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1. Introduction. Throughout this paper, let G be an additively written
finite cyclic group of order |G| = n. By a sequence over G we mean a finite
sequence of terms from G which is unordered and repetition of terms is
allowed. We view sequences over G as elements of the free abelian monoid
F(G) and use multiplication notation. Thus a sequence S of length |S| = l is
written in the form S = (n1g) · · · (nlg) where n1, . . . , nl ∈ N and g ∈ G. We

call S a zero-sum sequence if the sum of S is zero, i.e. σ(S) =
∑l

i=1 nig = 0.
If S is a zero-sum sequence, but no proper nontrivial subsequence of S has
sum zero, then S is called a minimal zero-sum sequence. Recall that the
index of a sequence S over G is defined as follows.

Definition 1.1. For a sequence over G,

S = (n1g) · · · (nlg) where 1 ≤ n1, . . . , nl ≤ n,

the index of S is defined by ind(S) = min{‖S‖g | g ∈ G with G = 〈g〉} where

‖S‖g =
n1 + · · ·+ nl

ord(g)
.

Clearly, S has sum zero if and only if ind(S) is an integer. There are also
slightly different definitions of the index in the literature, but they are all
equivalent (see [8, Lemma 5.1.2]).

The index of a sequence is a crucial invariant in the investigation of
(minimal) zero-sum sequences (resp. of zero-sum free sequences) over cyclic
groups. The notion of the index of a sequence was introduced by Chapman,
Freeze and Smith [1]. It was first addressed by Lemke and Kleitman (in a
conjecture [10, p. 344]), used as a key tool by Geroldinger [7, p. 736], and
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later investigated by Gao [3] in a systematical way. Since then it has received
a great deal of attention (see for example [2, 5, 8, 9, 11–18]).

A conjecture of Lemke and Kleitman [10, p. 344] states (in the language
of index) that if G is a cyclic group of order n and S is a sequence over
G of length |S| = n, then there exists a subsequence T of S such that
ind(T ) = 1. A counterexample was given in [6] for the special case when
n = 2 + 4k with k > 5. In this paper, we investigate the index of sequences
regarding the above mentioned conjecture. In Section 2, we show that the
conjecture holds under an additional assumption on the highest multiplicity
of an element occurring in the sequence (namely h(G) ≥ n/3). Section 3
provides general counterexamples to the conjecture. In the last section, we
explore the possible maximal index of minimal zero-sum sequences, and
suggest a conjecture for the upper bound of the maximum index over Cn
when n is a composite number.

In what follows, we recall some frequently used notation and terminology.
Let N0 = N∪{0}, and for real numbers a, b, let [a, b] = {x ∈ Z | a ≤ x ≤ b}.
For x ∈ Z and n ∈ N, |x|n denotes the least positive residue of x modulo n.
Let S be a sequence over G written in the form

S = g1 · · · g` =
∏
g∈G

gvg(S), with vg(S) ∈ N0 for all g ∈ G.

Then vg(S) ∈ N0 is called the multiplicity of g in S. Denote by supp(S),
h(S) and σ(S), the support, the height and the sum of S, respectively, i.e.
supp(S) = {g ∈ G | vg(S) > 0}, h(S) = max{vg(S) | g ∈ G}, which

is the maximum of the multiplicities of g in S, and σ(S) =
∑`

i=1 gi =∑
g∈G vg(S)g ∈ G.
A sequence T is called a subsequence of S and denoted by T |S if vg(T ) ≤

vg(S) for all g ∈ G. If T |S, let ST−1 denote the subsequence obtained from
S by deleting T . Let

Σ(S) = {σ(T ) | T is a subsequence of S with 1 ≤ |T | ≤ |S|}.
The sequence S is called zero-sum, zero-sum free, and minimal zero-sum if
σ(S) = 0 ∈ G, 0 6∈ Σ(S), and σ(S) = 0 but σ(T ) 6= 0 for every T |S with
1 ≤ |T | < |S|, respectively. Other notation and terminology follow those in
[4] and [8].

