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On torsion in J1(N), II
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1. Introduction. In [5] we studied the primes that may occur as the
order of a rational torsion point on J1(N) defined over a number field of
degree d. In this sequel we continue the study of torsion from a different
point of view. We use ideas introduced by Serre [12], [13] and later used
by Ribet [10], to show that the image of the Gal(Q/Q)-representation on
the kernel of a non-Eisenstein maximal ideal of the Hecke algebra is usually
quite large (see §5 for a precise statement). We then apply this result, using
a variation of an idea of Boxall and Grant [2], to study the almost rational
torsion in quotients of J1(N).

We would like to thank K. Ribet for many helpful discussions.

2. The modular curve, and its jacobian. Let N be a prime ≥ 13,
and let X1(N) denote the non-singular projective curve over Q associated to
the moduli problem of classifying, up to isomorphism, pairs (E,P ) consisting
of an elliptic curve E together with a point P of E of order N . As usual,
we denote by X0(N) the non-singular projective curve over Q whose non-
cuspidal points classify isomorphism classes of pairs (E,C), where E is an
elliptic curve, and C is a cyclic subgroup of E of order N .

The curve X1(N) is a cyclic cover of X0(N) whose covering group 4
is isomorphic to (Z/NZ)∗/(±1). The covering map π : X1(N) → X0(N)
is given, on non-cuspidal points, by π(E,P ) = (E,CP ), where CP is the
subgroup of E generated by the point P . We denote by 〈a〉 the element of
4 whose action on non-cuspidal points is given by 〈a〉(E,P ) = (E, aP ).

The curve X0(N) has two cusps 0 and ∞, each rational over Q. The
cusps are unramified in the cover π : X1(N) → X0(N), so there are N − 1
cusps on X1(N). One half of these cusps lie above the cusp 0 ∈ X0(N).
These are called the 0-cusps of X1(N). The other half of the cusps lie above
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the cusp ∞ ∈ X0(N). We call these the ∞-cusps of X1(N). We work with
a model of X1(N) in which the 0-cusps are Q-rational, while the ∞-cusps
are rational in Q(ζN )+, the maximal totally real subfield of Q(ζN ).

We denote by J1(N) (respectively, J0(N)) the jacobian of the modular
curve X1(N) (respectively, X0(N)). The abelian variety J0(N) is semi-stable
over Q with bad reduction only at the prime N . The abelian variety J1(N)
also has good reduction away from N , and the quotient abelian variety
A = J1(N)/π∗(J0(N)) attains everywhere good reduction over the field
Q(ζN )+. We can actually do a bit better than this. If d > 1 is a divisor
of (N − 1)/2, we let Jd denote the quotient (by a connected subvariety)
of J1(N) associated to weight two newforms on Γ1(N) whose nebentypus
character has order d. Then Jd attains everywhere good reduction over the
unique subfield Qd of Q(ζN )+ whose degree over Q is d.

We embed X1(N) into J1(N), sending a 0-cusp to 0 ∈ J1(N). The divisor
classes supported only at the 0-cusps generate a finite subgroup C of J1(N)
of order M = N ·

∏
(1/2) ·B2,ε (see [6]), where the product is taken over all

even characters ε of (Z/NZ)∗. The prime-to-2 part of the group J1(N)(Q)tors

has order equal to the largest odd divisor of M (see [5]). The divisor classes
supported only at the ∞-cusps also generate a subgroup C∗ of order M .
The points of this group are rational in Q(ζN )+.

3. The Hecke operators. The standard Hecke operators T` (` a prime
6= N) and UN act as correspondences on the curve X1(N). They thus induce
endomorphisms of the jacobian J1(N). We define the Hecke algebra T to be
the ring of endomorphisms of J1(N) generated over Z by the T`, UN , and 4.
It is a commutative ring of finite type over Z, and all of its elements are
defined over Q. The Hecke algebra T induces an algebra (again denoted
by T) of endomorphisms of the quotients Jd.

