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1. Introduction. Suppose that S ⊆ Fp, where p is a prime number.
Let λ1, . . . , λp be the absolute values of the Fourier coefficients of S (to be
made more precise below) arranged as follows:

Ŝ(0) = λ1 ≥ λ2 ≥ · · · ≥ λp.
Then, as is well known, one can work out, as a function of ε > 0 and a den-
sity θ = |S|/p, an upper bound for the ratio λ2/λ1 which guarantees that
S+S covers at least (1−ε)p residue classes modulo p. Put another way, if S
has a large spectral gap, then most elements of Fp have the same number of
representations as a sum of two elements of S, thereby making S + S large.

What we show in this paper is an extension of this fact, which holds
for spectral gaps between other consecutive Fourier coefficients λk, λk+1, so
long as k is not too large; in particular, our theorem will work so long as

1 ≤ k ≤ d(log p)/log 2e.

Furthermore, we develop results for repeated sums S + S + · · ·+ S.
It is worth noting that this phenomenon also holds in arbitrary abelian

groups, as can be worked out by applying some results of Lev [4], [5], but
we will not develop this here (1).

The property of Fp that we exploit is something we call a “unique dif-
ferences” property, first identified by W. Feit, with first proofs and basic
results found by Straus [7].
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(1) In some of these general groups, the results are rather poor compared with the Fp

case. For example, they are poor in the case where one fixes p and works with the additive
group Fn

p , where one lets n→∞. The reason is that if one fixes a large subgroup of this
group, and then lets f be its indicator function, then f will have a large spectral gap, and
yet supp(f ∗ f) will equal that subgroup, meaning supp(f ∗ f) cannot be a 1− ε fraction
of the whole group.

DOI: 10.4064/aa136-1-4 [47] c© Instytut Matematyczny PAN, 2009



48 E. Croot and T. Schoen

Before we state the main theorems of our paper, we will need to fix some
notation. First, for a function f : Fp → C, we define its normalized Fourier
transform as

f̂ : a 7→ Ez(f(z)e2πiaz/p),

where E here denotes the expectation operator, which in this context is
defined for a function h : Fp → C as

Ezh(z) := p−1
∑
z∈Fp

h(z).

If the function h depends on r variables, say z1, . . . , zr, we define

Ez1,...,zrh(z1, . . . , zr) := p−r
∑

z1,...,zr∈Fp

h(z1, . . . , zr).

We will then let λk denote the kth largest absolute value of a Fourier coef-
ficient of f ; in other words, we may write Fp := {a1, . . . , ap}, where upon
letting λi := |f̂(ai)|, we have

λ1 ≥ · · · ≥ λp.
We define the convolution of r functions f1, . . . , fr : Fp → C to be

(f1 ∗ · · · ∗ fr)(n) := Ez1,...,zr−1f1(z1) · · · fr−1(zr−1)fr(n− z1 − · · · − zr−1).

Finally, for a function f : Fp → C, we define the “support of f”, denoted as

supp(f) ⊆ Fp
to be the places a ∈ Fp where f(a) 6= 0.

Our main theorem of the paper, from which our results on sumsets S+S
follows as an easy consequence, is stated as follows:

Theorem 1. Let p be a prime number and suppose that the function
f : Fp → R≥0 does not vanish identically. If , for real ε and positive integer
k ≤ d(log p)/log 2e we have λk+1 ≤ ελ2

k, then

|supp(f ∗ f)| ≥ (1− 2θε2)p, where θ := E(f2).

Remark 1. By letting f be the indicator function for S, we see that
θ = E(f2) = E(f) = |S|/p, which is the density of S relative to Fp. Also,
supp(f ∗ f) is just S + S.

Remark 2. It is easy to construct functions f which have a large spec-
tral gap as in the hypotheses. For example, take f to be the function whose
Fourier transform satisfies f̂(0) = 1/2, f̂(1) = f̂(−1) = 1/4, and f̂(a) = 0
for a 6= 0,±1. Clearly, we have f : Fp → [0, 1], and of course f has a large
spectral gap between λ3 and λ4 (λ3 = 1/4, while λ4 = 0).

Remark 3. An obvious question that one can ask regarding the above
theorem is whether it is possible to relax the condition λk+1 ≤ ελ2

k. In
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particular, it would be desirable to reduce the exponent below 2. This seems
to be a difficult problem to address, as it is not even known how to improve
the exponent for the case k = 1, where a large spectral gap corresponds
to the assertion that the function f is quasirandom. An example indicating
that reducing the exponent near to 1 might be hopeless is given as follows:
Suppose that A is a random subset of Fp of size o(

√
p); then λ2 = ελ1 with

ε ≈ |A|−1/2, while A + A is small as compared to p. However, this is not
quite a counterexample in the sense that in this case |A + A| is still large
compared to |A|.

