′)|+ 1
8

∞∑
r=0

4−r log |z(2rP ′)| − 1
12 log |∆m|,

where z(R) = 1 + 8 · 432m2/x(R)3 and ∆m is the discriminant of Em. Note
that in this paper the local height function λv is defined to be that in [9]
with −(1/12) log |∆|v added. In other words, our λv corresponds to λ̂′v in [9,
p. 341]. Since x(R) ≥ (432m2)1/3 for R ∈ Em(R), we have log |z(2rP ′)| =
log z(2rP ′) ≤ log 9, and so

λ∞(P ′) ≤ 1
2 log |12U |+

1
8

∞∑
r=0

4−r log 9− 1
12 log |∆m|(2.8)

= 1
2 logU + log 2 + 5

6 log 3−
1
12 log |∆m|.

Next we consider λp(P ′) for a finite place p using [9, Theorem 5.2]. Note
that Em(Qp)

0 is equal to the set of points P ∈ Em(Qp) satisfying either

ordp(2y(P ) + a1x(P ) + a3) ≤ 0, or

ordp(3x(P )
2 + 2a2x(P ) + a4 − a1y) ≤ 0

if the Weierstrass equation is p-minimal.
For p > 3 not dividing U , we have P ′ ∈ Em(Qp)

0, and by [9, Theo-
rem 5.2],

(2.9) λp(P
′) = 1

2 max{−vp(12U), 0}+ 1
12vp(∆m) = 1

12vp(∆m),

where vp(·) = −log | · |p (= ordp(·) log p). For p > 3 dividing U , we have
P ′ 6∈ Em(Qp)

0. Then by Table 1 the reduction type is IV or IV∗, and so by
[9, Theorem 5.2],

λp(P
′) = 1

3 log |ψ2(P
′)|p + 1

12vp(∆m)(2.10)

= 1
3 log |72UV |p +

1
12vp(∆m) = 1

3 log |U |p +
1
12vp(∆m),

where ψ2 = 2y is the division polynomial of Em (cf. [10, Exercise 3.7]).



6 Y. Fujita and T. Nara

For p = 2, we have Em(Q2) = Em(Q2)
0 by Table 2 and we consider the

following minimal equations:

(y′)2 + y′ = (x′)3 − (27m2 + 1)/4 if m is odd,

(y′)2 = (x′)3 − 27m2/4 if m is even.

In any case the discriminant is 2−12∆m and x′(P ′) = 2−212U . Therefore

λ2(P
′) = 1

2 max{−v2(2−212U), 0}+ 1
12v2(2

−12∆m)(2.11)

= −log 2 + 1
12v2(∆m).

For p = 3, in the case m ≡ 0 (mod 9), we have Em(Q3) = Em(Q3)
0, and

by considering the minimal equation

(y′)2 = (x′)3 − 16m2/27,

we obtain

λ3(P
′) = 1

2 max{−v3(3−212U), 0}+ 1
12v3(3

−12∆m)

= −log 3 + 1
12v3(∆m).

If m ≡ ±1,±2 (mod 9) (then U 6≡ 0 (mod 3)), we have P ′ 6∈ Em(Q3)
0 and

the reduction type is IV∗ or III∗ by Table 1. So

λ3(P
′) = 1

3 log |ψ2(P
′)|3 + 1

12v3(∆m) or 1
8 log |ψ3(P

′)|3 + 1
12v3(∆m),

where ψ2 = 2y, ψ3 = 3x(x3 − 1728m2) are the division polynomials of Em.
Now we use the identity

243x(Q)2ψ3(Q)− (2232x(Q)3 − 2636m2)ψ2(Q)2 = ∆m = −21239m4,

which we can verify by a straightforward computation. By this identity we
have ord3ψ3(P

′) ≥ 6, since ord3ψ2(P
′) ≥ 2 and ord3x(P

′) = 1. So in any
case

λ3(P
′) ≤ −2

3 log 3 +
1
12v3(∆m).

To summarize,

(2.12) λ3(P
′) ≤

{
−log 3 + 1

12v3(∆m) if m ≡ 0 (mod 9),
−2

3 log 3 +
1
12v3(∆m) if m ≡ ±1,±2 (mod 9).