Since J1(N) and Jd have good reduction away from the prime N , their
Néron models J/S and Jd/S over S = Spec Z[1/N ] are abelian schemes; we
denote their fibers at ` by J/F`

, and Jd/F`
, respectively. The fibers J/F`

and
Jd/F`

inherit an action of the appropriate Hecke algebra T from the induced
action of T on the Néron models. The Eichler–Shimura relation (see [14])

T` = Frob` + `〈`〉/Frob`
holds in End(J/F`

) (respectively, End(Jd/F`
)). We can, as usual, lift this

relation to the p-divisible group Jp(Q) (respectively, (Jd)p(Q)), where p is
any prime 6= `,N as well as to any étale subgroup of J`(Q). Of course, in
the lifted relation, Frob` is any `-Frobenius automorphism in Gal(Q/Q).

4. Maximal ideals of the Hecke algebra. The Hecke algebra T pre-
serves the cuspidal groups C and C∗. The Eisenstein ideal I (respectively, I∗)
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is the annihilator in T of C (respectively, C∗). It contains all elements of the
form T` − (1 + `〈`〉), for all ` 6= N (respectively, T` − (` + 〈`〉)). The max-
imal ideals M of T in the support of I or I∗ are called Eisenstein primes.
The residue characteristics of the Eisenstein primes are precisely the prime
divisors of the order M of the cuspidal group C. There are clearly only
a finite number of such ideals, and they are easily distinguished from the
non-Eisenstein primes. A consequence of [5] is that if P is a Q-rational tor-
sion point in J1(N) of prime order p > 2 then p is a divisor of M , and P is
cuspidal, i.e., P is annihilated by an Eisenstein prime.

From now on we write J for one of J1(N)/Q or Jd/Q. We will mostly
be concerned with non-Eisenstein maximal ideals of the appropriate Hecke
algebra T. IfM is such an ideal we assume thatM is unramified in T. The
set of ramified maximal ideals is finite, and is easily computable. The next
proposition is well known (see [4], for example).

Proposition 4.1. Let M be an unramified prime of T of residue char-
acteristic p, and let F be the residue field T/M. Then the following hold :

(1) TheM-adic Tate module Ta(M) is free of rank two over theM-adic
completion TM.

(2) The kernel J [M] is free of rank two over F.
(3) If all primes N of T of residue characteristic p are unramified then

T⊗ Zp ≈
∏

TN , where the product is taken over all maximal ideals
N | p.

(4) If all primes N of T of residue characteristic p are unramified then
T/pT ≈

∏
T/N , where the product is taken over all maximal ide-

als N | p.

5. Galois representations. In the following we assume that M is an
unramified, non-Eisenstein maximal ideal of T. We also assume that the
residue characteristic p of M is > 5, and 6= N . We write J [M] for the
group of M-torsion points of J , and %M : Gal(Q/Q) → GL2(F) for the
representation giving the natural action of the absolute Galois group on the
M-torsion points of J .

Proposition 5.1. The above assumptions about M and p imply that
the representation %M is irreducible.

Proof. We may assume that M is not an ideal of the Hecke algebra T
associated to J0(N) since Mazur [7] has proved the irreducibility in this
case. Now, if J [M] is reducible, we let L be a line fixed by Gal(Q/Q). We
let O be the ring of integers of Q(ζN )+, and let J/O be the Néron model of
J/Q(ζN )+ over SpecO. Let G be the Zariski closure of L in the kernel of M
on J/O. Then it follows from [8] that G is either (Z/pZ)f/O or (µp)

f
/O, where
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f is the residue class degree of M. In either case the arguments of [5] show
that M is Eisenstein, contrary to assumption.

The Eichler–Shimura relation shows that det(%M(Frob`)) = `·ε(`), where
ε is an even character of (Z/NZ)∗ through which 4 acts on J [M]. It will
be important to note that ε is unramified outside of N . We may thus view
the character det %M : Gal(Q/Q)→ F ∗ as the product χ · ε, where χ is the
p-cyclotomic character (which is, of course, unramified outside of p). Since
χ is an odd character (i.e., χ(c) = −1, where c is complex conjugation), and
ε is even, we see that det %M is also odd.

