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1. Introduction. Let X be a variety over a number field F . For simpli-
city, let us assume in this introduction that the set X(F ) of rational points
is not empty. Let S be a finite set of places of F . One says that strong
approximation holds for X off S if the diagonal image of the set X(F ) of
rational points is dense in the space of S-adèles X(ASF ) (these are the adèles
where the places in S have been omitted) equipped with the adelic topology.
If this property holds for X, it in particular implies a local-global principle
for the existence of integral points on integral models of X over the ring of
S-integers of F .

For X projective, X(ASF ) =
∏
v/∈S X(Fv), and the adelic topology co-

incides with the product topology. A projective variety satisfies strong ap-
proximation off S if and only if weak approximation for the rational points
holds off S.

For open varieties, strong approximation has been mainly studied for
linear algebraic groups and their homogeneous spaces. A classical case is
m-dimensional affine space Am

F off any nonempty set S, a special case being
the Chinese Remainder Theorem. For a semisimple, almost simple, simply
connected linear algebraic group G such that

∏
v∈S G(Fv) is not compact,

strong approximation off S was established by Eichler, Kneser, Shimura,
Platonov, Prasad.

Strong approximation does not hold for groups which are not simply
connected, but one may define a Brauer–Manin set. In our paper [CTX],
we started the investigation of the Brauer–Manin obstruction to strong ap-
proximation for homogeneous spaces of linear algebraic groups. For such
varieties, this was quickly followed by works of Harari [H], Demarche [D],
Borovoi and Demarche [BD] and Wei and Xu [WX].
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Few strong approximation results are known for open varieties which
are not homogeneous spaces. Computations of the Brauer–Manin obstruc-
tion for some such varieties have recently been performed (Kresch and
Tschinkel [KT], Colliot-Thélène and Wittenberg [CTW]).

Just as for problems of weak approximation, it is natural to ask whether
strong approximation holds for the total space of a family f : X → Y when it
is known for the basis Y , for many fibres of f , and some algebraic-geometric
assumption is made on the map f .

In the present paper, we investigate strong approximation for varieties
X/F defined by an equation

q(x1, . . . , xn) = p(t),

where q is a quadratic form of rank n in n ≥ 3 variables and p(t) is a nonzero
polynomial.

In [Wat], Watson investigated integral points on affine varieties which are
the total space of families of quadrics over affine space Am

F . When restricted
to equations as above, in particular m = 1, and with coefficients in the
ring Z of integers, under a noncompacity assumption, his Theorems 1 and 2
establish the local-global principle for integral points when n ≥ 4 ([Wat,
Thm. 1, Thm. 2]). Under some additional condition, he also establishes a
local-global principle when n = 3 ([Wat, Thm. 3], see Remark 6.6 in the
present paper).

The paper is organized as follows.
In §2, we recall some definitions related to strong approximation and the

Brauer–Manin obstruction.
In §3, we give a simple general method for proving strong approximation

for the total space of a fibration. We apply it to varieties defined by an
equation q(x1, . . . , xn) = p(t) for n ≥ 4.

In §4, we detail results of [CTX] on the arithmetic of affine quadrics
q(x, y, z) = a.

In the purely algebraic §5, we compute the Brauer group of the smooth
locus, and of a suitable desingularization, of a variety defined by an equation
q(x, y, z) = p(t).

The most significant results are given in §6. The results of §4 and §5
are combined to study the strong approximation property off S for certain
smooth models of varieties defined by an equation q(x, y, z) = p(t), under
the assumption that the form q is isotropic at some place in S. For these
smooth models, when there is no Brauer–Manin obstruction, we establish
strong approximation off S. We give the precise conditions under which
strong approximation fails.

In §7 we give two numerical counterexamples to the local-global prin-
ciples for existence of integral points: this represents a drastic failure of
strong approximation in the cases where this is allowed by the results of §6.
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Concrete varieties often are singular. In that case the appropriate proper-
ties are “central strong approximation” and its Brauer–Manin variant. This
is briefly discussed in §8.

2. Basic definitions and properties. Let F be a number field, oF
be the ring of integers of F and ΩF be the set of all primes in F . For
each v ∈ ΩF , let Fv be the completion of F at v. Let ∞F be the set of
archimedean primes in F and write v < ∞F for v ∈ ΩF \ ∞F . For each
v < ∞F , let ov be the completion of oF at v and let πv be a uniformizer
of ov. Write ov = Fv for v ∈ ∞F .

For any finite subset S of ΩF , let FS =
∏
v∈S Fv. For any finite subset

S of ΩF containing ∞F , the S-integers are defined to be the elements in F
which are integral outside S. The ring of S-integers is denoted by oS . Let
AF ⊂

∏
v∈ΩF

Fv be the adelic group of F with its usual topology. For any

finite subset S of ΩF , one defines ASF ⊂
∏
v 6∈S Fv equipped with the analo-

gous adelic topology. The natural projection which omits the S-coordinates
defines a homomorphism of rings AF → ASF . For any variety X over F this
induces a map

prS : X(AF )→ X(ASF )

which is surjective if
∏
v∈S X(Fv) 6= ∅.

Definition 2.1. Let X be a geometrically integral F -variety. One says
that strong approximation holds for X off S if the image of the diagonal
map

X(F )→ X(ASF )

is dense in prS(X(AF )) ⊂ X(ASF ).

The statement may be rephrased as:

Given any nonempty open set W ⊂ X(ASF ), if X(AF ) 6= ∅, then the
diagonal image of X(F ) in X(AF ) meets W ×

∏
v∈S X(Fv).

If X satisfies strong approximation off S, and X(ASF ) 6= ∅, then we have
X(F ) 6= ∅ and, for any finite set T of places of F away from S, the diagonal
image of X(F ) is dense in

∏
v∈T X(Fv). In other words, X satisfies the Hasse

principle, and X satisfies weak approximation off S.

Proposition 2.2. Assume X(AF ) 6= ∅. If X satisfies strong approxi-
mation off a finite set S of places, then it satisfies strong approximation off
any finite set S′ with S ⊂ S′.

Proposition 2.3. Let U ⊂ X be a dense open subset of a smooth geo-
metrically integral F -variety X. If strong approximation off S holds for U ,
then strong approximation off S holds for X.
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Proof. This follows from the following statement: for X/F as in the
proposition, the image of U(AF ) in X(AF ) is dense. That statement itself
follows from two facts. Firstly, for a given place v, U(Fv) is dense in X(Fv)
(smoothness of X). Secondly, U admits a model U over a suitable oT such
that U(ov) 6= ∅ for all v /∈ T (because U/F is geometrically integral).

As explained in [CTX], one can refine Definition 2.1 by using the Brauer–
Manin set. Let X be an F -variety. Let Br(X) = H2

ét(X,Gm) and define

X(AF )Br(X) =
{
{xv}v∈ΩF

∈ X(AF ) : ∀ξ ∈ Br(X),
∑
v∈ΩF

invv(ξ(xv)) = 0
}
.

This is a closed subset of X(AF ). Class field theory implies

X(F ) ⊂ X(AF )Br(X) ⊂ X(AF ).

Let
X(ASF )Br(X) := prS(X(AF )Br(X)) ⊂ X(ASF ).

Definition 2.4. Let X be a geometrically integral variety over the num-
ber field F . If the diagonal image of X(F ) in (X(ASF ))Br(X) ⊂ X(ASF ) is
dense, we say that strong approximation with Brauer–Manin obstruction
holds for X off S.

As above, the statement may be rephrased as:

Given any open set W ⊂ X(ASF ), if [W ×
∏
v∈S X(Fv)]

Br(X) 6= ∅, then
there is a point of the diagonal image of X(F ) in W×

∏
v∈S X(Fv) ⊂ X(AF ).

Proposition 2.5. Assume X(AF ) 6= ∅. If strong approximation with
Brauer–Manin obstruction holds for X off a finite set S of places, then it
holds off any finite set S′ with S ⊂ S′.

Proposition 2.6. Let F be a number field. Let U ⊂ X be a dense open
set of a smooth geometrically integral F -variety X. Assume:

(i) X(AF ) 6= ∅;
(ii) the quotient Br(U)/Br(F ) is finite.

Let S be a finite set of places of F . If strong approximation with Brauer–
Manin obstruction off S holds for U , then it holds for X.

Proof. There exists a finite subgroup B ⊂ Br(U) such that B generates
Br(U)/Br(F ) and B ∩ Br(X) generates Br(X)/Br(F ). There exists a finite
set T of places of k containing S and all the archimedean places, and smooth
oT -schemes U ⊂ X with geometrically integral fibres over the points of
Spec(oT ) such that:

(a) The restriction U ⊂ X over Spec(F ) ⊂ Spec(oT ) is U ⊂ X.
(b) B ⊂ Br(U).
(c) B ∩ Br(X) ⊂ Br(X).
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(d) For each v /∈ T , U(ov) 6= ∅ (this uses the fact that U → Spec(oT )
is smooth with geometrically integral fibres, the Weil estimates and
the fact that we took T big enough).

To prove the proposition, it is enough to show:

Given any finite set T as above and given, for each place v ∈ T \ S, an
open set Wv ⊂ X(Fv) such that the set[∏

v∈S
X(Fv)×

∏
v∈T\S

Wv ×
∏
v/∈T

X(ov)
]Br(X)

is not empty, it follows that this set contains a point of the diagonal image
of X(F ) in X(AF ).

Each α ∈ B ∩ Br(X) vanishes when evaluated on X(ov). For any ele-
ment α ∈ Br(X) and any place v, the map X(Fv) → Br(Fv) ⊂ Q/Z given
by evaluation of α is locally constant. Since X is smooth, for each place v,
the set U(Fv) is dense in X(Fv) for the local topology. In particular, for
v /∈ T , the set X(ov) ∩ U(Fv) is not empty. There thus exists a point
{Mv} ∈ X(AF ) which lies in the above set such that Mv ∈ U(Fv) for v ∈ T
and Mv ∈ X(ov) ∩ U(Fv) for v /∈ T .