Now recalling U 6≡ 0 (mod 2) and (2.5), we have∑
p>3, p|U

log |U |p =
{−logU + log 3 if m ≡ 0 (mod 9),
−logU if m ≡ ±1,±2 (mod 9),
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and therefore by (2.8)–(2.12),

ĥ(P ′) = λ∞(P ′) +
∑
p

λp(P
′)

≤ 1
2 logU + log 2 + 5

6 log 3−
1
12 log |∆m|

+
∑

p>3, p|U

1
3 log |U |p +

∑
p>3

1
12vp(∆m) + λ2(P

′) + λ3(P
′)

≤ 1
6 logU + 1

6 log 3 <
1
6 logU + 0.1832 ≤ 1

6 logm+ 0.1832.

Further if XY > 0, then

U = U2/3U1/3 = U2/3(X2 −XY + Y 2)1/3 < U2/3(X + Y )2/3 = m2/3,

and this leads to the last assertion of the proposition.

2.3. A uniform lower bound of ĥ on Em. The following result by
Jędrzejak gives a uniform lower bound of ĥ, which will be used in the proof
of Theorem 1.3.

Lemma 2.13 ([5, Proposition 1]). Let P ′ be a rational non-torsion point
on Em. Then ĥ(P ′) ≥ f(m), where

f(m) =

{
1

108 log
m
2 + 1

48 log 3 if m 6≡ 0 (mod 9),
1
27 log

m
2 −

1
36 log 3 if m ≡ 0 (mod 9).

(2.14)

The goal of this section is to show the following.

Proposition 2.15. Let P ′ be a rational non-torsion point on Em. Then

ĥ(P ′) > 1
9 logm−

1
9 log 2−

5
8 log 3 >

1
9 logm− 0.7637.

Remark 2.16. This estimate is an improvement of [5, Proposition 1] and
[3, Lemma 4.3] in the sense that the main term is (1/9) logm unconditionally,
which enables us to prove Theorem 1.5 (see Remark 4.3). A uniform lower
bound for ĥ(P ′) can be obtained with relative ease by computing λp(3P ′)
using the fact that 3P ′ reduces modulo p (6= 3) to a non-singular point, as in
[3] and [5]. Our improvement comes from a direct computation of λp(P ′) by
means of an exhaustive investigation. In other words, we precisely estimate
λp(P

′) for each finite place p, as well as λ∞(P ′), by considering separately
whether p divides the numerator of the x-coordinate of P ′, and sum them
up. Then we can find a contribution to “the main term” of the lower bound
for ĥ(P ′), which was neglected in [5, Proposition 1] and [3, Lemma 4.3].

Proof of Proposition 2.15. Let P = (α/γ, β/γ) ∈ Cm(Q), where α, β, γ
are integers with gcd(α, γ) = gcd(β, γ) = 1. Note that gcd(α, β) = 1, since
m is cube-free. Then P ′ = (12u/γ2, 36uv/γ3), where u = α2 − αβ + β2 and
v = α − β. We can also see that u 6≡ 0 (mod 2) and u 6≡ 0 (mod 9) from
gcd(α, β) = 1.
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First of all, we claim that we may write

u = u0d
3, γ = γ0d,(2.17)

where u0, γ0, d are integers with u0, d > 0 such that gcd(u0, γ0) divides 3
and gcd(d, 6γ0) = 1. Indeed, for a prime p > 3, if p divides gcd(u, γ), then
α+β 6≡ 0 (mod p), since gcd(u, α+β) divides 3. So by the equality (α+β)u =
mγ3, we have gcd(u, γ3) = 3sd3 for some s ∈ {0, 1} and some integer d > 0
such that gcd(d, 3) = 1 since u 6≡ 0 (mod 9). Therefore u = u′3sd3 and
γ3 = γ′3sd3 for some u′, γ′ ∈ Z with gcd(u′, γ′) = 1. Now set u0 = u′3s

and γ0 = (γ′3s)1/3(∈ Z). It is clear that gcd(u0, γ0) divides 3 and from
u 6≡ 0 (mod 2) we have gcd(d, 6) = 1. Moreover, from gcd(d, α+ β) = 1 and
(α+ β)u0 = mγ30 we see that gcd(d, γ0) divides gcd(d, 3(α+ β)) = 1, which
completes the proof of the claim.

Now we compute the archimedean part λ∞(P ′). By Tate’s series (2.7) we
have

λ∞(P ′) > 1
2 log |x(P

′)| − 1
12 log |∆m| = 1

2 log |12u/γ
2| − 1

12 log |∆m|
= 1

2 log u0 +
1
2 log d− log |γ0|+ 1

2 log 12−
1
12 log |∆m|.

