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Exotic Collatz cycles

by

John L. Simons (Groningen)

1. Introduction. The generalized Collatz problem (also called the
px + q problem with p an odd prime and q odd) is defined by a sequence
of natural numbers, generated conditionally by x 7→ x/2 if x is even and by
x 7→ (px + q)/2 if x is odd. We restrict ourselves to the case where p ≥ 5
(prime), q odd and GCD(p, q) = 1. For each factor c > 1 of q, either none
or all of the numbers xi in each trajectory (including a hypothetical cycle)
must satisfy GCD(xi, q) = c. Because each cycle of the px+ q problem with
GCD(xi, q) = c corresponds with a cycle of the px + q/c problem, we call
cycles with GCD(xi, q) = 1 primitive and any other cycle non-primitive. An
m-cycle of the px + q problem has m local minima xi. We call an m-cycle
(m ≥ 2) trivial if it is a multiple of an m∗-cycle with m∗ < m. In a non-trivial
m-cycle we have xi 6= xj if i 6= j and we assume in what follows that an
m-cycle is non-trivial unless explicitly stated otherwise.

Simons [5] has proved that in an m-cycle (p − 2)xi = ai2ki − q and
consequently that a necessary and sufficient condition for the existence of
an m-cycle is the existence of a solution (ai, ki, li) of the diophantine system
of equations

(1)



−pk0 2k1+l0

−pk1 2k2+l1

. . .

2k0+lm−1 −pkm−1





a0

a1

...

am−1


=



q(2l0 − 1)
q(2l1 − 1)

...

q(2lm−1 − 1)


.

He further derives the following two existence conditions for 1-cycles:

Lemma 1. A necessary and sufficient condition for the existence of a
1-cycle for the px+ q problem is the existence of positive integers k, l and r
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(odd) such that 2k+l− pk = q · r and the existence of an odd integer x0 such
that

x0 =
pk − 2k

(p− 2)r
.

Corollary 2. If , and only if ,

x0 =
(pk − 2k)q

(p− 2)(2k+l − pk)
and GCD(x0, q) = 1

then there exists a primitive 1-cycle with minimal element x0.

Let C(m, p, q) be the number of primitive m-cycles of the px+q problem
and let C(p, q) =

∑
mC(m, p, q). Let B(m, p, q) be the number of primi-

tive and non-primitive m-cycles of the px + q problem and let B(p, q) =∑
mB(m, p, q). Let S(p) be the set of primes q such that

2k+l − pk = q

has a solution with k ≥ 2. In this paper we derive the following results:

• For each p, there exist infinitely many px+ q problems with C(1, p, q)
≥ 1.

• For each p and d > 0, there exist infinitely many px+ q problems with
C(p, q) > d.

• Let p be fixed. If S(p) is an infinite set (conjectured, no proof) then
for each d > 0 there exist infinitely many px + q problems (q prime)
with C(p, q) > d.

Matthews [4] conjectured that (i) if p = 3 then all trajectories end in a
cycle, (ii) if p ≥ 5 then almost all trajectories are divergent, (iii)B(p, q) <∞.
Lagarias [3] conjectured (i) C(3, q) ≥ 1, (ii) C(3, q) < ∞ and proved that
occasionally C(3, q) takes large values. Brox [2] and Simons & de Weger
[6] proved C(m, 3, 1) < ∞. Simons [5] proved C(m, p, q) < ∞. Belaga &
Mignotte [1] numerically showed that there exist 3x+q problems with many
primitive cycles. Our results formally agree with Matthews’ second and third
conjecture, however px+q problems with arbitrarily many cycles can be seen
as exotic exceptions to the empirical divergent behavior of px+ q problems
(p ≥ 5).

2. Generalized Collatz sequences with q odd. From Lemma 1 it
follows directly that for each prime p there exist infinitely many q-values for
which the px+q problem has a 1-cycle. Simply set q = 2k+l−pk for each pair
(k, l). Then Lemma 1 applies with r = 1. Consequently, the px+ q problem
has a 1-cycle with minimal element x0 = (pk − 2k)/(p− 2). For each p we
can construct a value for q such that the px + q problem has a primitive
1-cycle.
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Lemma 3. Let p ≥ 5 be a prime. For each k ≥ 2 and l>(log2 p−1)k>k,
let

u =
pk − 2k

p− 2
and v = 2k+l − pk.