2. A positive result. In this section, we show that the above mentioned
conjecture holds under the additional assumption that n is odd and h(S) ≥
n/3.

Theorem 2.1. Let G be a cyclic group of odd order n ≥ 5 and S a
sequence of length ≥ n over G. If h(S) ≥ n/3, then S has a subsequence T
with ind(T ) = 1.
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Proof. Assume to the contrary that S does not have any index 1 sub-
sequences. Clearly, S does not contain 0 and h(S) < n (for otherwise, let
g ∈ supp(S) with vg(S) = h(S); then gord(g) is a subsequence with index 1,
a contradiction). Without loss of generality, we may assume that S is such
a sequence with h(S) being maximal. Hence any sequence S′ with |S′| ≥ n
and h(S′) > h(S) contains an index 1 subsequence. Let g ∈ supp(S) with
vg(S) = h(S). Then 〈g〉 = G (for otherwise, ord(g) ≤ n/3 and thus gord(g) is
a subsequence with index 1, a contradiction). Write S = gh(S)(t1g) · · · (tmg),
where m ≥ n− h(S) ≥ 1, ti ∈ [2, n− 1] for all i ∈ [1,m] and t1 ≤ · · · ≤ tm.
We first prove the following claims.

Claim 1. h(S) < n/2 and n/3 < t1 ≤ tm < 2n/3.

We first observe that h(S) < n/2 and hence m > n/2 > 2. Indeed, if

h(S) ≥ n/2, then there exists l such that h(S) +
∑l

i=1 ti < n and h(S) +∑l+1
i=1 ti > n. If tl+1 ≥ h(S), then n − tl+1 < h(S), so S has a subsequence

gn−tl+1(tl+1g) with index 1, a contradiction. If tl+1 < h(S), then S has a
subsequence of index 1, again a contradiction.

Next we show that t1 ≥ h(S) + 2 > n/3. Assume to the contrary that
t1 ≤ h(S) + 1. Consider the sequence S′ = S(t1g)−1gt1 . Since |S′| > |S| and
h(S′) = h(S) + t1 > h(S), S′ contains an index 1 subsequence, say T ′. If
vg(T

′) ≤ h(S), then T ′ is a subsequence of S, a contradiction. If vg(T
′) >

h(S), then T = T ′g−t1(t1g) is a zero-sum subsequence of S and ind(T ) ≤
ind(T ′), so ind(T ) = 1, a contradiction. Finally, we observe that tm ≤ n −
h(S) − 1 < 2n/3, for if tm > n − h(S) − 1, then gn−tm(tmg) is an index 1
subsequence of S, a contradiction. This completes the proof of Claim 1.

Claim 2. ti 6= (n+ 1)/2 for every i ∈ [1,m] and t2 ≥ (n+ 3)/2.

Assume to the contrary that there exists a j ∈ [1,m] with tj = (n+ 1)/2.

Let h = tjg. Then g = 2h. Consider the sequence S′ = S(gh(S)h)−1h2h(S)+1.
Note that |S′| = |S| + h(S) > |S| and h(S′) ≥ vg(h) = 2h(S) + 1 > h(S),
so S′ contains an index 1 subsequence T ′. Let k = vh(T ′) and l = bk/2c.
Then T = T ′h−2lgl is a zero-sum subsequence of S with ind(T ) ≤ ind(T ′),
so ind(T ) = 1, a contradiction. Thus ti 6= (n+ 1)/2 for every i ∈ [1,m].

We now show that t2 ≥ (n+ 3)/2. If t2 < n/2, then 2n/3 < t1 + t2 < n,
and thus gn−t1−t2(t1g)(t2g) is an index 1 subsequence of S, a contradiction.
Thus t2 ≥ n/2, which together with t2 6= (n+ 1)/2 and n being odd implies
that t2 ≥ (n+ 3)/2. Claim 2 is proved.