Next we consider λp(P ′) for a finite place p. For p > 3 not dividing u0,
we have P ′ ∈ Em(Qp)

0, and so

λp(P
′) = 1

2 max{−vp(12u/γ2), 0}+ 1
12vp(∆m)

= 1
2 max{−vp(d/γ20), 0}+ 1

12vp(∆m).

Since gcd(d, γ0) = 1, we obtain

λp(P
′) = −log |γ0|p + 1

12vp(∆m).

For p > 3 dividing u0, we have P ′ 6∈ Em(Qp)
0. Then since the reduction type

is IV or IV∗ and gcd(v,m) divides 2, [9, Theorem 5.2] shows that

λp(P
′) = 1

3 log |ψ2(P
′)|p + 1

12vp(∆m)

= 1
3 log |72uv/γ

3|p + 1
12vp(∆m) = 1

3 log |u0|p − log |γ0|p + 1
12vp(∆m).

For p = 2, recalling Em(Q2) = Em(Q2)
0 and noting that u =

u0d
3 6≡ 0 (mod 2) we have

λ2(P
′) = 1

2 max{−v2(2−212u/γ2), 0}+ 1
12v2(2

−12∆m)

= −log |γ0|2 − log 2 + 1
12v2(∆m).

For p = 3, in the case m ≡ 0 (mod 9), we have P ′ ∈ Em(Q3)
0, and noting

that u 6≡ 0 (mod 9) and d 6≡ 0 (mod 3) we obtain

λ3(P
′) = 1

2 max{−v3(3−212u/γ2), 0}+ 1
12v3(3

−12∆m)

= 1
2 max{−v3(3−1u0/γ20), 0}+ 1

12v3(3
−12∆m)

≥ −log 3− log |γ0|3 + 1
12v3(∆m).
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In the case m ≡ ±3,±4 (mod 9), similarly we have P ′ ∈ Em(Q3)
0 and

λ3(P
′) = 1

2 max{−v3(12u/γ2), 0}+ 1
12v3(∆m)(2.18)

≥ −log 3− log |γ0|3 + 1
12v3(∆m).

Note that the bound (2.18) is also valid in the case m ≡ ±1,±2 (mod 9) if
P ′ ∈ Em(Q3)

0. So now assume P ′ 6∈ Em(Q3)
0. In the case m ≡ ±1 (mod 9),

we see from α3 + β3 = mγ3 ≡ 0,±1 (mod 9) that v 6≡ 0 (mod 3). Since the
reduction type is IV∗ by Table 1, [9, Theorem 5.2] implies that

λ3(P
′) = 1

3 log |72uv/γ
3|3 + 1

12v3(∆m) ≥ −log 3− log |γ0|3 + 1
12v3(∆m).

In the case m ≡ ±2 (mod 9), the reduction type is III∗ and we have

λ3(P
′) = 1

8 log |ψ3(P
′)|3 + 1

12v3(∆m)

= 1
8 log |3

5γ−8u(u3 −m2γ6)|3 + 1
12v3(∆m)

= 1
8 log |3

5γ−80 u0d(u
3
0d

3 −m2γ60)|3 + 1
12v3(∆m).

If u ≡ 3 (mod 9), then γ0 ≡ 0 (mod 3) and

λ3(P
′) = 1

8 log |3
9γ−80 |3 + 1

12v3(∆m) = −9
8 log 3− log |γ0|3 + 1

12v3(∆m).

If u 6≡0 (mod 3), then (α, β) 6≡(0, 0), (±1,∓1) (mod 3), and so u ≡ 1 (mod 3)
and γ 6≡ 0 (mod 3), which implies that u3 ≡ 1 (mod 9), mγ3 ≡ ±2 (mod 9)
and u3 −m2γ6 ≡ −3 (mod 9). Thus,

λ3(P
′) = 1

8 log |3
5 · 3|3 + 1

12v3(∆m)

= −3
4 log 3 +

1
12v3(∆m) = −3

4 log 3− log |γ0|3 + 1
12v3(∆m).

Hence, in any case

λ3(P
′) ≥ −9

8 log 3− log |γ0|3 + 1
12v3(∆m).