We now use Harari’s formal lemma in the version given in [CT]. Accord-
ing to the proof of [CT, Théorème 1.4], there exist a finite set T1 of places
of k, T1 ∩ T = ∅, and for v ∈ T1 points Nv ∈ X(ov) ∩ U(Fv) such that∑

v∈T
β(Mv) +

∑
v∈T1

β(Nv) = 0

for each β ∈ B.

For v ∈ T , let Nv = Mv. For v /∈ T ∪ T1, let Nv ∈ U(ov) be an arbitrary
point. The adèle {Nv} of X belongs to[∏

v∈S
X(Fv)×

∏
v∈T\S

Wv ×
∏
v/∈T

X(ov)
]Br(X)

.

It is the image of an adèle of U which lies in[∏
v∈S

U(Fv)×
∏

v∈T\S

Wv ∩U(Fv)×
∏
v∈T1

U(Fv) ∩X(ov)×
∏

v/∈T∪T1

U(ov)
]Br(U)

.

Using the finiteness of B and the continuity of the evaluation map
U(Fv) → Br(Fv) attached to each element of B, we find that there exist
open sets W ′v ⊂ U(Fv) for v ∈ T ∪ T1, with W ′v ⊂ Wv for v ∈ T \ S, such
that the subset [ ∏

v∈T∪T1

W ′v ×
∏

v/∈T∪T1

U(ov)
]Br(U)
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of the adèles of U is nonempty. Since strong approximation with Brauer–
Manin obstruction off S holds for U , hence off T ∪ T1 since S ⊂ T , there
exists a point in the diagonal image of U(F ) in U(AF ) which lies in this set.

Since this set maps into[∏
v∈S

X(Fv)×
∏

v∈T\S

Wv ×
∏
v/∈T

X(ov)
]Br(X)

via the inclusion U ⊂ X, this concludes the proof.

Lemma 2.7. Let F be a number field. Let U ⊂ X be a dense open set
of a smooth geometrically integral F -variety X. Assume X(AF ) 6= ∅. Let
α1, . . . , αn ∈ Br(X). Let S be a finite set of places of F . The image of the
evaluation map U(ASF ) → (Q/Z)n defined by the sum of the invariants of
each αi on the U(Fv) for v /∈ S coincides with the image of the analogous
evaluation map X(ASF )→ (Q/Z)n.

Proof. There is a natural map U(ASF ) → X(ASF ) which is compatible
with evaluation of elements of Br(X), hence one direction is clear. Let
{Mv} ∈ X(ASF ). There exist a finite set T of places containing S and regular
integral models U ⊂ X of U ⊂ X over oT such that αi ∈ Br(X) ⊂ Br(U)
for each i = 1, . . . , n, such that Mv ∈ X(ov) for each v /∈ T , and such that
moreover U(ov) 6= ∅ for v /∈ T . For v ∈ T \ S, let Nv ∈ U(Fv), v ∈ T \ S,
be close enough to Mv ∈ X(Fv) that αi(Nv) = αi(Mv) for each i = 1, . . . , n
(such points exist since X is smooth). For v /∈ T , let Nv be an arbitrary
point of U(ov). Then∑

v/∈S

αi(Mv) =
∑

v∈T, v /∈S

αi(Mv) =
∑

v∈T, v /∈S

αi(Nv) =
∑
v/∈S

αi(Nv).

Proposition 2.8. Let F be a number field. Let U ⊂ X be a dense open
set of a smooth geometrically integral F -variety X. Assume X(AF ) 6= ∅.

(i) Assume Br(X)/Br(F ) finite. If prS(X(AF )Br(X)) is strictly smaller
than X(ASF ), then prS(U(AF )Br(U)) is strictly smaller than U(ASF ).

(ii) If Br(X) → Br(U) is an isomorphism and if prS(U(AF )Br(U)) is
strictly smaller than U(ASF ), then prS(X(AF )Br(X)) is strictly
smaller than X(ASF ).

Proof. (i) Let αi ∈ Br(X), i = 1, . . . , n, generate Br(X)/Br(F ).
If prS(X(AF )Br(X)) is strictly smaller than X(ASF ), then there exists an

adèle {Mv} ∈ X(ASF ) such that for each {Nv} ∈
∏
v∈S X(Fv) there exists

αi such that ∑
v/∈S

αi(Mv) +
∑
v∈S

αi(Nv) 6= 0 ∈ Q/Z.

In other words, the image of the map
∏
v∈S X(Fv) → (Q/Z)n given by

{Nv} 7→
∑

v∈S αi(Nv) does not contain {−
∑

v/∈S αi(Mv)} ∈ (Q/Z)n. By
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Lemma 2.7, there exists an adèle {M ′v} ∈ U(ASF ) such that{
−
∑
v/∈S

αi(M
′
v)
}

=
{
−
∑
v/∈S

αi(Mv)
}
∈ (Q/Z)n.

Thus for each {N ′v} ∈
∏
v∈S U(Fv) there exists some i such that∑

v/∈S

αi(M
′
v) +

∑
v∈S

αi(N
′
v) 6= 0 ∈ Q/Z.

Hence {M ′v} ∈ U(ASF ) does not belong to prS(U(AF )BrU ).

(ii) Let {Mv} ∈U(ASF ) be an adèle such that for each {Nv} ∈
∏
v∈S U(Fv)

there exists α ∈ Br(U) such that∑
v/∈S

α(Mv) +
∑
v∈S

α(Nv) 6= 0 ∈ Q/Z.

The adèle {Mv} ∈ U(ASF ) defines an adèle {Mv} ∈ X(ASF ). By hypothesis
Br(X) = Br(U). For each α ∈ Br(X) = Br(U), the image of the evaluation
map of α ∈ Br(X) on U(Fv) coincides with the image of the evaluation map
on X(Fv). We conclude that for each {Nv} ∈

∏
v∈S X(Fv) there exists an

element α ∈ Br(X) such that∑
v/∈S

α(Mv) +
∑
v∈S

α(Nv) 6= 0 ∈ Q/Z.

3. The easy fibration method

Proposition 3.1. Let F be a number field and f : X → Y be a mor-
phism of smooth quasi-projective geometrically integral varieties over F . As-
sume that all geometric fibres of f are nonempty and integral. Let W ⊂ Y
be a nonempty open set such that fW : f−1(W )→W is smooth.

Let S be a finite set of places of F . Assume:

(i) Y satisfies strong approximation off S.
(ii) The fibres of f above F -points of W satisfy strong approximation

off S.
(iii) For each v ∈ S the map f−1(W )(Fv)→W (Fv) is onto.

Then X satisfies strong approximation off S.

Proof. There exist a finite set T of places containing all archimedean
places and a morphism of smooth quasi-projective oT -schemes φ : X → Y
which restricts to f : X → Y over F , and such that:

(a) All geometric fibres of φ are geometrically integral.
(b) For any closed point m of Y, the fibre at m, which is a variety over

the finite field κ(m), contains a smooth κ(m)-point.
(c) For any v /∈ T , the induced map X (ov)→ Y(ov) is onto.
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The proof of this statement combines standard results from EGA IV 9 and
the Lang–Weil estimates for the number of points of integral varieties over
a finite field. Many variants have already appeared in the literature.

To prove the proposition, it is enough to show:

Given any finite set T as above, with S ⊂ T , and given, for each place
v ∈ T \ S, an open set Uv ⊂ X(Fv) such that the open set∏

v∈S
X(Fv)×

∏
v∈T\S

Uv ×
∏
v/∈T

X(ov)

of X(AF ) is not empty, this set contains a point of the diagonal image of
X(F ) in X(AF ).

The Zariski open set f−1(W ) ⊂ X is not empty. For each v ∈ T \ S, we
may thus replace Uv by the nonempty open set Uv ∩ f−1(W )(Fv). Since f is
smooth on f−1(W ), f(Uv) ⊂ Y (Fv) is an open set. By hypothesis (i), there
exists a point N ∈ Y (F ) whose diagonal image lies in the open set∏

v∈S
Y (Fv)×

∏
v∈T\S

f(Uv)×
∏
v/∈T

Y(ov)

of Y (AF ). Let Z = XN = f−1(N). The point N comes from a point N
in Y(oT ). The oT -scheme Z := φ−1(N) is thus a model of Z. For v /∈ T ,
statement (c) implies Z(ov) 6= ∅. By assumption (iii), we have Z(Fv) 6= ∅
for each v ∈ S. For v ∈ T \ S, the intersection Uv ∩ Z(Fv) by construction
is a nonempty open set of Z(Fv). Assumption (ii) now guarantees that the
product ∏

v∈S
Z(Fv)×

∏
v∈T\S

Uv ∩ Z(Fv)×
∏
v/∈T

Z(ov)

contains the diagonal image of a point of Z(F ). This defines a point in X(F )
which lies in the given open set of X(AF ).

Let us recall a well known fact.

Proposition 3.2. Let F be a number field. Let q(x1, . . . , xn) be a non-
degenerate quadratic form over F and let c ∈ F×. Assume n ≥ 4. Let X be
the smooth affine quadric defined by q(x1, . . . , xn) = c. Suppose X(Fv) 6= ∅
for each real completion Fv. Then X(F ) 6= ∅. Let v0 be a place of F such
that the quadratic form q is isotropic at v0. Then X satisfies strong app-
proximation off any finite set S ⊂ ΩF containing v0.

Proof. This goes back to Eichler and Kneser. See [CTX, Thm. 3.7(b)
and Thm. 6.1].

Lemma 3.3. Let q(x1, . . . , xn) (n ≥ 1) be a nondegenerate quadratic form
over a field k of characteristic different from 2. Let p(t) ∈ k[t] be a nonzero
polynomial. Let X be the affine k-scheme defined by q(x1, . . . , xn) = p(t).
The singular points of X are the points defined by xi = 0 (all i) and t = θ
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with θ a multiple root of p(t). In particular, if p(t) is a separable polynomial,
then X is smooth over k.