We are now in a position to complete the proof of the theorem. Consider
the new sequence S′ = 2S = (2g)h(S)(|2t1|ng) · · · (|2tm|ng). Then S′ does
not contain any index 1 subsequence (as S does not contain any index 1
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subsequence). By Claims 1 and 2, we derive that

(∗) |2ti|n = 2ti − n ≥ 3

for each i ∈ [2,m]. Thus

2h(S)+
2m′+2∑
i=2

|2ti|n ≥ 2h(S)+3(2m′+1) ≥ 2h(S)+3(m−2) ≥ h(S)+m ≥ n

where m′ = b(m− 2)/2c, and 2h(S) < n. So we may choose the minimal
nonnegative integer s such that 2h(S) +

∑2s+2
i=2 |2ti|n ≥ n and s ≤ m′. If

s = 0, then 2h(S)+|2t2|n ≥ n, so (n−|2t2|n)/2 ≤ h(S). Since |2t2|n = 2t2−n
is odd, we see that (|2t2|ng)(2g)(n−|2t2|n)/2 is an index 1 subsequence of
S′, a contradiction. If s ≥ 1, then by the definition of s we have 2h(S) +∑2s

i=2 |2ti|n < n. By (∗), we get |2t2s+1|n+ |2t2s+2|n = 2t2s+1+2t2s+2−2n <

2n/3 ≤ 2h(S). Thus n − 2h(S) ≤
∑2s+2

i=2 |2ti|n < 2h(S) +
∑2s

i=2 |2ti|n < n.

Let α =
∑2s+2

i=2 |2ti|n. Note that α is odd (as |2ti|n = 2ti − n is odd for all
i ∈ [2,m]) and (n− α)/2 ≤ h(S). We conclude that

(|2t2|ng) · · · (|2t2s+2|ng)(̇2g)(n−α)/2

is an index 1 subsequence of S′, a contradiction.
In all cases, we have found contradictions. This completes the proof of

Theorem 2.1.

3. Counterexamples. In this section, we provide general counterex-
amples to the conjecture of Lemke and Kleitman.

Theorem 3.1. Let G = Cn = 〈g〉 be a cyclic group of order n such that
2 ≤ d |n and n > d2(d3 − d2 + d+ 1). Then the sequence

S =

(
n

d
g

)d−1((n
d

+ d

)
g

)bn/d2c−d d−1∏
i=0

((
1 +

in

d

)
g

)l
,

where l = n/d− d(d− 1)− 1, has no subsequence T with ind(T ) = 1.

Proof. Assume to the contrary that S has a subsequence T with ind(T )
= 1. Then there exists an element h∈G with ord(h) = n such that ‖T‖h = 1.
We set

g = jh and T =

(
n

d
g

)u((n
d

+ d

)
g

)v d−1∏
i=0

((
1 +

in

d

)
g

)xi
,

where j ∈ [1, n − 1] with gcd(j, n) = 1, u ∈ [0, d − 1], v ∈ [0, n/d2 − d] and
xi ∈ [0, l] for i ∈ [0, d− 1]. Then

n‖T‖g = x0 + · · ·+ xd−1 + dv(3.1)

+
n

d

(
u+ v + x1 + 2x2 + · · ·+ (d− 1)xd−1

)
≡ 0 (mod n).
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We note that if x0 + · · ·+ xd−1 = 0, then x0 = · · · = xd−1 = 0, so

(∗) dv +
n

d
(u+ v) ≡ 0 (mod n).

Thus d2v ≡ 0 (mod n), implying v = 0 (as d2v ∈ [0, n − d3]). By (∗), we
have u = 0, and so T is empty, yielding a contradiction. Thus we must have
x0 + · · ·+ xd−1 ≥ 1.

Let j = nq/d+ j0, 1 ≤ j0 ≤ n/d− 1. Then

j

(
1 +

un

d

)
= j0 +

n

d
(ju+ q).

Note that gcd(j, d) | gcd(j, n) = 1, so

(3.2)

{
j0 +

i

d
n

∣∣∣∣ 0 ≤ i ≤ d− 1

}
=

{∣∣∣∣j(1 +
un

d

)∣∣∣∣
n

∣∣∣∣ 0 ≤ u ≤ d− 1

}
.