The px+ q problem with q = v/GCD(u, v) has a primitive 1-cycle.

Proof. Set x0 = u/GCD(u, v). Then

(2) x0 =
u

GCD(u, v)
=
u · q
v

=
(pk − 2k)q

(p− 2)(2k+l − pk)
.

Further, we have

GCD(x0, q) = GCD
(

u

GCD(u, v)
,

v

GCD(u, v)

)
= 1.

We now distinguish two cases:

1. q = 1. Then 2k+l − pk = v = q · v and x0 = (pk − 2k)/(p− 2)v. Hence
Lemma 1 applies.

2. q ≥ 3. Because GCD(x0, q) = 1, Corollary 2 applies.

In both cases the px+ q problem has a primitive 1-cycle.

Lemma 3 generates for fixed p infinitely many values q = v/GCD(u, v)
for which the px + q problem has a primitive 1-cycle. These q-values are
not necessarily different. However, each new pair (k, l) generates a new pair
(u, v). Now either the px + v problem has a primitive 1-cycle with k odd
and l even elements or the px+ q with q = v/GCD(u, v) problem has such
a primitive 1-cycle. Because C(1, p, v) < ∞ and C(1, p, q) < ∞ the infinite
sequence of pairs {k, l} must generate an infinite sequence either of px + v
problems with a primitive 1-cycle and/or an infinite sequence of px + q
problems with a primitive 1-cycle. Hence we have

Corollary 4. For each p there are infinitely many q-values for which
the px+ q problem has a primitive 1-cycle.

Consider as an example the case p = 5:

• For k = 2 and l = 3 we have u = v = 7, hence x0 = q = 1. The 5x+ 1
problem has the primitive 1-cycle (1, 3, 8, 4, 2).
• For k = 2 and l = 4 we have u = 7 and v = 39, hence x0 = 7 and q =

39. The 5x+39 problem has the primitive 1-cycle (7, 37, 112, 56, 28, 14).
• For k = 2 and l = 5 we have u = 7 and v = 103, hence x0 = 7

and q = 103. The 5x + 103 problem has the primitive 1-cycle (7, 69,
224, 112, 56, 28, 14).
• For k = 3 and l = 4 we have u = 39 and v=3, hence x0 = 13 and q = 1.

The 5x+1 problem has the primitive 1-cycle (13, 33, 83, 208, 104, 52, 26).
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Note that q can be 1, prime or composite. Because the 5x+ 1 problem has
exactly two 1-cycles [5], for no other pair (k, l) can reduction to the 5x+ 1
problem occur.

If for the px+ q problem a 1-cycle exists with k ≥ 2, then m-cycles with
m ≥ 2 also exist. This follows from the general solution of the system (1):

∆ai = q · [pki+1+ki+2+···+ki−1(2li − 1) + 2ki+1+lipki+2+···+ki−1(2li+1 − 1)
+ · · ·+ 2ki+1+li+ki+2+li+1+···+ki−1+li−2(2li−1 − 1)].

If ∆ = 2k+l − pk = q then each choice for ki and li results in an integral ai.
Given

∑m−1
i=0 ki = k ≥ 2 and

∑m−1
i=0 li = l ≥ 3 and any choice for ki, we can

choose (cyclic) different values for li which result in a new m-cycle.