Proposition 3.4. Let F be a number field and X be an F -variety de-
fined by an equation

q(x1, . . . , xn) = p(t)

where q(x1, . . . , xn) is a nondegenerate quadratic form with n ≥ 4 over F
and p(t) 6= 0 is a polynomial in F [t]. Let X̃ be any smooth geometrically
integral variety which contains the smooth locus Xsmooth as a dense open
set. Assume Xsmooth(Fv) 6= ∅ for each real place v of F . Then:

(1) X̃(F ) is Zariski-dense in X̃.
(2) X̃ satisfies weak approximation.

Let v0 be a place of F such that q is isotropic over Fv0. Then:

(3) X̃ satisfies strong approximation off any finite set S of places which
contains v0.

Proof. Statements (1) and (2), which are easy, are special cases of
[CTSaSD, Prop. 3.9, p. 66]. Let us prove (3) for X̃ = Xsmooth, the smooth
locus of X. Let f : Xsmooth → A1

F be given by the coordinate t. By Propo-
sition 2.2, it suffices to prove the theorem for S = {v0}. Let W be the
complement of p(t) = 0 in A1

F . Given Proposition 3.2 and Lemma 3.3,

statement (3) for X̃ = Xsmooth is an immediate consequence of Proposi-
tion 3.1 applied to the map f . Statement (3) for an arbitrary X̃ is then an
immediate application of Proposition 2.3.

4. The equation q(x, y, z) = a. Let q(x, y, z) be a nondegenerate
quadratic form over a field k of characteristic zero and let a ∈ k∗. Let
Y/k be the affine quadric defined by the equation

q(x, y, z) = a.

This is an open set in the smooth projective quadric defined by the homo-
geneous equation

q(x, y, z)− au2 = 0.

Let d = −adet(q) ∈ k×.

Proposition 4.1 ([CTX, §5.6, §5.8]). Assume Y (k) 6=∅. If d is a square,
then Br(Y )/Br(k) = 0. If d is not a square, then Br(Y )/Br(k) = Z/2. For
any field extension K/k, the natural map Br(Y )/Br(k)→ Br(YK)/Br(K) is
surjective.

(i) If αx + βy + γz + δ = 0 is an affine equation for the tangent plane
of Y at a k-point of the projective quadric q(x, y, z)− au2 = 0 then
the quaternion algebra (αx + βy + γz + δ, d) ∈ Br(k(Y )) belongs to
Br(Y ) and it generates Br(Y )/Br(k).
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(ii) Assume q(x, y, z) = xy − det(q)z2. Then the quaternion algebra
(x, d) ∈ Br(k(Y )) belongs to Br(Y ) and it generates Br(Y )/Br(k).

Lemma 4.2. Let F be a number field. Let q(x1, . . . , xn) be a nondege-
nerate quadratic form over F . Let v be a nondyadic valuation of F . Assume
that n ≥ 3. If the coefficients of q(x1, . . . , xn) are in ov and the determi-
nant of q(x1, . . . , xn) is a unit in ov, then for any d ∈ ov the equation
q(x1, . . . , xn) = d admits a solution (α1, . . . , αn) in ov such that one of
α1, . . . , αn is a unit in o×v .

Proof. This follows from Hensel’s lemma.

Lemma 4.3. Let v be a nondyadic valuation of a number field F . Let
q(x, y, z) be a quadratic form defined over ov with v(det(q)) = 0. Let a ∈ ov,
a 6= 0. Let Y be the ov-scheme defined by the equation

q(x, y, z) = a.

Let Y be the generic fibre of Y over Fv. Assume −a det(q) /∈ F×2
v . Let

Y∗(ov) = {(xv, yv, zv) ∈ Y(ov) : one of xv, yv, zv is in o×v }.
An element which represents the nontrivial element of Br(Y )/Br(Fv) takes
two values over Y∗(ov) if and only if v(a) is odd.

Proof. After an invertible ov-linear change of coordinates, one may write

q(x, y, z) = xy − det(q)z2

over ov. In the new coordinates, the set Y∗(ov) is still defined by the same
conditions on the coordinates. By Proposition 4.1, one has

Br(Y )/Br(Fv) ' Z/2 for −a det(q) /∈ F×2

v

and the generator is given by the class of the quaternion algebra

(x,−adet(q)) ∈ Br(Fv(Y )).

If v(a) = v(−adet(q)) is odd, one can choose (xv, yv, 0) ∈ Y∗(ov) where
xv is a square, resp. a nonsquare, unit in o×v . On these points, (x,−adet(q))
takes the value 0, resp. 1/2.

If v(a) = v(−a det(q)) is even, we claim that for any (xv, yz, zv) ∈ Y∗(ov),
v(xv) is even. Indeed, suppose there exists (xv, yv, zv) ∈ Y∗(ov) such that
v(xv) is odd. Then yv or zv is in o×v . If we have zv ∈ o×v , then by Hensel’s

lemma −adet(q) ∈ F×
2

v , which is excluded. We thus have zv /∈ o×v and
yv ∈ o×v . This implies v(xvyv) is odd. Therefore

v(−det(q)z2
v) = v(a) < v(xvyv)

and −adet(q) ∈ F×2

v by Hensel’s lemma. A contradiction is derived and the
claim follows. By the claim, the algebra (x,−a det(q)) vanishes on Y∗(ov).
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Lemma 4.4. Let k = Fv be a completion of the number field F . Let
q(x, y, z) be a nondegenerate quadratic form over k and let a ∈ k×. Let Y
be the affine k-scheme defined by the equation

q(x, y, z) = a.

Assume −a det(q) /∈ k×2. Assume Y has a k-point. Then Br(Y )/Br(k)
' Z/2. Let ξ be an element of Br(Y ) with nonzero image in Br(Y )/Br(k).
Then ξ takes a single value over Y (k) if and only if v is a real place and q
is anisotropic over Fv.

Proof. By Proposition 4.1, one has

Br(Y )/Br(k) ' Z/2.
Let V be the quadratic space defined by q(x, y, z) over k. Fix a k-point
m ∈ Y (k). To prove the lemma, we may take ξ ∈ Br(Y ) to be the nonzero
element, of order 2, which vanishes at m. Associated to the k-point m we
have the map SO(V ) → Y sending g to g.m. By a theorem of Witt, this
map induces a surjective map SO(V )(k) → Y (k). By [CTX, p. 331], the
composite map

SO(V )(k)→ Y (k)→ Br(k),

where the map Y (k) → Br(k) is defined by evaluation of ξ, coincides with
the composite map

SO(V )(k)→ k×/k×2 → k×/NK/k(K
×) ↪→ Br(k),

where K = k(
√
−a det(q)), the map k×/NK/k(K

×) ↪→ Br(k) sends c ∈ k×
to the class of the quaternion algebra (c,−a det(q)), the map θ : SO(V )(k)
→ k×/k×2 is the spinor map, and k×/k×2 → k×/NK/k(K

×) is the natural
projection. This last map is onto, and it is by assumption an isomorphism
if k = R. For k a nonarchimedean local field, the spinor map is surjective
[OM, 91:6]. For k = R, the spinor map has trivial image in R×/R×2 ' ±1
if and only if the quadratic form q is anisotropic.

The following proposition does not appear formally in §6 of [CTX], where
attention is restricted to schemes over the whole ring of integers. It follows
however easily from Thm. 3.7 and §5.6 and §5.8 of [CTX].

Proposition 4.5. Let F be a number field. Let Y/F be a smooth affine
quadric defined by an equation

q(x, y, z) = a.

Assume Y (F ) 6= ∅. Let S be a finite set of places of F . Assume there ex-
ists v0 ∈ S such that q is isotropic over Fv0. Then strong approximation
with Brauer–Manin obstruction off S holds for Y . Namely, the image of
Y (F ) under the diagonal map Y (F ) → Y (ASF ) is dense in the image of

Y (AF )Br(Y ) ⊂ Y (AF ) under the projection map Y (AF )→ Y (ASF ).
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5. Computation of Brauer groups for the equation q(x, y, z)=p(t).
Let k be a field of characteristic zero, q(x, y, z) a nondegenerate quadratic
form in three variables over k, and p(t) ∈ k[t] a nonzero polynomial.

Let X be the affine variety defined by the equation

(5.1) q(x, y, z) = p(t).

The singular points of Xk are the points (0, 0, 0, t) with t a multiple root
of p (Lemma 3.3). Let U ⊂ Xsmooth be the complement of the closed set of
X defined by x = y = z = 0.

Let π : X̃ → X a desingularization of X, i.e. X̃ is smooth and in-
tegral, the k-morphism π is proper and birational. We moreover assume
that the map π : π−1(Xsmooth) → Xsmooth is an isomorphism. In particular
π : π−1(U)→ U is an isomorphism.

Write p(t) = cp1(t)e1 . . . ps(t)
es , where c is in k× and the pi(t), 1 ≤ i ≤ s,

are distinct monic irreducible polynomials over k. Let ki = k[t]/(pi(t)) for
1 ≤ i ≤ s.

Let K = k(t) where k is an algebraic closure of k. The polynomial p(t)
is a square in K if and only if all the ei are even.

In this section we compute the Brauer group of U and the Brauer
group of the desingularization X̃ of X. By purity for the Brauer group

[G, Thm. (6.1)], we have Br(Xsmooth)
'→Br(U), and the group Br(X̃) does

not depend on the choice of the resolution of singularities X̃ → X (see
[G, Cor. (7.3) and Thm. (7.4)].)

The following lemma is well known (see [CTSk, Thm. 2.5]).

Lemma 5.1. Let F be a field, char(F ) 6= 2. Let F be a separable closure
of F , and let g = Gal(F/F ). Let f(x, y, z, t) be a nondegenerate quadratic
form over F . Let d ∈ F× be its discriminant. Let X ⊂ P3

F be the smooth
quadric defined by f = 0.

(a) There is an isomorphism of g-lattices Pic(X) ' Ze1 ⊕ Ze2, with the
following Galois action.