Since ‖T‖h = 1, we have

d−1∑
i=0

xi

∣∣∣∣j(1 +
in

d

)∣∣∣∣
n

≤ n.

By (3.2), we derive that

j0

d−1∑
i=0

xi +
n

d

d−1∑
i=0

xi′ i ≤ n,

where i′ runs through [0, d− 1] as i runs through [0, d− 1]. Since xi ≤ l, we
obtain

d−1∑
i=0

xi ≤ l +

d−1∑
i=0

xi′i < l + d,

implying that

x0 + · · ·+ xd−1 =

d−1∑
i=0

xi ≤ l + (d− 1).

By (3.1), we have

(∗∗) x0 + · · ·+ xd−1 + dv ≡ 0 (mod n/d).

Hence

v ≥ 1

d

(
n

d
− l − (d− 1)

)
=

1

d

(
d(d− 1) + 1− (d− 1)

)
> d− 2,

and so

v ≥ d− 1.
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If |j(n/d + d)|n ≥ n/d, then v ≤ d − 1 as v|j(n/d + d)|n < n‖T‖h = n,
implying v = d− 1. Observe that

x0 + · · ·+ xd−1 − l ≥
n

d
− dv − l =

n

d
− d(d− 1)−

(
n

d
− d(d− 1)− 1

)
= 1,

so we obtain

‖T‖h =
1

n

(
u

∣∣∣∣j nd
∣∣∣∣
n

+ v

∣∣∣∣j(nd + d

)∣∣∣∣
n

+

d−1∑
i=0

xi

∣∣∣∣j( ind + 1

)∣∣∣∣
n

)

>
1

n

(
(d− 1)

n

d
+
(d−1∑
i=0

xi − l
)n
d

)
≥ 1,

yielding a contradiction.
Next we assume that |j(n/d+ d)|n < n/d, and write

j =
n

d2
j1 + j2, 0 ≤ j2 <

n

d2
,

where n/d2, j2 are positive numbers (not necessarily integers) and j1, dj2 are
integers. Then

n

d
>

∣∣∣∣j(nd + d

)∣∣∣∣
n

=

∣∣∣∣nd (j + j1) + dj2

∣∣∣∣
n

> 0,

so we derive that j + j1 ≡ 0 (mod d) and j2 > 0. This shows that j1 6≡ 0
(mod d) as gcd(j, d) = 1, whence j > n/d2, so j0 ≥ n/d2 (for otherwise,
j1 ≡ 0 (mod d)). By (3.2), j0 ≥ n/d2 and ‖T‖h = 1, so as before we obtain

j0(x0 + · · ·+ xd−1) < n, hence x0 + · · ·+ xd−1 < d2.

Thus

x0 + · · ·+ xd−1 + dv < d2 + d

(
n

d2
− d
)

=
n

d
,

a contradiction to (∗∗). This completes the proof of Theorem 3.1.

Remark. (1) Let S be the sequence as given in Theorem 3.1. Since
|S| ≥ n = |G|, S does have a zero-sum subsequence T . It follows from
Theorem 3.1 that ind(T ) ≥ 2. Note that if n is odd, then h(S) = l ≤ n/3−7.
If n is even, then h(S) = l ≤ n/2− 3.

(2) Let T = (ng/d)d−1((n/d+ d)g)dgn/d−d
2
. Then T is a subsequence of

S with ind(T ) = 2 (as ‖T‖g = 2).

4. Maximum index of minimal zero-sum sequences. We now in-
vestigate the possible maximal index of minimal zero-sum sequences and
propose a conjecture for its upper bound. It should be noted that the coun-
terexamples in the previous section were constructed based on the sequences
in Theorem 4.5. We first give the following definition.
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Definition 4.1. The maximum index of minimal zero-sum sequences
over Cn is defined as follows:

MI(Cn) = max
S
{ind(S)},

where S runs over all minimal zero-sum sequences of elements in Cn.