• The 5x+7 problem has the non-primitive 1-cycle (7, 21, 56, 28, 14) with
k = 2 and l = 3. There exists one 2-cycle: (k0 = k1 = 1, l0 = 1, l1 = 2)
resulting in (9, 26, 13, 36, 18), which is primitive.
• The 5x + 39 problem has the primitive 1-cycle (7, 37, 112, 56, 28, 14)

with k = 2 and l = 4. There exist two 2-cycles: (k0 = k1 = 1, l0 = 1,
l1 = 3) resulting in (9, 42, 21, 72, 36, 18), which is non-primitive, and
(k0 = k1 = 1, l0 = l1 = 2) resulting in (13, 52, 26, 13, 52, 26), which is
non-primitive and trivial.
• The 5x + 103 problem has the primitive 1-cycle (7, 69, 224, 112, 56,

28, 14) with k = 2 and l = 5. There exist two 2-cycles: (k0 = k1 = 1,
l0 = 1, l1 = 4) resulting in (9, 74, 37, 144, 72, 36, 18) and (k0 = k1 = 1,
l0 = 2, l1 = 3) resulting in (13, 84, 42, 21, 104, 52, 26). Both cycles are
primitive.
• The 5x+3 problem has the non-primitive 1-cycle (39, 99, 249, 624, 312,

156, 78) with k = 3 and l = 4. There exist three 2-cycles: (k0 = 1,
k1 = 2, l0 = 2, l1 = 2) resulting in (51, 129, 324, 162, 81, 204, 102),
which is non-primitive, and (k0 = 1, k1 = 2, l0 = 1, l1 = 3) resulting
in (43, 109, 274, 137, 344, 172, 86) and (k0 = 1, k1 = 2, l0 = 3, l1 = 1)
resulting in (53, 134, 67, 169, 424, 212, 106), which are both primitive.
There exists one 3-cycle: (k0 = k1 = k2 = 1, l0 = l1 = 1, l2 = 2)
resulting in (61, 154, 77, 194, 97, 244, 122), which is primitive.

We denote by B∗(m, p, q) (resp. C∗(m, p, q)) the number of m-cycles
(resp. primitive m-cycles) generated by partitioning from a 1-cycle. Clearly,
B(m, p, q)≥B∗(m, p, q) etc. For special px+q problems, B(m, p, q), C(2, p, q)
and consequently C(p, q) can be arbitrarily large.

Lemma 5. For each prime p ≥ 5, m and d > 0 there exist infinitely
many q = 2k+l − pk for which B(m, p, q) > d.

Proof. For fixed p, k, l,m, a (cyclic) new pair of partitions

[(k0, k1, . . . , km−1), (l0, l1, . . . , lm−1)]
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generates a new m-cycle. Note that q follows from p, k, l. For fixed p and m,
B∗(m, p, q) is an increasing function of k and l. So for any p,m and d > 0
we can choose k∗, l∗ such that if k > k∗ and l > l∗ then B∗(m, p, q) > d.
Consequently, B(m, p, q) ≥ B∗(m, p, q) > d.

Lemma 6. For each prime p ≥ 5 and d > 0 there exist infinitely many
q = 2k+l − pk for which C(p, q) ≥ C(2, p, q) > d.

Proof. For each d > 0 we can choose k, l (hence q) such that GCD(k, l)
= 1 and B∗(2, p, q) > 2d. Let x0(j) be a local minimal element of the jth
2-cycle. From the matrix system (1) it follows for k0 = k− 1, k1 = 1, l0 = j,
l1 = l − j that

(3) a0(j) = (p− 2)2j + (2l+1 − p).

Using (p− 2)x0 = a02k0 − q we find

(4) x0(j) =
pk − 2k

p− 2
+ (2j − 1) · 2k−1.

We observe that x0(0) is the global minimum of the 1-cycle, hence x0(j+1)
− x0(j) = 2j+k for all j, from which it follows that if the jth 2-cycle is
non-primitive, then the (j−1)th and the (j+1)th 2-cycle is primitive. Such
a primitive 2-cycle is non-trivial because GCD(k, l) = 1. As a consequence
we find C(p, q) ≥ C(2, p, q) ≥ C∗(2, p, q) ≥ 1

2B
∗(2, p, q) > d.