(b) If d ∈ F×2, the action of g on Pic(X) is trivial.
(c) If d /∈ F×2, the action of g factors through Gal(F (

√
d)/F ), the non-

trivial element of the latter group acting by permutation of e1 and e2.
(d) The class e1 + e2 belongs to Pic(X) ⊂ Pic(X); it is the class of a

hyperplane section of the quadric X ⊂ P3
F .

(e) There is a natural exact sequence

0→ Pic(X)→ Pic(X)g → Br(F )→ Br(X)→ 0.

Proposition 5.2. Let p(t) = cp1(t)e1 . . . ps(t)
es, q(x, y, z) and U be as

at the beginning of this section. If p(t) is not a square in K = k(t), i.e. if
not all ei are even, then the natural map Br(k)→ Br(U) is an isomorphism.
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Proof. Let Z be the closed subscheme of P3
k×A1

k defined by the equation

q(x, y, z) = p(t)u2

where (x, y, z, u) are homogeneous coordinates for P3
k. Then X can be re-

garded as an open set in Z with u 6= 0. The complement of X in Z is given
by u = 0 and is isomorphic to D = C ×k A1

k where C is the projective conic

in P2
k defined by q(x, y, z) = 0. Let f : P3

k × A1
k → A1

k be the projection
onto A1

k. We shall abuse notation and also denote by f the restriction of f
to Zariski open sets of X.

Let Uk = U ×k k. Let UK = U ×A1
k

Spec(K) and ZK = Z ×A1
k

Spec(K).

Any invertible function on UK ⊂ ZK has its divisor supported in u = 0,
which is an irreducible curve over K. Hence such a function is a constant
in K×. Since the fibres of f : U → A1

k are nonempty, any invertible function
on Uk is the inverse image of a function in K[U ]× = K× which is invertible

on A1
k
, hence is in k

×
. Thus

k[U ]× = k
×
.

Let V = Zsmooth and Vk = V ×k k. Since p(t) is not a square in K, the
K-variety

VK = V ×A1
k

Spec(K) ⊂ P3
K

is a smooth projective quadric defined by a quadratic form whose discrimi-
nant is not a square. By Lemma 5.1(c),(e) together with Br(K) = 0 (Tsen’s
theorem), this implies that the abelian group Pic(VK) is free of rank one
and is spanned by the class of a hyperplane section of VK . Since UK ⊂ VK is
the complement of the hyperplane section u = 0, this implies Pic(UK) = 0.
Since U is smooth, Pic(A1

k
) = 0 and all the fibres of f : U → A1

k are geomet-

rically integral, the restriction map Pic(Uk)→ Pic(UK) is an isomorphism.
Thus

Pic(Uk) = 0.

Lemma 5.1(e) and Br(K) = 0 then yield Br(VK) = 0. Moreover, since
Vk is regular, the natural map Br(Vk) → Br(VK) is injective. Therefore
Br(Vk) = 0.

Let

Ck = C ×k k and Dk = D ×k k.
Since D = C ×k A1

k and Ck ' P1
k
, we have H1

ét(Dk,Q/Z) = 0. Since Dk is
a smooth divisor in the smooth variety Vk, we have the exact localization
sequence

0→ Br(Vk)→ Br(Uk)→ H1
ét(Dk,Q/Z).

One concludes

Br(Uk) = 0.
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The Hochschild–Serre spectral sequence for the étale cohomology of the
sheaf Gm and the projection morphism U → Spec(k) yields a long exact
sequence

Pic(Uk)
g → H2(g, k[U ]×)→ ker[Br(U)→ Br(Uk)]→ H1(g,Pic(Uk))

where g = Gal(k/k). Combining it with the displayed isomorphisms, we get

Br(k) ' Br(U).

Let us now consider the case where p(t) is a square in K = k(t).

Proposition 5.3. Let p(t) = cp1(t)e1 . . . ps(t)
es, q(x, y, z) and U be as

above. Assume all ei are even, i.e. p(t) = cr(t)2 with c ∈ k× and r(t) ∈ k[t]
nonzero. Let d = −cdet(q). The following conditions are equivalent:

(i) d is not a square in k and the natural map H3
ét(k,Gm)→ H3

ét(U,Gm)
is injective;

(ii) Br(U)/Br(k) = Z/2.

If they are not satisfied then Br(U)/Br(k) = 0.

Proof. We keep the same notation as that in the proof of Proposition 5.2,
in particular g = Gal(k/k). Let M = k(

√
d). If d /∈ k×2, let Z̃d be the rank

one g-lattice defined by the Gal(M/k)-lattice such that σ.x = −x for σ the

nontrivial element in Gal(M/k). If d ∈ k×2, let Z̃d = Z with trivial g-action.

Since p(t) is a square in K = k(t), one has Pic(VK) ∼= Ze1 ⊕ Ze2 (cf.
Lemma 5.1). The Galois group g = Gal(k/k) acts on Pic(VK) trivially if
d ∈ k×2. If d /∈ k×2, then Gal(k/k) acts on Pic(VK) through Gal(M/k)
with permutation action on the two generators e1 and e2. We thus have an
isomorphism of g-modules Pic(UK) ∼= Z̃d.

By the same argument as in the proof of Proposition 5.2, one has

k
×

= k[U ]×, Pic(Uk) ' Pic(UK) ' Z̃d, Br(Uk) = 0.

Using Br(Uk) = 0, we deduce from the Hochschild–Serre spectral sequence
a long exact sequence

Br(k)→ Br(U)→ H1(g,Pic(Uk))→ H3
ét(k,Gm)→ H3

ét(U,Gm).

If d ∈ k×2, one has

H1(g,Pic(Uk)) = Homcont(g,Z) = 0

and the long exact sequence yields Br(U)/Br(k) = 0.

Assume d /∈ k×2. From

H1(g,Pic(Uk)) = H1(g, Z̃d) = Z/2
one gets the inclusion Br(U)/Br(k) ⊂ Z/2, which is an equality if and only
if H3

ét(k,Gm)→ H3
ét(U,Gm) is injective.
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Remark 5.4. The natural map H3
ét(k,Gm) → H3

ét(U,Gm) is injective
under each of the following hypotheses:

(i) the open set U has a point over a finite, odd degree extension of k;
(ii) the field k is a number field (in which case H3

ét(k,Gm) = 0).

Proposition 5.5. Keep the notation as in Proposition 5.3. Assume that
Br(U)/Br(k) = Z/2. Then:

(a) For any field extension L/k, the map Br(U)/Br(k)→ Br(UL)/Br(L)
is onto.

(b) For any field extension L/k and any α ∈ A1(L) with p(α) 6= 0, the
evaluation map Br(U)/Br(k)→ Br(Uα)/Br(L) on the fibre Uα with
equation q(x, y, z) = p(α) is onto.

Proof. The long exact sequence

Br(k)→ Br(U)→ H1(gk,Pic(Uk))→ H3
ét(k,Gm)→ H3

ét(U,Gm)

is functorial in the base field k. The assumption Br(U)/Br(k) = Z/2 and
the possible Galois actions of the Galois group on Pic(Uk) (as discussed in
the proof of the previous proposition) imply that the map Br(U)/Br(k) →
H1(gk,Pic(Uk)) is an isomorphism.

(a) Let L be an algebraic closure of L extending k ⊂ k. If we have
Br(UL)/Br(L) = 0, the assertion is obvious. If Br(UL)/Br(L) 6= 0, then
d /∈ L×2 and Br(UL)/Br(L) = H1(gL,Pic(UL)) = Z/2. The natural map
Pic(Uk)→ Pic(UL) is an isomorphism of free rank one abelian groups which
is moreover Galois-equivariant. Under the hypothesis d /∈ L×2, it is an iso-
morphism of Gal(M/k)-modules. Thus the natural map H1(gk,Pic(Uk))→
H1(gL,Pic(UL)) is an isomorphism. This implies that the map

Br(U)/Br(k)→ Br(UL)/Br(L)

is an isomorphism, as claimed in (a).
(b) If d is a square in L, then Br(Uα)/Br(L) = 0. Assume d /∈ L×2. Let

L be an algebraic closure of L extending k ⊂ k. By the functoriality of the
Hochschild–Serre spectral sequence for the morphism Uα → U , we have a
commutative diagram of exact sequences

(5.2)

Br(k)→ Br(U) → H1(gk,Pic(Uk)) →H
3
ét(k,Gm) → H3

ét(U,Gm)

↓ ↓ ↓ ↓ ↓
Br(L)→Br(Uα)→ H1(gL,Pic(Uα,L))→H3

ét(L,Gm)→ H3
ét(Uα,Gm)

One readily verifies that the evaluation map Pic(Uk) → Pic(Uα,L) is an

isomorphism of Galois modules (split by a quadratic extension), hence the
map H1(gk,Pic(Uk)) → H1(gL,Pic(Uα,L)) is an isomorphism Z/2 = Z/2.

From the diagram we conclude that Br(U)→ Br(Uα)/Br(L) is onto.
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Proposition 5.6. Let p(t) = c
∏
i∈I pi(t)

ei, q(x, y, z), X, U and the map

π : X̃ → X be as above. Assume H3
ét(k,Gm)→ H3

ét(U,Gm) is injective. Let
d = −cdet(q). Consider the following conditions:

(i) All ei are even, i.e. p(t) = cr(t)2 for c ∈ F× and some r(t) ∈ k[t].
(ii) d /∈ k×2.

(iii) For each i ∈ I, d ∈ k×2
i .

We have:

(a) If (i) or (ii) or (iii) is not fulfilled, then Br(X̃)/Br(k) = 0.

(b) Assume U(k) 6= ∅. If (iii) is fulfilled, then Br(X̃)
'→Br(U).

(c) If (i), (ii) and (iii) are fulfilled, then

Br(X̃)/Br(k)
'→Br(U)/Br(k) = Z/2.

In that case, for any field extension L/k and any α ∈ L such that
p(α) 6= 0, the evaluation map Br(X̃)/Br(k) → Br(Xα)/Br(L) is
surjective.