To sum up, we obtain

ĥ(P ′) > 1
2 log u0 +

1
2 log d− log |γ0|+ 1

2 log 12

+ 1
3

∑
p>3, p|u0

log |u0|p −
∑
p

log |γ0|p − log 2− 9
8 log 3

≥ 1
6 log u0 +

1
2 log d−

5
8 log 3.

Since we see from u0d
3 = α2 − αβ + β2 ≥ (α+ β)2/4 that

u30 ≥
(α+ β)2u20

4d3
=
m2γ60
4d3

,

we conclude that

ĥ(P ′) > 1
6 log

(
m2/3γ20

3
√
4 d

)
+ 1

2 log d−
5
8 log 3

= 1
9 logm+ 1

3 log γ0 +
1
3 log d−

1
9 log 2−

5
8 log 3 ≥

1
9 logm− 0.7637.
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3. Divisibility and independence of points. We begin this section
by showing that the duplicated point of any point in Cm(Q) cannot be
integral.

Lemma 3.1. 2P cannot be integral for any P ∈ Cm(Q).

Proof. Let P = (x, y) be a point in Cm(Q) and set P ′ = ϕ(P ). Then

P ′ = (12ux,y, 36(x− y)ux,y)
and

2P ′ =

(
12ux,y(x

2 + xy + y2)

(x− y)2
,−36ux,y(x

4 + 2x3y + 2xy3 + y4)

(x− y)3

)
,

where ux,y = x2 − xy + y2. Since 2P = ϕ−1(2P ′), we have

x(2P ) =
36m− y(2P ′)

6x(2P ′)
=

(2x3 + y3)y

x3 − y3
.

Now, set x = α/γ and y = β/γ, where α, β, γ are integers with gcd(α, γ) =
gcd(β, γ) = 1. Since m is cube-free, we also have gcd(α, β) = 1. If

x(2P ) =
(2α3 + β3)β

(α3 − β3)γ
is an integer, then α3−β3 must divide (2α3+β3)β. This implies that α3−β3 =
1 or 3, which is impossible. Therefore, 2P is non-integral.

Next we assume that Cm has integral points P1 = (a1, b1), P2 = (a2, b2)
such that P1 6= ±P2. Equivalently, the positive cube-free integer m can be
expressed as

m = a31 + b31 = a32 + b32

with {a1, b1} 6= {a2, b2}. Then P1, P2 correspond to the integral points
on Em,

P ′1 = ϕ(P1) =
(
12(a21 − a1b1 + b21), 36(a1 − b1)(a21 − a1b1 + b21)

)
,

P ′2 = ϕ(P2) =
(
12(a22 − a2b2 + b22), 36(a2 − b2)(a22 − a2b2 + b22)

)
.

Proposition 3.2. None of the points P ′1, P
′
2, P

′
1 + P ′2, P

′
1 − P ′2 is

in 3Em(Q).

Proof. Since ϕ : Cm → Em is a birational equivalence, for any point P ′
in Em(Q) there exists a point P = (α/γ, β/γ) in Cm(Q) with gcd(α, γ) =
gcd(β, γ) = 1 such that

P ′ = ϕ(P ) =

(
12(α2 − αβ + β2)

γ2
,
36(α− β)(α2 − αβ + β2)

γ3

)
and

x(3P ′) =
4(α6 + α3β3 + β6)

α2β2γ2
.
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Since m is cube-free, we know from α3+β3 = mγ3 that gcd(α, β) = 1. Thus,

gcd(m,α6 + α3β3 + β6) = gcd(m,α3β3) = 1,

in other words, the numerator of x(3P ′) is not divisible by any odd prime
divisor of m.

On the other hand, x(P ′i ) = 12(a2i − aibi + b2i ) for i ∈ {1, 2} and

x(P ′1 + P ′2)

=
12(a1 + b1)(a2 + b2){(a1 − a2)2 − (a1 − a2)(b1 − b2) + (b1 − b2)2}

(a1 + b1 − a2 − b2)2
,

x(P ′1 − P ′2)

=
12(a1 + b1)(a2 + b2){(a1 − b2)2 + (a1 − b2)(a2 − b1) + (a2 − b1)2}

(a1 + b1 − a2 − b2)2
.

Sincem is cube-free, a2i −aibi+b2i is an odd divisor ofm for i ∈ {1, 2}. Hence,
it is obvious that P ′1, P ′2 6∈ 3Em(Q). In order to show that P ′1±P ′2 6∈ 3Em(Q),
it suffices to check that each numerator of x(P ′1 ± P ′2) is divisible by an odd
prime divisor of m.