Now let I = Ip be a p-inertia subgroup of Gal(Q/Q), and write % for
%M. The semi-simplification of %|I is described by a pair of characters φ, φ∗ :
I → F ∗. Since det %|I = χ, the cyclotomic character, we must have φ·φ∗ = χ.
Moreover, since the weight (see [13]) of the representation % is 2 it follows
that either (1) φ or φ∗ is χ (and the other one is trivial), or (2) φ, φ∗ are
the fundamental characters of level two (see [13]). It follows, in either case,
that φ∗ · φ−1 is of order p± 1.

Proposition 5.2. Suppose that the order of ε is odd. Assume thatM is
an unramified , non-Eisenstein maximal ideal of residue characteristic p > 5.
Then the image of % has order divisible by p.

Proof. Let G = %(Gal(Q/Q)), and assume that p does not divide the
order of G. Let G be the image of G in PGL2(F). Since p > 5 we have the
following possibilities (see [12]): G is either cyclic, dihedral, or one of the
exceptional groups S4, A4, or A5.

If G is cyclic then G is abelian, which contradicts the irreducibility of %.
Thus, the case where G is cyclic does not occur.

Let I be the image of I in G. Then I is cyclic since it may be viewed as
the image of φ∗ · φ−1 (see [13]), which is a finite subgroup of F ∗. Moreover,
the order of I is p± 1. If p ≥ 7 this rules out the exceptional groups S4, A4,
and A5 since none of these groups has an element of order p± 1.

This leaves only the possibility that G is dihedral. Suppose that this
is indeed the case. Let C be the large cyclic subgroup of G. Then I is
contained in C since I is cyclic, and of order > 2. The quadratic extension
L of Q corresponding to C is thus unramified at p. It follows that only the
prime N can ramify in L, so that L must be the quadratic subfield of Q(ζN ).
However, since the order of ε is odd the ramification degree of N in L must
also be odd. Indeed, let d denote the order of ε. The module J [M] may
be realized as a module of torsion points on the quotient Jd, an abelian
variety that attains everywhere good reduction over the field Qd. It follows
immediately that the ramification degree of N must be odd, as claimed.
This shows that L is an everywhere unramified extension of Q, which is an
obvious contradiction. Thus, G is not dihedral, and p must divide the order
of the image of %, as desired.
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Remark. (1) If the order of ε is not divisible by 2 or 3 then we may
also include p = 5 in Proposition 5.2 as we can then conclude that the
exceptional groups S4, A4, and A5 do not occur. To see this note that G is
either S4, or A4 since its order is prime to 5. In fact, G must be S4 since I
must be cyclic of order 4, and A4 has no elements of order 4. We consider the
S3-extension K of Q arising from the quotient S3 of S4. Only the primes 5
and N can ramify in K, and the ramification degree of 5 must be 2. Since
the order of ε is not divisible by 2 or 3 we see that N must be unramified
in K. However, this means that K is an everywhere unramified extension
of Q(

√
5), which is impossible since Q(

√
5) has class number one.

(2) If the order of ε is even thenN ≡ 1 (mod 4). In that case the quadratic
subfield of Q(ζN ) is a real quadratic field. If we could show that the action of
complex conjugation on the quadratic field L was non-trivial then we would
again have a contradiction showing that G cannot be a dihedral group. We
can sometimes do this by mimicking [12] as follows. If G is dihedral then
%(G) is contained in the normalizer of a Cartan subgroup, but not in the
Cartan subgroup itself. If the Cartan subgroup is non-split then complex
conjugation c must act non-trivially on L since ±1 are the only involutions
in a non-split Cartan subgroup (so the image of c in G falls outside of the
large cyclic subgroup C). If we can prove that %(G) is never contained in the
normalizer of a split Cartan subgroup then we can eliminate the hypothesis,
in Proposition 5.2, that the order of ε is odd.

Corollary 5.3. Let M be an unramified , non-Eisenstein maximal
ideal of T of residue characteristic p > 5, and 6= N . Assume that the neben-
typus character ε associated to M has odd order. If % is the representation
of Gal(Q/Q) on the M-torsion points of J then Im(%) contains a subgroup
isomorphic to SL2(Fp).