Proof. One has Br(X̃) ⊂ Br(U).
(a) By Proposition 5.2, resp. 5.3, if (i), resp. (ii), is not fulfilled, then

Br(U)/Br(k) = 0. Assume (i) and (ii) are fulfilled. Proposition 5.3 then gives
Br(U)/Br(k) ' Z/2.

Let F be the function field of the smooth projective conic C defined by

q(x, y, z) = 0. Assume (iii) does not hold. Let i ∈ I be such that d /∈ k×2
i .

Let Fi be the composite field Fki. Since k is algebraically closed in F , so is
ki in Fi. Thus d is not a square in Fi.

By the same argument as in Proposition 5.5, the map

Z/2 = Br(U)/Br(k)→ Br(UFi)/Br(Fi)

is an isomorphism. Over the field Fi, one may rewrite the equation of XFi

as
xy − det(q)z2 = cr(t)2

and assume that t = 0 is a root of r(t). After restriction to the generic fibre
of UFi → Spec(Fi[t]), the quaternion algebra (x, d) ∈ Br(Fi(X)) defines
a generator modulo Br(Fi(t)). This follows from Proposition 4.1. Now the
algebra (x, d) = (y det(q), d) is unramified on the complement of the closed
set {x = y = 0} on UFi , of codimension 2 in UFi , therefore (x, d) belongs to
Br(UFi). It thus generates Br(UFi)/Br(Fi).

Define h(T ) ∈ k[T ] by Th(T ) = cr(T )2. Consider the morphism

σ : Spec(Fi[[T ]])→ X defined by (x, y, z, t) = (T, h(T ), 0, T ).

The induced morphism Spec(Fi((T ))) → X has its image in U . Because
π : X̃ → X is proper, we conclude that the morphism σ lifts to a mor-
phism σ̃ : Spec(Fi[[T ]])→ X̃. Suppose that (x, d) ∈ Br(UFi) is in the image
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of Br(X̃Fi) → Br(UFi). Then σ̃∗((x, d)) = (T, d) belongs to Br(Fi[[T ]]).

But the residue of (T, d) ∈ Br(Fi(T )) at T = 0 is d 6= 1 ∈ F×i /F
×2
i .

This is a contradiction. Now Proposition 5.5 implies that the embedding
Br(X̃)/Br(k) ↪→ Br(U)/Br(k) = Z/2 is not onto, hence Br(X̃)/Br(k) = 0.

(b) Let E = k(
√
d). Proposition 5.3 yields Br(UE)/Br(E) = 0. Using the

hypothesis U(k) 6= ∅, we see that any element of Br(U) ⊂ Br(k(U)) may be
represented as the sum of an element of Br(k) and the class of a quaternion
algebra (g, d) for some g ∈ k(U)×.

Assume (iii) is fulfilled. Let x be a point of codimension 1 of X̃ which does
not belong to p−1(U). Let v be the associated discrete rank one valuation
on the function field of X. Hence v(pi(t)) > 0 for some i ∈ I. We thus have
k ⊂ ki ⊂ κv, where κv = κ(x) is the residue field of v. If assumption (iii) is
fulfilled we conclude that d is a square in κv.

But then the residue of (g, d) at x, which is a power of d in κ×v /κ
×2
v , is

trivial. By purity for the Brauer group, we conclude that Br(X̃)/Br(k) =
Br(U)/Br(k).

(c) This follows from Propositions 5.3 and 5.5.

Let Q be the smooth affine quadric over k defined by q(x, y, z) = c. For
simplicity, let us assume Q(k) 6= ∅. In the situation of Proposition 5.3, with
d = −cdet(q) /∈ (k×)2, one may give an explicit generator in Br(U) for
Br(U)/Br(k) = Z/2.

The assumption Q(k) 6= ∅ implies U(k) 6= ∅. By Proposition 4.1, we have
Br(Q)/Br(k) = Z/2. Let αx+ βy + γz + δ = 0 define the tangent plane to
Q at some k-point. Not all α, β, γ are zero. As recalled in Proposition 4.1,

A = (αx+ βy + γz + δ, d) ∈ Br(k(Q))

belongs to Br(Q) and generates Br(Q)/Br(k).
Given a nonzero r(t) ∈ k[t], let W = Q ×k (A1

k \ {r(t) = 0}). Consider
the birational k-morphism

f : Q×k A1
k → X ⊂ A4

k, (x, y, z, t) 7→ (r(t)x, r(t)y, r(t)z, t).

This map induces an isomorphism between W and the open set V of
U = Xsmooth defined by r(t) 6= 0. Let AV be the image of A inside Br(V )
under the composition map

Br(Q)→ Br(W ) ∼= Br(V ).

Proposition 5.7. Let p(t) = cr(t)2 with c ∈ k× and r(t) ∈ k[t] nonzero.
Assume

d = −cdet(q) /∈ k×2
.

Assume moreover Q(k) 6= ∅. With notation as above, the element

B = AV + (r(t), d) = (αx+ βy + γz + δr(t), d) ∈ Br(V )

can be extended to Br(U) and it generates the group Br(U)/Br(k) ' Z/2.
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Proof. On V ⊂ U = Xsmooth, we have

AV = (αx/r(t)+βy/r(t)+γz/r(t)+δ, d) = (αx+βy+γz+δr(t), d)−(r(t), d).

Thus

B = AV + (r(t), d) = (αx+ βy + γz + δr(t), d) ∈ Br(k(V ))

is unramified on V . To check that it is unramified on U , it is enough to
compute the residue at the generic point of each component of r(t) = 0
on U . These are defined by a system pi(t) = 0, q(x, y, z) = 0. But at such a
point, αx+βy+γz+δr(t) is a unit since it induces the class of αx+βy+γz
on the residue field, and this is not zero since αx+ βy + γz is not divisible
by q(x, y, z). Since d is clearly a unit, we conclude that B is not ramified
at such points. The natural map Br(Q)/Br(k) → Br(Qk(t))/Br(k(t)) is the
identity on Z/2. It sends the nontrivial class A to the class of B. The image
of B in Br(U)/Br(k) = Z/2 is thus nontrivial.

One may use this proposition to give a more concrete description of
specialization of the Brauer group, as discussed in Propositions 5.5 and 5.6.

6. Arithmetic of the equation q(x, y, z) = p(t). Let F be a number
field, q(x, y, z) a nondegenerate quadratic form in three variables over F ,
and p(t) ∈ F [t] a nonzero polynomial. Let X be the affine variety over F
defined by the equation

(6.1) q(x, y, z) = p(t).

The singular points of XF are the points (0, 0, 0, t) with t a multiple root
of p (Lemma 3.3). Let U ⊂ Xsmooth be the complement of the closed set of
X defined by x = y = z = 0.

Let π : X̃ → X a desingularization of X, i.e. X̃ is smooth and integral,
the map π is proper and birational. We assume π : π−1(Xsmooth)→ Xsmooth

is an isomorphism. Thus π : π−1(U)→ U is an isomorphism. This allows us
to view U as an open set of X̃.

Write p(t) = cp1(t)e1 . . . ps(t)
es with c in F× and the pi(t), 1 ≤ i ≤ s,

distinct monic irreducible polynomials over F . Let Fi = F [t]/(pi(t)) for
1 ≤ i ≤ s.

Under some local isotropy condition for q, we investigate strong approx-
imation for the F -variety X̃. This variety is equipped with an obvious fibra-
tion X̃ → A1

F = Spec(F [t]). We begin with two lemmas.

Lemma 6.1. If r(t) is an irreducible polynomial over a number field F ,
then there are infinitely many valuations v of F for which there exist in-
finitely many tv ∈ ov with v(r(tv)) = 1.
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Proof. By Chebotarev’s theorem, there are infinitely many valuations v
of F which are totally split in the field F [t]/(r(t)). Let d denote the degree
of r(t). For almost all such v, we may write

r(t) = c
d∏
i=1

(t− ξi) ∈ Fv[t]

with all ξi in ov and c and all ξi − ξj (i 6= j) units in ov. Since there are
infinitely many elements of ov with v-valuation 1, there exist infinitely many
tv ∈ ov such that v(tv − ξ1) = 1. Then v(r(tv)) = 1.

Lemma 6.2. Let F be a number field, and q(x, y, z) and p(t) be as above.
If not all ei are even, then there exist infinitely many valuations w of F for
which there exists tw ∈ ow with w(p(tw)) odd and −p(tw) det(q) 6∈ F×2

w .

Proof. Assume ei0 is odd for some i0 ∈ {1, . . . , s}. If s = 1, the result
immediately follows from Lemma 6.1. Assume s > 1.

For any j 6= i0, there are polynomials aj(t) and bj(t) over F such that

(6.2) aj(t)pj(t) + bj(t)pi0(t) = 1.

Let S be a finite set of primes such that each of the following conditions
hold:

(i) the coefficients of q are integral away from S;
(ii) w(c) = w(det(q)) = 0 for all w 6∈ S;
(iii) the coefficients of aj(t), bj(t) for j 6= i0 and of pi(t) for 1 ≤ i ≤ s

are in ow for all w 6∈ S.

By applying Lemma 6.1 to pi0(t), we see that there exist infinitely many
primes w 6∈ S and tw ∈ ow such that w(pi0(tw)) = 1. By equation (6.2),
one has w(pj(tv)) = 0 for any j 6= i0. This implies w(p(tw)) = ei0 is odd.
Therefore −p(tw) det(q) 6∈ F×2

w .

Proposition 6.3. Let F be a number field and X be an F -variety de-
fined by an equation

q(x, y, z) = p(t)

where q(x, y, z) is a nondegenerate quadratic form over F and p(t) is a
nonzero polynomial in F [t]. Assume Xsmooth(Fv) 6= ∅ for each place v of F .
Then

(1) Xsmooth(F ) is Zariski-dense in X.

(2) Xsmooth satisfies weak approximation.

Proof. This is a special case of [CTSaSD, Thm. 3.10, p. 66].

Theorem 6.4. Let F be a number field. Let U ⊂ X̃ be as above. Assume
U(AF ) 6= ∅. Let S be a finite subset of ΩF which contains a place v0 such
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that the quadratic form q(x, y, z) is isotropic over Fv0. Then strong approxi-
mation off S with Brauer–Manin obstruction holds for any open set V with
U ⊂ V ⊂ X̃,in particular for Xsmooth.