For i ∈ {1, 2} we have gcd(ai + bi, a
2
i − aibi + b2i ) = gcd(ai + bi, 3aibi),

which divides 3, since gcd(ai, bi) = 1. Moreover, m ≡ 0 (mod 3) if and only
if ai + bi ≡ a2i − aibi + b2i ≡ 0 (mod 3), which shows that

(3.3) ai + bi 6≡ 0 (mod 9)

for any i ∈ {1, 2}. Suppose now that the set of prime divisors of a1+b1 is the
same as the set of prime divisors of a2 + b2. Then a1 + b1 6= a2 + b2 implies
that there exists a prime p such that

ai + bi ≡ 0 (mod p2), aj + bj ≡ 0 (mod p), aj + bj 6≡ 0 (mod p2)

for some i, j with {i, j} = {1, 2}. However, since m = (aj+bj)(a
2
j−ajbj+b2j )

is divisible by p2, we have a2j −ajbj + b2j ≡ 0 (mod p), yielding p = 3. Hence,
ai + bi ≡ 0 (mod 9), which contradicts (3.3). Thus, there exists a prime p
such that

ai + bi ≡ 0 (mod p) and aj + bj 6≡ 0 (mod p)

for some i, j with {i, j} = {1, 2}, whence p satisfies a1 + b1 − a2 − b2 6≡
0 (mod p). It is clear that p 6= 2 (note that a31 + b31 = a32 + b32) and that
p is a divisor of m. Therefore, we conclude that there exists an odd prime
divisor p of m such that the numerators of x(P ′1 ± P ′2) are divisible by p.
This completes the proof of Proposition 3.2.

Proposition 3.2 immediately implies the following.

Corollary 3.4. The points P ′1 and P ′2 are independent in Em(Q).
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Proof. Suppose that P ′1 and P ′2 are dependent. Then there exist integers
n1 and n2 with (n1, n2) 6= (0, 0) such that

n1P
′
1 + n2P

′
2 = O.

Considering this equality modulo 3Em(Q), we see that

ε1P
′
1 + ε2P

′
2 ∈ 3Em(Q),

where (ε1, ε2) ∈ {(1, 0), (0, 1), (1, 1), (1,−1)}. However, Proposition 3.2 en-
sures that this cannot occur. Therefore, P ′1 and P ′2 are independent.

4. Proofs of the main theorems. We say that a rational point P in
Cm(Q) is divisible by an integer l if there exists a rational point Q in Cm(Q)
such that P = lQ. Recall we assume m > 2, and so Cm(Q) is torsion-free.

Proof of Theorem 1.3. It suffices to show that P1 is not divisible by any
integer greater than 1 in Cm(Q). By Lemma 3.1 and Proposition 3.2 the
point P1 is divisible by neither 2 nor 3 in Cm(Q). Suppose that P ′1 = ϕ(P1)
is divisible by an integer l. Then

ĥ(P ′1) = l2ĥ(Q′)

for some Q′ ∈ Em(Q). Noting that if 3 ≤ m ≤ 6, then Cm has no integral
point, we see from the assumption m > 2 that m ≥ 7. Hence f(m) > 0,
where f(m) is the function defined in (2.14). It follows from Proposition 2.6
and Lemma 2.13 that

l2 =
ĥ(P ′1)

ĥ(Q′)
<

1
6 logm+ 0.1832

f(m)
,

which shows that ifm ≥ 9, then l < 5, and ifm = 7, then l < 7. Therefore, it
remains to check that if m = 7, then P ′1 is not divisible by 5 in E5(Q). This
can be easily done by using the function “elldivpoint” in Cremona’s script
ell_ff.gp [2] for PARI [11], or by the Magma function “IsDivisibleBy” [1].

Proof of Corollary 1.4. If Cm has more than three integral points, then
two of them, say P and Q, satisfy P 6= ±Q. But since the rank is one, each
point of the two can be a generator by Theorem 1.3, which is a contradiction.

Proof of Theorem 1.5. Let P1, P2 ∈ Cm(Q) be integral points such that
P1 6= ±P2. Then they are independent by Corollary 3.4. So it suffices to
show that the index ν of the span of P ′1 and P ′2 in ZQ1+ZQ2 is less than 2,
where Q1 and Q2 are points in a system of generators for Em(Q) such that
P ′1, P

′
2 ∈ ZQ1 + ZQ2.