Proof. We closely follow Serre [12, 2.4], and Ribet [10, Corollary 2.3].
Let G = %(Gal(Q/Q)), and let σ ∈ G be an element of order p. If v is a
non-zero vector in F⊕ F that is fixed by σ then there is a τ ∈ G such that
v and τv form a basis of F ⊕ F (since the irreducibility of % means that G
cannot fix the one-dimensional subspace spanned by v). Then the matrix
of % with respect to the basis {v, τv} is of the form A(α) =

(
1
0
α
1

)
, and the

matrix of τστ−1 is of the form B =
(

1
β

0
1

)
. Multiplying by an appropriate

scalar we may assume that α = 1. It is well known that the group generated
by A(1) and B contains SL2(Fp).

We fix an odd divisor d of (N−1)/2, and work on the abelian variety Jd.
We write M for a maximal ideal of T, and TM for its completion. We
continue to assume that M is unramified, so TM ⊗Q is a finite unramified
extension of Qp, and TM is a discrete valuation ring.
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We write R = RM for the representation Gal(Q/Q)→ GL2(TM) giving
the action of Gal(Q/Q) on the M-adic Tate module of Jd. It follows from
the Eichler–Shimura relation that the determinant of R is χε, where χ is
the p-adic cyclotomic character χ : Gal(Q/Q) → Z∗p, and ε is a character
cutting out the field Qd (ε takes values in an unramified extension of Zp).
Corollary 5.3 implies (as in Lemma 3 of [11, IV-23]) that the image of R
contains SL2(Zp).

6. Almost rational torsion. Ribet (see [1] and [9]) has introduced the
notion of almost rational torsion points on an abelian variety. He used this
idea to give a new and beautiful proof of the Manin–Mumford conjecture.
It also became immediately useful in proving the conjecture of Coleman,
Kaskel, and Ribet (see [3]) that only the cusps and hyperelliptic branch
points of X0(N) give rise to torsion points when the curve is embedded in
its jacobian. We recall the definition and basic properties of almost rational
torsion points here. Let A be an abelian variety over a field K. A point P
in A(K) is called almost rational over K if, for all σ, τ ∈ Gal(K/K), the
equation σ(P )+τ(P ) = 2P holds if and only if P = σ(P ) = τ(P ). Certainly,
any rational point is almost rational, as is any Galois conjugate of an almost
rational point. More important for us is the following.

Lemma 6.1.

(a) If P is almost rational over K, and σ ∈ Gal(K/K) is such that
(σ − 1)2 · P = 0, then σ fixes P .

(b) If L is an extension of K contained in K, and P is almost rational
over K, then P is almost rational over L.

Proof. (a) To see this one calculates (σ−1)2 ·P = σ2(P )−2σ(P )+P = 0.
Applying σ−1 we see that σ(P ) + σ−1(P ) = 2P . Since P is almost rational
we must have σ(P ) = σ−1(P ) = P .

(b) is clear from the definition of almost rational.

We wish to describe the primes p for which there exists an almost rational
torsion point of order pα on Jd. Let S be the set of all primes q such that ifM
is a maximal ideal of T of residue characteristic q then RM(Gal(Q/Q)) does
not contain SL2(Zq). At worst S contains the primes 2, 3, 5, N , the prime
divisors of M , and the residue characteristics of those M that are ramified
in T. Let p /∈ S be a prime, and suppose that there exists an almost rational
point P of order pα on Jd. If we write Rp for the Gal(Q/Q)-representation
on the p-adic Tate module, then, by the remarks at the end of §5, we know
that Rp(Gal(Q/Q)) contains a subgroup G isomorphic to

∏
SL2(Zp) (for

us even
∏

SL2(Z) will suffice), where the product is taken over all maximal
ideals of T of residue characteristic p. We let K be the extension of Q such
that Rp(Gal(K/K)) = G.
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By Lemma 6.1(b) the point P is almost rational over K. If σ ∈Gal(K/K)
is such that Rp(σ) is an element all of whose components in G ≈

∏
SL2(Zp)

are transvections then (σ − 1)2 · P = 0. Since P is almost rational, Lem-
ma 6.1(a) tells us that σ(P ) = P . Since P is fixed by all such σ, we see that
P must be 0. We have thus proved the following.

Theorem 6.2. Let N be a prime ≥ 13, and let d be an odd divisor of
(N−1)/2. If there is an almost rational point P on Jd of prime power order
pα then p ∈ S.
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