Since X̃ is smooth and geometrically integral, the hypotheses U(AF ) 6= ∅,
Xsmooth(AF ) 6= ∅ and X̃(AF ) 6= ∅ are all equivalent.

Taking into account the isomorphism Br(Xsmooth)
'→Br(U), the finite-

ness of Br(U)/Br(F ) (§5) and Proposition 2.6, this theorem is an immediate
consequence of the following more precise statement.

Theorem 6.5. Let F be a number field. Let p(t) = cp1(t)e1 . . . ps(t)
es,

q(x, y, z), X, U and X̃ be as above. Let d = −c det(q). Let S be a finite subset
of ΩF which contains a place v0 such that the quadratic form q(x, y, z) is
isotropic over Fv0. Assume U(AF ) 6= ∅. Then U(F ) 6= ∅ is Zariski dense
in U . Moreover:

(i) If at least one ei is odd, then

Br(X̃)/Br(F ) = Br(U)/Br(F ) = 0,

and strong approximation off S holds for U and for X̃.
(ii) If all ei are even and d ∈ F×2, then

Br(X̃)/Br(F ) = Br(U)/Br(F ) = 0,

and strong approximation off S holds for U and for X̃.
(iii) If all ei are even and there exists i such that d /∈ F×2

i , then

Br(X̃)/Br(F ) = 0, Br(U)/Br(F ) = Z/2,

and strong approximation off S with Brauer–Manin obstruction
holds for U and for any open set V with U ⊂ V ⊂ X̃. Strong approx-
imation also holds for X̃ and for any open set V with U ⊂ V ⊂ X̃

which satisfies Br(X̃)
'→Br(V ).

(iv) If all ei are even, d /∈ F×2, and for all i, d ∈ F×2
i , then

Br(X̃)/Br(F ) = Br(U)/Br(F ) = Z/2,

and strong approximation off S with Brauer–Manin obstruction
holds for U and for X̃.

(v) Strong approximation off S fails for U , resp. for X̃, if and only if
the following two conditions simultaneously hold:

(a) Br(U)/Br(F ) = Z/2, resp. Br(X̃)/Br(F ) = Z/2;
(b) d is a square in Fv for each finite place v ∈ S and also for each

real place v ∈ S such that either q(x, y, z) is isotropic over Fv
or r(t) has a root over Fv.
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Proof. By Proposition 6.3, U(F ) 6= ∅ and U(F ) is Zariski dense
in U . The various values of Br(U) and Br(X) have been computed in §5.
By Propositions 2.3 and 2.6, to prove (i) to (iv), it is enough to prove
the strong approximation statements (with Brauer–Manin obstruction)
for U .

We fix a finite set T of places which contains S, the infinite primes, the
dyadic primes and all the finite places v where q(x, y, z) has bad reduction.
We also assume that p(t) has coefficients in oT and that its leading coefficient
c is invertible in oT . We denote by X the oT -scheme given by

q(x, y, z) = p(t).

We let U ⊂ X be the complement of the closed set defined by the ideal
(x, y, z). We may extend T so that there is a smooth integral oT -scheme X̃
equipped with a proper birational oT -morphism X̃→ X extending the map

π : X̃ → X.

For any v /∈ T , U(ov) is the set of points (xv, yv, zv, tv) with all coordi-
nates in ov, q(xv, yv, zv) = p(tv) and one of (xv, yv, zv) a unit. By Lemma 4.2,
given any tv ∈ ov, this set is not empty.

To prove the statements (i) to (iv), after possibly increasing T , we have
to prove that for any such finite set T containing S, a nonempty open set
of U(AF ) of the shape

WU =
[∏
v∈S

U(Fv)×
∏

v∈T\S

Uv ×
∏
v/∈T

U(ov)
]Br(U)

,

with Uv open in U(Fv), contains a point in U(F ).

Given t0 ∈ oT = A1(oT ) with p(t0) 6= 0, we let Ut0/Spec(oT ) be the fibre
of U/A1

oT
above t0. This is the oT -scheme defined by q(x, y, z) = p(t0). We

let Ut0 = Ut0 ×oT F .

It is enough to show that in each of the cases under consideration:

There exists t0 ∈ oT such that the set[∏
v∈S

Ut0(Fv)×
∏

v∈T\S

Uv ∩ Ut0(Fv)×
∏
v/∈T

Ut0(ov)
]Br(Ut0 )

is nonempty.

Indeed, Proposition 4.5 implies that such a nonempty set contains an
F -rational point.

We have Br(U)/Br(F ) ⊂ Z/2. If Br(U)/Br(F ) is nonzero, we may gene-
rate the group by an element ξ of order 2 in Br(U). To prove the result, we
may extend T . After doing so, we may assume that ξ vanishes identically
on each U(ov) for v /∈ T .
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We start with a point {Mv} = {(xv, yv, zz, tv)}v∈ΩF
in WU such that

p(tv) 6= 0 for each v ∈ ΩF . We have∑
v

ξ(Mv) = 0 ∈ Z/2.

In case (i), we choose a w /∈ T and a t′w ∈ ow with w(p(t′w)) odd
and −p(t′w) det(q) /∈ F×2

w . The existence of such w, t′w is guaranteed by
Lemma 6.2.

Using the strong approximation theorem, we find a t0 ∈ oT which is very
close to each tv for v ∈ T \ {v0} and is also very close to t′w in case (i).

By Lemma 4.2, as recalled above, for each v /∈ S, the projection map
U(ov) → A1(ov) is onto. By assumption, q is isotropic at v0 ∈ S, hence
U(Fv0)→ A1(Fv0) is onto.

Combining this with the implicit function theorem, we find an adèle
{Pv} ∈ Ut0(AF ) = X̃t0(AF ) with the following properties:

• For v ∈ T \ {v0}, Pv is very close to Mv in U(Fv), hence belongs to
Uv ∩Ut0(Fv) for v ∈ T \ S. Moreover ξ(Mv) = ξ(Pv).
• For v /∈ T , Pv ∈ Ut0(ov), hence ξ(Pv) = 0 = ξ(Mv).

By the Hasse principle, there exists an F -point on the affine F -quadric
Ut0 = X̃t0 .

Consider (i). By the definition of w, w(p(t0)) is odd, −p(t0) det(q) /∈ F×2
w ,

hence −p(t0) det(q) /∈ F×2, thus

Z/2 = Br(Ut0)/Br(F ) ' Br(Ut0,Fw)/Br(Fw)

by Proposition 4.1. Let ρ ∈ Br(Ut0) be an element of order 2 which generates
these groups.

If
∑

v ρ(Pv) = 0, the adèle {Pv} ∈ Ut0(AF ) belongs to the Brauer–Manin
set of Ut0 .

Suppose
∑

v ρ(Pv) = 1/2. By Lemma 4.3, ρ takes two distinct values
on Ut0(ow). We may thus choose a new point Pw ∈ Ut0(ow) such that
now

∑
v ρ(Pv) = 0, that is, the new adèle {Pv} ∈ Ut0(AF ) belongs to the

Brauer–Manin set of Ut0 , which completes the proof in this case.

Consider (ii). Then −det(q)p(t0) ∈ F×2, hence Br(Ut0)/Br(F ) = 0 by
Proposition 4.1. Thus the adèle {Pv} ∈ Ut0(AF ) is trivially in the Brauer–
Manin set of Ut0 , which completes the proof in this case.

Let us consider (iii) and (iv). In these cases, −cdet(q) /∈ F×2, hence
−det(q)p(t) /∈ F (t)×2 and −det(q)p(t0) /∈ F×2 for any t0 ∈ F . We have
Br(U)/Br(F ) = Z/2 and Br(Ut0)/Br(F ) = Z/2 for any t0 with p(t0) 6= 0.
The element ξ ∈ Br(U) has now exact order 2. It generates Br(U)/Br(F ).
The restriction of this element to Br(Ut0)/Br(F ) = Z/2 is the generator of
that group (Propositions 5.3 and 5.5).
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By hypothesis,
∑

v ξ(Mv) = 0. We then have∑
v

ξ(Pv) = ξ(Pv0) +
∑

v∈T\{v0}

ξ(Pv) = ξ(Pv0) +
∑

v∈T\{v0}

ξ(Mv)

= ξ(Pv0)− ξ(Mv0).

If d ∈ F×2
v0 , then Br(UFv0

)/Br(Fv0) = 0 (Prop. 5.3), from which we
deduce ξ(Pv0) − ξ(Mv0) = 0. We thus get

∑
v ξ(Pv) = 0. The adèle {Pv} is

in the Brauer–Manin set of Ut0 .

Assume d /∈ F×2
v0 . Then Br(UFv0

)/Br(Fv0)
'→Br(Ut0,Fv0

)/Br(Fv0) = Z/2
(Propositions 5.3 and 5.5). The image of ξ in Br(Ut0,Fv0

)/Br(Fv0) generates
this group. By Lemma 4.4, the class ξ takes two distinct values on Ut0(Fv0).
This holds whether v0 is real or not, because by assumption q is isotropic
at the place v0. We may then change Pv0 ∈ Ut0(Fv0) in order to ensure that
ξ(Pv0) − ξ(Mv0) = 0, which yields

∑
v ξ(Pv) = 0. The adèle {Pv} is in the

Brauer–Manin set of Ut0 .

This proves (iii) and (iv) for U .

It remains to establish (v).

Assume (a) and (b). Under (a), all ei are even and d /∈ F×2. We let
ξ be an element of exact order 2 in Br(U), resp. Br(X̃), which generates
Br(U)/Br(F ), resp. Br(X̃)/Br(F ). Under (b), at each finite place v ∈ S, by
Proposition 5.3 we have ξFv ∈ Br(Fv), hence ξ is constant on U(Fv), resp.
X̃(Fv). The same holds at a real place v such that d ∈ F×2

v . At a real place
v ∈ S such that d /∈ F×2

v , the form q(x, y, z) is anisotropic over Fv and r(t)
has no real root. At such v, the equation after a suitable transformation
reads x2 + y2 + z2 = (r(t))2 and U(Fv) = U(R) is connected. Then ξ is
constant on U(R).