First we shall show that ν < 5 if m ≥ 66093. By Siksek’s theorem [7,
Theorem 3.1] we have

ν ≤ 2√
3

√
R(P ′1, P

′
2)

λ
,
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where

R(P ′1, P
′
2) = ĥ(P ′1)ĥ(P

′
2)− 〈P ′1, P ′2〉2

= ĥ(P ′1)ĥ(P
′
2)− 1

4

(
ĥ(P ′1 + P ′2)− ĥ(P ′1)− ĥ(P ′2)

)2
if ĥ(Q) > λ for any non-torsion point Q ∈ Em(Q). Using this theorem, for
m ≥ 967 (so (1/9) logm−0.7637 > 0) we have, by Propositions 2.6 and 2.15,

ν ≤ 2√
3

√
ĥ(P ′1)ĥ(P

′
2)

λ
≤ 2√

3

√(
1
6 logm+ 0.1832

)2
1
9 logm− 0.7637

(4.1)

=
2√
3

1
6 logm+ 0.1832
1
9 logm− 0.7637

.

We see that the right-hand side is less than 5 for m ≥ 66093.
Next, in view of ν 6= 3 by Proposition 3.2, we shall show that ν is indi-

visible by 2. Since we have already shown that P ′1 and P ′2 are indivisible by
2 by Lemma 3.1, it suffices to show that P ′1 + P ′2 (or equivalently P ′1 − P ′2)
is indivisible by 2, which is possible for sufficiently large m by using heights
as follows. By the parallelogram law and Proposition 2.6 we have

ĥ(P ′1 + P ′2) + ĥ(P ′1 − P ′2) = 2ĥ(P ′1) + 2ĥ(P ′2) < 4
(
1
6 logUm + 0.1832

)
,

where

Um = max{x2 − xy + y2 : (x, y) is an integral point on Cm}.
Hence there exists R′ ∈ {P ′1 + P ′2, P

′
1 − P ′2} such that

ĥ(R′) < 2
(
1
6 logUm + 0.1832

)
.

If R′ is divisible by 2, then we see from Proposition 2.15 that

ĥ(R′) > 22
(
1
9 logm− 0.7637

)
,

and so
22
(
1
9 logm− 0.7637

)
< 2
(
1
6 logUm + 0.1832

)
.

This indicates that P ′1 + P ′2 is indivisible by 2 for m such that mT 3
m ≥

2.3566× 1013, where Tm = m/Um, in other words,

Tm = min{x+ y ∈ Z>0 : (x, y) is an integral point on Cm}.
Hence we have shown that ν is indivisible by 2 for m such that mT 3

m ≥
2.3566× 1013.

Now we have shown that P1 and P2 can be in a system of generators for
m ≥ 66093 such that mT 3

m ≥ 2.3566 × 1013. Since in the remaining cases
the number of m for which we have to show the statement of the theorem
is finite and not so large, we can check all the cases with a computer. This
process is divided into three parts as follows. Note that if m is numerically
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given, it is possible to obtain all the integral points on Cm by solving the
Thue equation.

(i) For m ≥ 66093 such that mT 3
m < 2.3566 × 1013, it suffices to show

that P + Q is indivisible by 2 for any integral points P and Q satisfying
P 6= ±Q. For this purpose, we first solve the Thue equation x3+ y3 = m for
each m ≥ 66093 such that mT 3

m < 2.3566×1013 by using the PARI function
“thue” [11] to obtain all the integral points. Then for all pairs {P,Q} of
integral points satisfying P 6= ±Q, we can check that P ′ + Q′ is indivisible
by 2 by using the function “elldivpoint” of [2] for PARI, where P ′ = ϕ(P )
and Q′ = ϕ(Q). Since it takes too much time to check this part in a routine
manner, we need a technical argument, which is described in Remark 4.2
below.

(ii) For 3300 < m < 66093 we can see that ν < 13 by (4.1), and so it
suffices to check that kP + lQ 6∈ pEm(Q) for (k, l) ∈ {±1,±2, ...,±(p− 1)}2
with p = 2, 5, 7, 11 for any integral points P and Q satisfying P 6= ±Q.
This can be done by solving the Thue equation x3 + y3 = m and using the
function “elldivpoint” or the Magma function “IsDivisibleBy” as in part (i).