For m ≥ 3 we cannot prove that C(m, p, q) is arbitrarily large. For fixed
p,m, d and each d∗>0 we can choose q such thatB(m, p, q)≥B∗(m, p, q)>d∗.
Now suppose C(m, p, q) ≤ d ≤ d∗. Then for this pair (p, q) the number
of non-primitive m-cycles is B(m, p, q) − C(m, p, q) > d∗ − d ≥ 0. Each
non-primitive m-cycle reduces to a different primitive m-cycle for a px + r
problem with r | q. Now C(m, p, r) < ∞ and consequently B∗(m, p, q) ≤
B(m, p, q) =

∑
r C(m, p, r) < ∞. This upper bound for B∗(m, p, q) could

conflict with the lower bound d∗ if the number of different factors of q is
small enough. In such cases the assumption C(m, p, q) ≤ d ≤ d∗ cannot be
true, so C(m, p, q) is arbitrarily large. However if the number of different
factors of q is sufficiently large, the contradiction of the lower and upper
bound of C(m, p, q) cannot be reached.

3. Generalized Collatz sequences with q an odd prime. Recall
that S(p) is the set of primes q such that 2k+l − pk = q has a solution with
k≥2, thereby excluding the trivial 1-cycle (1, 2l−1, . . . , 2) for p+q=2l. Such
px+q problems form an interesting subset because of the empirical excep-
tionality of non-primitive cycles, i.e. B(m, p, q) ' C(m, p, q). Also, for these
px+q problems, C(2, p, q) and consequently C(p, q) can be arbitrarily large.
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Lemma 7. For fixed p, consider the set of px+q problems with q ∈ S(p).
If S(p) is an infinite set , then for each d > 0 there are infinitely many px+q
problems with C(2, p, q) > d.

Proof. Let q ∈ S(p) satisfy B(2, p, q) ≥ B∗(2, p, q) ' (k − 1)(l − 1)/2
> 2d. Consider the set of 2-cycles generated by partitioning from the 1-
cycle with k odd and l even elements, starting with x0 = (pk − 2k)/(p− 2).
Similarly to the proof of Lemma 6 we have C∗(2, p, q) ≥ 1

2B
∗(2, p, q). Conse-

quently, C(2, p, q) ≥ C∗(2, p, q) ≥ 1
2B

∗(2, p, q) > d. Since S(p) is an infinite
set, for infinitely many k∗ > k and l∗ > l another q∗ (prime) results for
which the same reasoning applies.

Note that C(2, p, 1) < ∞ and only exceptionally (empirical fact, no
proof) C(2, p, 1) > 0. For a generalization of the proof of Lemma 7 to
C(m, p, q) > d, it is required that for every k > 1 there exist infinitely
many primes q ∈ S(p). Since C(p, q) ≥ C(2, p, q) we have without this re-
quirement:

Corollary 8. For fixed p, consider the set of px + q problems with
q ∈ S(p). If S(p) is an infinite set , then for each d > 0 there are infinitely
many px+ q problems with C(p, q) > d.

Trivial m-cycles can exist by definition, but they need not be generated
by partitioning if q is prime.

Lemma 9. If 2k+l − pk = q with p, q prime and k ≥ 2, for infinitely
many p all the m-cycles of the px+ q problem, generated by partitions from
a 1-cycle, are non-trivial.

Proof. For the existence of a trivial m-cycle we must have GCD(k, l) =
c > 1. Then k = c · v and l = c · w and q = [2v+w]c − [pv]c = [2v+w − pv]
· [2(v+w)(c−1) + · · ·+pv(c−1)]. Now q is prime and the second factor is > p+2,
so 2v+w − pv = 1 hence v = 1 and p = 2w+1 − 1. Consequently, if p is not a
Mersenne prime, then all generated m-cycles are non-trivial. If p = 2w+1−1
and q =

∑c−1
j=0(c−1

j )2(v+w)(c−1−j)pvj are both prime, then a non-trivial non-
primitive cycle with length v + w exists.

As a consequence of Corollary 8 and Lemma 9 we have

Corollary 10. Consider the px + q problem with p ≥ 5 prime and
q ∈ S(p). If S(p) is an infinite set , then for each p and d > 0 there are
infinitely many px+ q problems with C(p, q) > d.

Simons [5] gives for p < 100 the smallest q ∈ S(p). They are shown in
Table 1.

Exotic candidates are px+ q problems with large values for k and l. For
example, the 23x + 4217 problem with k = 3 and l = 11 has 26 primitive
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cycles, and the 97x + 32641759 problem with k = 3 and l = 22 has 92
primitive cycles.