Let M be a point of U(F ), resp. X̃(F ), with p(t(M)) 6= 0. Since we have
d /∈ F×2, there are infinitely many finite places w /∈ S such that d /∈ F×2

w .
At such a place w, ξ takes two distinct values on Ut(M)(Fw) = X̃t(M)(Fw)
(use Proposition 5.5 and Lemma 4.4). Pick Pw ∈ Ut(M)(Fw) such that

ξ(Pw) 6= ξ(M)Fw ∈ Z/2. If we let {Pv} be the adèle of U , resp. X̃ with
Pv = M for v 6= w and Pw as just chosen, then

∑
v ξ(Pv) 6= 0, and this adèle

lies in an open set of the shape
∏
v∈S U(Fv) ×

∏
v∈T\S Uv ×

∏
v/∈T U(ov),

resp.
∏
v∈S X̃(Fv) ×

∏
v∈T\S Uv ×

∏
v/∈T X̃(ov), which contains no diagonal

image of U(F ), resp. X̃(F ). Strong approximation off S therefore fails for U ,
resp. X̃.

Suppose either (a) or (b) fails. Let us prove that strong approximation
holds off S. If (a) fails, then Br(U)/Br(F ) = 0, resp. Br(X̃)/Br(F ) = 0, and
we have proved that strong approximation holds off S. We may thus assume
Br(U)/Br(F ) = Z/2, resp. Br(X̃)/Br(F ) = Z/2, hence all ej are even and
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d /∈ F×2, and that (b) fails. Then either

(i) there exists a finite place v ∈ S with d /∈ F×2
v , or

(ii) there exists a real place v ∈ S with d /∈ F×2
v , i.e. d < 0, such that q

is isotropic over Fv or r(t) has a root in Fv.

We let ξ be an element of exact order 2 in Br(U), resp. Br(X̃), which
generates Br(U)/Br(F ), resp. Br(X̃)/Br(F ). For any tv ∈ A1(Fv) with
p(tv) 6= 0, ξ generates Br(Utv)/Br(Fv), resp. Br(X̃tv)/Br(Fv) (Proposition
5.5). If v is a finite place of S with d /∈ F×2

v then, by Lemma 4.4, above
any point of tv ∈ A1(Fv) with p(tv) 6= 0, ξ takes two distinct values on
Utv(Fv) = X̃tv(Fv). It thus takes two distinct values on U(Fv), resp. X̃(Fv).
The same argument applies if v ∈ S is a real place with d /∈ F×2

v and q is
isotropic at v. If v is a real place with d /∈ F×2

v and q is anisotropic at v,
then one may write the equation of X over Fv = R as

x2 + y2 + z2 = r(t)2.

The real quadric Q defined by x2 + y2 + z2 = 1 contains the point (1, 0, 0).
Applying the recipe in Proposition 5.7, one finds that the class of the
quaternion algebra (x − r(t),−1) in Br(F (U)) lies in Br(U) and generates
Br(U ×F R)/Br(R). By assumption, r(t) has a real root. One easily checks
that (x − r(t)) takes opposite signs on U(R) when one crosses such a real
root of r(t). Thus ξR = (x− r(t),−1) takes two distinct values on U(Fv).

Let now {Pv} be an adèle of U , resp. X̃. If
∑

v ξ(Pv) = 1/2, then we
change Pv at a place v ∈ S so that the new

∑
v ξ(Pv) equals 0. We then

know that we can approximate this family off S by a point in U(F ), resp. a
point in X(F ).

Remark 6.6. Over the ring of usual integers, a special case of Watson’s
Theorem 3 in [Wat] reads as follows.

Assume the ternary quadratic form q(x, y, z) with integral coefficients is
of rank 3 over Q and isotropic over R. Let p(t) ∈ Z[t] be a nonconstant
polynomial. Assume

(W) For each large enough prime l, the equation p(t) = 0 has a solution
in the local field Ql.

If the equation q(x, y, z) = p(t) has solutions in Zl for each prime l, then it
has a solution in Z.

Let k = Q and X/k and X̃/k be as above. This result is a consequence of
Theorem 6.5. Indeed, if Br(X̃)/Br(k) = 0, strong approximation holds for X̃,
hence in particular the local-global principle holds for integral points of X̃.
By Proposition 5.6, Br(X̃)/Br(k) 6= 0 occurs only if all ei are even, d /∈ k×2

and d ∈ k×2
i for all i. That is, for each i, the quadratic field extension k(

√
d)

of k lies in ki. There are infinitely many primes v of k which are inert in
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k(
√
d). For such primes v, none of the equations pi(t) = 0 admits a solution

in kv. Condition (W) excludes this possibility.

7. Two examples. In this section we give two examples which exhibit a
drastic failure of strong approximation: there are integral points everywhere
locally but there is no global integral point.

The first example develops [Xu, (6.1), (6.4)].

Proposition 7.1. Let X ⊂ A4
Z be the scheme over Z defined by

−9x2 + 2xy + 7y2 + 2z2 = (2t2 − 1)2.

Let U over Z be the complement of x = y = z = 0 in X. Let X = X ×Z Q
and U = U ×Z Q. Let X̃ → X be a desingularization of X inducing an
isomorphism over U . Let X̃ → X, with U ⊂ X̃, be a proper morphism
extending X̃ → X. Strong approximation off ∞ fails for U and for X̃. More
precisely: ∏

p≤∞
X(Zp) 6= ∅ and X(Z) = ∅;(i)

∏
p≤∞

U(Zp) 6= ∅ and U(Z) = ∅;(ii)

∏
p≤∞

X̃(Zp) 6= ∅ and X̃(Z) = ∅.(iii)

Proof. With notation as in Theorem 6.5, we have F = Q, v0 = ∞,
S = {v0}. Also, det(q) = −27 and d = −c det(q) = 29. We are in case (iv)
of Theorem 6.5. Over R, q(x, y, z) is isotropic. By Theorem 6.5(iv) we have

Br(X̃)/Br(F ) = Br(U)/Br(F ) = Z/2
and by Theorem 6.5(v) we know that strong approximation off S fails for U

and X̃.
The equation may be written as

(7.1) (x− y)(9x+ 7y) = 2z2 − (2t2 − 1)2.

Let Y/Q be the smooth open set defined by

(7.2) (x− y)(9x+ 7y) = 2z2 − (2t2 − 1)2 6= 0.

Thus Y ⊂ U ⊂ X. We have Y (Q) = U(Q) = X(Q) since 2 is not a square
in Q. We also have Y (Qp) = U(Qp) = X(Qp) for any prime p such that 2 is
not a square in Qp.

On the 3-dimensional smooth variety U , the algebra

(7.3) B = (y − x, 2) = (−2(9x+ 7y), 2) = (9x+ 7, 2)

is unramified off the codimension 2 curve x = y = 0, hence by purity it is
unramified on U . One could show by purely algebraic means that it generates
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Br(U)/Br(F ) = Z/2 but this will follow from the arithmetic computation
below.

Note that U(Q) = X(Q), since the singular points of X are not defined
over Q.

For p 6= 2, there is a point of U(Zp) with t = 1. For p 6= 3, we have the
point (0, 1/3, 1/3, 1) in U(Zp). Thus

∏
p≤∞U(Zp) 6= ∅.

For p 6= 2, and 2 not a square in Qp, for any solution of (7.2) in Zp,
y − x and 9x + 7y are p-adic units. For any p 6= 2, equality (7.3) thus
implies B(Mp) = 0 for any point in X(Zp) ∩ Y (Qp). Since U is smooth,
Y (Qp) is dense in U(Qp). Since X(Zp) is open in X(Qp), this implies that
X(Zp) ∩ Y (Qp) is dense in X(Zp) ∩ U(Qp), and then that B(Mp) = 0 for
any point in X∗(Zp) := X(Zp) ∩ U(Qp). This last set contains U(Zp).

The algebra B trivially vanishes on X∗(R) := U(R).
Let us consider a point M2 ∈ X(Z2) ⊂ Y (Q2). From (7.2), for such a

point with coordinates (x, y, z, t), we have

(x− y)(9x+ 7y) = ±1 mod 8.

Thus the 2-adic valuation of y − x and of 9x+ 7y is zero. If B vanishes on
M2 then y− x = 1 mod 4 and 9x+ 7y = 1 mod 4. But then 16x = 2 mod 4,
which is absurd. Thus B(M2) is not zero, that is, B(M2) = 1/2 ∈ Q/Z.

We conclude that for any point {Mp} ∈
∏
p X∗(Zp)×X∗(R),∑

p

B(Mp) = B(M2) = 1/2.

This implies X(Z) = X(Z) ∩ U(Q) = ∅, hence U(Z) = ∅ and X̃(Z) = ∅,
since both sets map to X(Z).

Since X̃→ X is proper, the map X̃(Zp)→ X(Zp) contains X∗(Zp) in its

image. We thus have X̃(Zp) 6= ∅.
One actually has [ ∏

p≤∞
X̃(Zp)

]Br(X̃)
= ∅.

Indeed, the algebra B = (y−x, 2) on U extends to an unramified class on X̃.
To see this, one only has to consider the points of codimension 1 on X̃ above
the closed point 2t2 − 1 = 0 of A1

Q. For the corresponding valuation v on

the field F (X̃), one has v(2t2− 1) > 0, thus 2 is a square in the residue field
of v, hence the residue of (y − x, 2) at v is trivial.

The next example is inspired by an example of Cassels (cf. [CTX, 8.1.1]).

Proposition 7.2. Let X ⊂ A4
Z be the scheme over Z defined by

x2 − 2y2 + 64z2 = (2t2 + 3)2.