Gao proposed an upper bound for MI(Cn):

Conjecture 4.2 ([3, Conjecture 4.2]). MI(Cn) ≤ c lnn for some abso-
lute constant c.

It was proved in [16] that the conjecture is not true for an even integer n.
Theorem 4.5 below shows that MI(Cn) could be very large if n has a small
divisor. We first recall the following definition.

Definition 4.3. Let S be a minimal zero-sum (resp. zero-sum free) se-
quence of elements over G. An element g0 in S is called splittable if there
exist two elements x, y ∈ G such that x + y = g0 and Sg−10 xy is a minimal
zero-sum (resp. zero-sum free) sequence as well; otherwise, g0 is called un-
splittable. The sequence S is called splittable if at least one of elements of S
is splittable; otherwise, it is called unsplittable.

Lemma 4.4 (Xia, Yuan [16, Lemma 2.14]). Let S be a minimal zero-sum
sequence in a finite abelian group G. Then an element a in S is unsplittable
if and only if

∑
(Sa−1) = G \ {0}. Thus S is unsplittable if and only if for

every element a ∈ supp(S) we have
∑

(Sa−1) = G \ {0}.

We now give the main result of this section.

Theorem 4.5. Let n, d ≥ 2 be odd positive integers such that d |n and
n > d3, and let n/d = d2t+ r, 0 ≤ r < d2. Then

S =

(
n

d
g

)d−1
gdt+r

d−1∏
i=1

((
1 +

in

d

)
g

)dt
is an unsplittable minimal zero-sum sequence over Cn. Moreover,

ind(S) =
n

2d
− dt+ r

2
+ 1.

Proof. We first show that S is a minimal zero-sum sequence over Cn.
Assume that

T =

(
n

d
g

)u
gv

d−1∏
i=1

((
1 +

in

d

)
g

)xi
is a zero-sum subsequence of S. Then σ(T ) = 0, i.e.

(4.1) (v+x1+· · ·+xd−1)+
n

d

(
u+x1+2x2+· · ·+(d−1)xd−1

)
≡ 0 (mod n),
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where xi ∈ [0, dt], u ∈ [0, d − 1], v ∈ [0, dt + r]. If v = 0 and xi = 0 for all
i ∈ [1, d−1], by (4.1), we derive that un/d ≡ 0 (mod n), which is impossible
since u ≤ d − 1. Thus 0 < v + x1 + · · · + xd−1 ≤ dt + r + dt + · · · + dt =
d2t + r = n/d. Since v + x1 + · · · + xd−1 ≡ 0 (mod n/d) by (4.1), we get
v = dt + r and xi = dt for all i ∈ [1, d − 1], so T = S. Therefore, S is a
minimal zero-sum sequence over Cn.

Next we show that S is an unsplittable minimal zero-sum sequence
over Cn. We need only show that ng/d, g and (1 + in/d)g, i ∈ [0, d − 1],
are unsplittable. We first show that ng/d is unsplittable. By Lemma 4.4,
we need to show that

∑
S(ng/d)−1 = G \ {0}. Since d(1 + in/d)g = dg for

i ∈ [1, d− 1], we have∑(
S

(
n

d
g

)−1)
⊃
∑((

n

d
g

)d−2
gdt+r(dg)(d−1)t

)
=

{
g, . . . ,

(d− 1)n

d
g

}
.

Since i(1 + in/d)g = (i+ jn/d)g for each i ∈ [1, d− 1], where j = |i2|d, and
(d− j − 1)ng/d = (d− j − 1)ng/d, we conclude that if 1 ≤ j ≤ d− 2, then∑(

S

(
n

d
g

)−1)
⊃
∑((

(d− j − 1)n

d
g

)
gdt+r(dg)t−1(dg)(d−2)t

((
i+

jn

d

)
g

))
⊃
{(

(d− 1)n

d
+ i

)
g, . . . , (n− d+ i)g

}
.