(iii) Finally, for m ≤ 3300 we can check directly by using the Magma
function “Generators” that any pair {P,Q} of integral points satisfying P 6=
±Q can be in a system of generators. Indeed, since we consider the case where
Cm has at least four integral points, all the m we have to check turn out to
be m = 91, 217, 721, 1027, 1729 and we can obtain a system of generators by
the function “Generators”. (For any such m the rank of Em(Q) is two.)

Remark 4.2. We explain in detail how to check part (i). Set

A = 2.3566× 1013, B = 66093,

M = {m ∈ Z>0 : B ≤ m, mT 3
m < A, m cube-free},

and for k ∈ Z set

Mk = {m ∈ Z>0 : B ≤ m, mT 3
m < A, Tm = k, m cube-free},

M ′k =

a3 + (k − a)3 :
B ≤ a3 + (k − a)3, (a3 + (k − a)3)k3 < A,

a ∈ Z, 1 ≤ a < (A/k3)1/2,

a3 + (k − a)3 cube-free

 .

Note we may check the desired indivisibility for m ∈ M . Since Tm < A1/3

for m ∈M , we have M ⊂
⋃bA1/3c

k=1 Mk. Next we shall see that Mk ⊂M ′k. Let
m be in Mk. Then since Tm = k, there exist integers a > 0 and b such that
a3 + b3 = m, a + b = k and a > |b|. So m is of the form m = a3 + (k − a)3
with a ∈ Z such that a > |k − a|, by replacing b with k − a. Note that if
k − a < 0, then m = a3 + (k − a)3 = k{a2 − a(k − a) + (k − a)2} > a2 and
that if k − a > 0, then m > a3. Since a is a positive integer, in any case
a2 < m < A/k3. So 1 ≤ a < (A/k3)1/2, and therefore Mk ⊂ M ′k. Now we
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haveM ⊂
⋃bA1/3c

k=1 M ′k and we can write a program to check the indivisibility
for m in the right-hand side. A crucial point of this method is that we vary
k and a instead of m, which considerably reduces the running time.

Remark 4.3. If we use [3, Lemma 4.3], then the upper bound for ν in
(4.1) would be greater than

2√
3

27

6
> 5,

from which the assertion of Theorem 1.5 cannot be deduced.

Proof of Corollary 1.6. Assume the rank is two and P1, P2 (P1 6= ±P2)
are integral points on Cm. Then by Theorem 1.5, {P1, P2} is a system of
generators. Let R = kP1 + lP2 (kl 6= 0) be an integral point on Cm and so[

R

P2

]
=

[
k l

0 1

][
P1

P2

]
.

Now since {R,P2} is also a system of generators by Theorem 1.5, we have
k = ±1. Similarly, l = ±1.

Further by the equation[
P1 + P2

P1 − P2

]
=

[
1 1

1 −1

][
P1

P2

]
,

noting that the determinant of the matrix is not ±1, either P1+P2 or P1−P2

is non-integral, since otherwise this contradicts Theorem 1.5.

Proof of Theorem 1.8. Recall Em(Q) is torsion-free for m > 2, since m
is cube-free. For m ≥ 967, let Nm be the least integer greater than

(4.4) 2
√(

1
6 logUm + 0.1832

)
/
(
1
9 logm− 0.7637

)
.

Then we have an injection{
P ∈ Em(Q) : ĥ(P ) < 1

6 logUm + 0.1832
}
→ Em(Q)/NmEm(Q)

by the argument in the proof of [8, Lemma 6]. The number of integral
points on Cm is less than or equal to the cardinality of the left-hand side
by Proposition 2.6. Now by solving the inequality (4.4) < 3 we see that if
mT 2

m ≥ 8125718565, then Nm = 3. So for suchm, Cm has at most 3r integral
points, where r is the rank of Cm(Q). But the number of integral points is
even, since the equation of Cm is symmetrical and m is cube-free. Therefore
Cm has at most 3r − 1 integral points.

For m such that mT 2
m < 8125718565, using PARI in the same manner as

in the proof of Theorem 1.5 we can verify the assertion of the theorem.

Remark 4.5. In the proofs of Theorems 1.5 and 1.8, theoretically we
may replace Um by m (therefore replace Tm by 1), which might make the
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argument simpler. But then we need to check all m < 2.3566 × 1013 of the
form m = a3 + b3, which seems to take too much time for ordinary personal
computers. The reason we use PARI in the proofs is that PARI is much
faster than Magma in this computation.
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