Let U over Z be the complement of x = y = z = 0 in X. Let X = X ×Z Q
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and U = U×ZQ. Let X̃ → X be a desingularization of X. Let X̃→ X be a
proper morphism extending X̃ → X. Strong approximation off ∞ holds for
X̃ and fails for U . More precisely:

(i) X̃(Z) is dense in
∏
p<∞ X̃(Zp).

(ii) There are solutions (x, y, z, t) in Z with p(t) 6= 0, thus we have
X(Z) ∩ U(Q) 6= ∅.

(iii) We have
∏
p≤∞U(Zp) 6= ∅ and [

∏
p≤∞U(Zp)]Br(U) = ∅, hence

U(Z) = ∅: there are no solutions (x, y, z, t) in Z with (x, y, z) prim-
itive.

Proof. With notation as in Theorem 6.5, we have F = Q, v0 = ∞,
S = {v0}. Furthermore, d = 29. Over R, q(x, y, z) is isotropic. We are in case
(iii) of Theorem 6.5. We have Br(X̃)/Br(F ) = 0 and Br(U)/Br(F ) = Z/2.

According to Theorem 6.5(iii), strong approximation off ∞ holds for X̃.

Theorem 6.5(v) then says that strong approximation off S fails for U .
That is, U(Q) is not dense in U(A∞Q ).

The point (x, y, z, t) = (3, 0, 0, 0) ∈ U(Q) ∩ X(Z) provides a point in
U(Zp) for each prime p 6= 3 and for p = ∞. In general, for p odd, we have
U(Zp) 6= ∅ by Lemma 4.2.

Let us prove statement (iii).

Since 1− 8z = 0 is the tangent plane to the quadric x2− 2y2 + 64z2 = 1
over Q at the point (0, 0, 1/8), Proposition 5.7 shows that B = (2t2+3−8z, 2)
is the generator of Br(U)/Br(F ). We have

(7.4) (2t2 + 3− 8z)(2t2 + 3 + 8z) = x2 − 2y2,

thus

(7.5) B = (2t2 + 3− 8z, 2) = (2t2 + 3 + 8z, 2).

Let p be an odd prime such that 2 is not a square modulo p. For a point
(x, y, z) ∈ U(Zp), if p divides both 2t2 + 3−8z and 2t2 + 3 + 8z, then on the
one hand p divides z and on the other hand, by equation (7.4), it divides
x2 − 2y2, which then implies that p divides x and y. Thus p divides x, y, z,
which is impossible for a point in U(Zp). We conclude from (7.5) that for
any odd prime p, B vanishes on U(Zp).

For p = 2, for any t and z in Z2, we have 2t2 + 3 − 8z = ±3 modulo 8,
hence

(2t2 + 3− 8z, 2) = (±3, 2) = 1/2 ∈ Br(Q2).

Thus [ ∏
p≤∞

U(Zp)
]Br(U)

= ∅,

which implies U(Z) = ∅.
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8. Approximation for singular varieties. The following lemma is
well known.

Lemma 8.1. Let k be a local field of characteristic zero. Let X be a
geometrically integral variety over k. Let f : X̃ → X be a resolution of
singularities for X, i.e. X̃ is a smooth, geometrically integral k-variety and
f is a proper birational k-morphism. The following closed subsets of X(k)
coincide:

(a) the closure of Xsmooth(k) in X(k) for the topology of k;
(b) the set f(X̃(k)) ⊂ X(k).

In particular, this set, called the set of central points of X, does not depend
on the resolution f : X̃ → X. It will be denoted X(k)cent.

Proof. One uses the fact that for a nonempty open set U of X̃, U(k)
is dense in X̃(k) for the local topology, and that the inverse image of a
compact subset of X(k) under f is a compact set in X̃(k).

Definition 8.2. Let F be a number field. Let X be a geometrically
integral variety over F . Assume Xsmooth(F ) 6= ∅. Let S be a finite set of
places of F . One says that X satisfies central weak approximation at S if
either of the following conditions is fulfilled:

(a) Xsmooth(F ) is dense in
∏
v∈S Xsmooth(Fv).

(b) Xsmooth(F ) is dense in
∏
v∈S X(Fv)cent.

One says that X satisfies weak approximation if this holds for any finite set
S of places of F .

While discussing the possible lack of weak approximation for a given
variety X the natural Brauer–Manin obstruction is defined by means of the
Brauer group of a smooth, projective birational model of X.

Let us now discuss strong approximation.

Lemma 8.3. Let F be a number field. Let X be a geometrically integral
variety over F . Let f : X̃ → X be a resolution of singularities for X, i.e.
X̃ is a smooth, geometrically integral F -variety and f is a proper birational
F -morphism. Let S be a finite set of places of F . The following closed subsets
of X(ASF ) coincide:

(a) The intersection of X(ASF ) with
∏
v/∈S X(Fv)cent;

(b) The image of X̃(ASF ) under f : X̃(ASF )→ X(ASF ).

This set does not depend on the resolution f : X̃ → X. We shall call it the
set of central S-adèles of X, and we shall denote it X(ASF )cent.

Proof. There exists a finite set T of places of F containing S and a
proper oT -morphism of oT -schemes X̃ → X extending X̃ → X. For v /∈ T ,
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one checks that
X̃(ov) = X(ov)×X(Fv) X̃(Fv).

Proposition 8.4. Let X be a geometrically integral variety over the
number field F . Assume Xsmooth(F ) 6= ∅. Let f : X̃ → X be a resolution
of singularities for X. Let S be a finite set of places of F . The following
conditions are equivalent:

(a) The diagonal image of Xsmooth(F ) in X(ASF )cent is dense.

(b) The diagonal image of X̃(F ) in X̃(ASF ) is dense.

Definition 8.5. If these conditions hold, we say that central strong
approximation holds for X off S.

If central strong approximation off S holds for X, it holds off any finite
set S′ containing S.

Definition 8.6. Let X be a geometrically integral variety over the num-
ber field F . Assume Xsmooth(F ) 6= ∅. Let f : X̃ → X be a resolution of
singularities. Let S be a finite set of places of F . If the diagonal image of

X̃(F ) in (X̃(ASF ))Br(X̃) ⊂ X̃(ASF ) is dense, we say that central strong ap-
proximation with Brauer–Manin obstruction off S holds for X. If central
strong approximation with Brauer–Manin obstruction off S holds for X, it
holds off any finite set S′ containing S.

We leave it to the reader to translate the statement in terms ofX(ASF )cent.

We insist that the relevant group is the group Br(X̃), which does not depend
on the chosen resolution of singularities X̃ → X.

Example 8.7. Let k be a local field of characteristic zero and X be a
k-variety defined by an equation

q(x1, . . . , xn) = p(t),

where q is a nondegenerate quadratic form and p(t) ∈ k[t] a nonzero poly-
nomial. Then X(k) 6= X(k)cent if and only if there is a zero α of p(t) over
k of even order r and the quadratic form in n+ 1 variables

q(x1, . . . , xn)− p0(α)x2
n+1

is anisotropic over k, where p(t) = (t− α)rp0(t).

Proof. By Lemma 3.3, a singular point of X(k) is given by (0, . . . , 0, α),
where α is a zero of p(t) of order r > 1. Let p(t) = (t − α)rp0(t). We may
assume

q(x1, . . . , xn) =
n∑
i=1

aix
2
n.

Let π denote a uniformizer of k if k is p-adic and some nonzero element
with |π| < 1 when k is archimedean.
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Suppose r is odd. Let αl = α + p0(α)a1π
2l, hence liml→∞ αl = α. For

l� 0, one has p0(αl) = p0(α)ε2l with εl ∈ k× and εl → 1 as l→∞. Then

Pl = (εla
(r−1)/2
1 p0(α)(r+1)/2πlr, 0, . . . , 0, αl)

are smooth points of X(k) for l � 0 and Pl → (0, . . . , 0, α) as l → ∞.
Therefore (0, . . . , 0, α) ∈ X(k)cent.

Suppose r is even and the quadratic form q(x1, . . . , xn) − p0(α)x2
n+1 is

isotropic. There exists

(θ1, . . . , θn, θn+1) 6= (0, . . . , 0, 0)

in kn+1 such that q(θ1, . . . , θn) = p0(α)θ2
n+1. If θn+1 = 0, then the smooth

points Pn = (πlθ1, . . . , π
lθn, α) of X(k) satisfy

Pn → (0, . . . , 0, α)

as l→∞. Therefore (0, . . . , 0, α) ∈ X(k)cent.
If θn+1 6= 0, one can assume that θn+1 = 1. Let tl = α + π2l. Then

p0(tl) = p0(α)ε2l with εl ∈ k× and εl → 1 as l → ∞. The smooth points

Pn = (πrlεlθ1, . . . , π
rlεlθn, tl) of X(k) satisfy

Pn → (0, . . . , 0, α)

as l→∞. Therefore (0, . . . , 0, α) ∈ X(k)cent.
Suppose r is even and the quadratic form in n+ 1 variables

q(x1, . . . , xn)− p0(α)x2
n+1

is anisotropic over k. Suppose the singular point P0 = (0, . . . , 0, α) is the
limit of a sequence of smooth k-points. There thus exists a sequence of
smooth k-points Pl, l ∈ N, satisfying Pl → P0 as l → ∞. Let Pl = (Ql, αl)
where αl is the t-coordinate of Pl. Then p0(αl) = p0(α)ε2l 6= 0 with εl ∈ k×
for l� 0. Therefore

q(Ql)− p(αl) = q(Ql)− p0(α)[(αl − α)r/2εl]
2 = 0

for l � 0, which implies that q(x1, . . . , xn) − p0(α)x2
n+1 is isotropic over k.

A contradiction is derived, thus the point P0 does not lie in X(k)cent.

We conclude that X(k) 6= X(k)cent may happen only in the following
cases:

(1) The field k is R and q(x1, . . . , xn) is ±-definite over R and there is a
zero α of p(t) over R of even order r such that p0(α) has ∓ sign.

(2) The field k is p-adic and n ≤ 3. One can determine if a quadratic
space is anisotropic over k by computing determinants and Hasse
invariants, as in [OM, 42:9; 58:6; 63:17].
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