Note that if i = 1 or d− 1, then j = 1. Thus∑(
S

(
n

d
g

)−1)
⊃
{(

(d− 1)n

d
+ 1

)
g, . . . , (n− d+ 1)g

}
∪
{(

(d− 1)n

d
+ d− 1

)
g, . . . , (n− d+ d− 1)g

}
=

{(
(d− 1)n

d
+ 1

)
g, . . . , (n− 1)g

}
(since (d− 1)n/d+ d− 1 < n− d+ 1).

It follows that
∑

(S(ng/d)−1) = G \ {0}. Therefore, ng/d is unsplittable.

Since d(1 + in/d)g = dg for i ∈ [1, d− 1], we have∑
(Sg−1) ⊃

∑((
n

d
g

)d−1
gdt+r−1(dg)(d−1)t

)
= G \ {0}.

Hence g is unsplittable.

For (1 + in/d)g, i ∈ [1, d − 1], we need only show that (1 + n/d)g is
unsplittable (the other proofs are similar and we omit the details). Since
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(1 + n/d)g + (1 + (d− 1)n/d)g = 2g and ng/d+ (1 + (d− 1)n/d)g = g, we
have∑(

S

((
1+

n

d

)
g

)−1)
⊃
∑(

gdt+r(dg)(d−1)t−2(2g)d−1g
)

=

{
g, . . . ,

(
n

d
−1

)
g

}
and∑(

S

((
1 +

n

d

)
g

)−1)
⊃
∑((

n

d
g

)d−2
gdt+r(dg)(d−1)t−2(2g)d−1g

)
=

{
g, . . . ,

(
(d− 1)n

d
− 1

)
g

}
.

Since∑(
S

((
1 +

n

d

)
g

)−1)
⊃
∑((

n

d
g

)d−1
gdt+r(dg)(d−1)t−2(2g)d−1

(
1 +

(d− 1)n

d

)
g

)
⊃
{

(d− 1)n

d
g, . . . , (n− 1)g

}
,

it follows that
∑

(S((1 + n/d)g)−1) = G \ {0}. Therefore, (1 + n/d)g is
unsplittable.

Finally, we compute the index of the above sequence. Since

‖S‖g =
1

n

(
n+ dt

d−1∑
i=1

in

d

)
=
d(d− 1)t

2
+ 1 =

n

2d
− dt+ r

2
+ 1,

we have ind(S) ≤ n
2d −

dt+r
2 + 1. On the other hand, let g = jh with

gcd(j, n) = 1 and write j = j0 + ns/d, 1 ≤ j0 < n/d. By (3.2), we have

‖S‖h >
d(d− 1)t

2
=

n

2d
− dt+ r

2
,

which implies that ind(S) ≥ n
2d −

dt+r
2 + 1, and we are done.

By using a similar argument to that for Theorem 4.5, we can prove the
following result.

Proposition 4.6. Let n, d ≥ 3 be odd positive integers with d |n and
n > 3d2. Let n/d = 3dt+ r, 0 ≤ r < 3d. Then

S =

(
n

d
g

)d−1
gdt+r

((
1 +

n

d

)
g

)dt((
1 +

(d− 1)n

d

)
g

)dt
is an unsplittable minimal zero-sum sequence over Cn.
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Let S be the same sequence as in Theorem 4.5. Then

ind(S) =
n

2d
− dt+ r

2
+ 1 =

(d− 1)n

2d2
− r(d− 1)

2d
+ 1 ≤ (d− 1)n

2d2
+ 1.

We remark that when n is even, [16, Theorem 3.1] provides an example of
an unsplittable minimal zero-sum sequence S such that ind(S) ≤ n/8 + 1 =
(d−1)n
2d2

+ 1 with d = 2.
We close the paper by making the following conjecture for MI(Cn) based

on the above information.

Conjecture 4.7. Let n be a composite positive integer and let p be the
least prime divisor of n. Then

MI(Cn) ≤ (p− 1)n

2p2
+ 1.
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