Table 1. px + q problem (q minimal) with primitive cycles

p q p q p q

5 3 31 1087 67 28279

7 79 37 6823 71 126031

11 7 41 367 73 125743

13 1879 43 199 79 1951

17 223 47 30559 83 1303

19 151 53 29959 89 271

23 4217 59 29287 97 32641759

29 7351 61 520567

We computed C(p, q) for p = 5, 7 and q ∈ S(p) (q < 106). These are
presented in Table 2.

Table 2. C(5, q) and C(7, q) as a function of k and l

q k l C(5, q) ≥ q k l C(7, q) ≥
3 3 4 3 79 2 5 3

7 2 3 3 463 2 7 5

103 2 5 3 1999 2 9 5

131 3 5 9 5791 4 9 62

487 2 7 4 30367 4 11 95

971 5 7 66 32719 2 13 7

1423 4 7 37 130729 3 14 40

8167 2 11 6 131023 2 15 8

13259 5 9 173 521887 4 15 206

32143 4 11 95

130447 4 13 140

259019 5 13 489

Notice that B∗(p, q) is an increasing function of k and l. These tables
confirm that C(p, q) ' B(p, q)≥B∗(p, q) is an increasing function of k and l.

4. Remarks. 1. The infinity of S(p) is a conjecture (as the Mersenne
conjecture). We found that 3, 7, 103, 131, 487, 971, 1423, 8167, 13259, 32143,
130447, 259019, 1706527, 4191179, 16699091, 16774091, 18280739, 33163807,
. . . ∈ S(5). This S(p) conjecture is milder than the Mersenne conjecture
because k ≥ 2 instead of k = 0 is required for the primality of q.
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2. If q ∈ S(p) and C(1, p, q) = 1, then B∗(p, q) can easily be calculated.
Let v(a, b) be the number of (cyclic) different and w(a, b) be the total number
of b-partitions of a. For fixed k and l (note that l > k) there are: one 1-cycle,
v(k, 2) ·w(l, 2) 2-cycles etc. We checked that in many cases (not always) this
lower bound equals the empirically found number of primitive cycles for
p = 5, 7. Exceptions are the 5x + 7 problem with no primitive 1-cycle and
the 3x+ 463 problem with an extra 3-cycle.

3. For the px+ q problem, the minimal elements in found cycles of equal
length show a regular pattern. Let x0(m, j) be the minimal element of the
jth primitive m-cycle. From the matrix system (1) it follows for m = 2, k0 =
k − 1, l0 = j that

(5) x0(2, j) =
pk − 2k

p− 2
+ (2j − 1) · 2k−1.

A similar expression can be found for x1(2, j). For small j we have x0 < x1

and consequently successive minima of 2-cycles for j = 1, . . . , l − 1 differ
by successive powers of 2. Because the minimal element is min(x0, x1) this
regular pattern can be disturbed for larger j.

4. For the 23x + 4217 problem all cycles have length 14 with k = 3
and l = 11. We found next to x0(1, 1) = 579 the sequence of minima:
x0(2, j) = 583, 591, 607, 639, 703, 831, 1087 for 2-cycles. The next elements
of this sequence: 1599, 2623, 4671, appear to be local minima in a 2-cycle,
while the global minima are 929, 729, 629. They form the beginning of a
similar sequence for the global minima of 3-cycles. So next to x0(2, 9) = 929
we found x0(3, j) = 961, 1025, 1152, 1409 for 3-cycles etc.

5. For the 7x + 521887 problem, k = 4 and l = 15. From partitioning
we found 204 cycles (m ≤ 4) with length 19 and with x0(m, j) in a regular
pattern. We found two extra cycles (m = 5, 6) with length 38 and with a
minimal element smaller than x0(1, 1).

6. In this paper we have proved that C(p, q) can be arbitrarily large.
In view of the regular behavior of the minimal xi over the cycles we did
not apply transcendence theory (as in [5]) to exclude cycles with large cycle
length. This leaves theoretically open that C(5, q) and C(7, q) are greater
than the numbers indicated in Table 2.
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