By considering repeated sums, one can prove similar sorts of results,
but which hold for a much wider range of k. Furthermore, one can derive
conditions guaranteeing that (f ∗ · · · ∗f)(n) > 0 for all n ∈ Fp, not just 1−ε
proportion of Fp. This new theorem is given as follows:

Theorem 2. Fix t ≥ 3. Then the following holds for all primes p suf-
ficiently large: Suppose that f : Fp → [0, 1], f not identically 0, has the
property that for some

1 ≤ k < (log p)t−1(5t log log p)−2t+2,

we have that
λk+1 < λtk/tθ

t−2, where θ := E(f).

(Note that θ was defined differently in Theorem 1.) Then the t-fold convo-
lution f ∗ · · · ∗ f is positive on all of Fp.

Remark. It is possible to sharpen this theorem so that t is allowed to
depend on p in some way, though we will not bother to develop this here.

We conjecture that it is possible to prove a lot more:

Conjecture. The logarithmic bound on k in Theorem 1 can be replaced
with an exponential bound of the sort k < pc with a constant c > 0.

This would obviously require a different sort of proof than appears in
the present paper.

2. Some lemmas. First, we will require the following standard con-
sequence of Dirichlet’s box principle; its proof is also standard, so we will
omit it:

Lemma 1. Suppose that
r1, . . . , rt ∈ Fp.

Then there exists non-zero m ∈ Fp such that∥∥∥∥mrip
∥∥∥∥ ≤ p−1/t for i = 1, . . . , t,

where ‖x‖ denotes the distance from x to the nearest integer.
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The following was first proved by Browkin, Divǐs and Schinzel [2] and
is also a consequence of much more robust results due to Bilu, Lev and
Ruzsa [1] and Lev [5] (unlike [1], this last paper of Lev addresses the case
of arbitrary abelian groups) (2).

Lemma 2. Suppose that

B := {b1, . . . , bt} ⊆ Fp.
If

t ≤ d(log p)/log 2e,
then there exists d ∈ Fp having a unique representation as a difference of
two elements of B.

Finally, we will also need the following lemma, which is a refinement of
one appearing in [6]:

Lemma 3. Suppose that

(1) B1, B2 ⊆ Fp, where 10 ≤ |B1| ≤ p/2 and |B1| ≥ |B2|.
If

(2) 2|B2| log |B1| < log p,

then there exists d ∈ B1−B2 having a unique representation as d = b1− b2,
bi ∈ Bi; on the other hand , if

(3) 2|B2| log |B1| ≥ log p,

then there exists d ∈ B1 −B2 having at most

20|B2|(log |B1|)2/log p

representations as d = b1 − b2, bi ∈ Bi.
Proof. Suppose that (1) and (2) hold. Then, by Lemma 1, there exists

m such that for every x ∈ C2 := m ·B2 we have |x| ≤ p/|B1|2; furthermore,
by the pigeonhole principle there exists an integer interval I := (u, v) ∩ Z
with u, v ∈ C1 := m ·B1, with |I| ≥ p/|B1| − 1, which contains no elements
of B1. So, v−maxx∈C2 x has a unique representation as a difference c1− c2,
c1 ∈ C1, c2 ∈ C2. The same holds for B1−B2, and so this part of our lemma
is proved.

Now we suppose that (1) and (3) hold. Let B′ be a random subset of B2,
where each element b ∈ B2 lies in B′ with probability

(log p)/(3|B2|log |B1|).

(2) Straus [7] proved a weaker form of this lemma, which had the upper bound |B| ≤
(log p)/log 4 in place of |B| ≤ d(log p)/log 2e. He remarked that Feit had first brought
the problem to his attention. The first-named author of the present paper rediscovered a
proof of this result, as appeared in an earlier version of the text. Recently, Jańczak [3] has
proved some extensions of Straus’ results to linear combinations of elements of a set B.
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Note that this is where our lower bound 2|B2| log |B1| ≥ log p comes in, as
we need this probability to be at most 1.

So long as the B′ we choose satisfies

(4) |B′| < (log p)/(2 log |B1|),
which it will with probability at least 1/3 by an easy application of Markov’s
inequality, we claim that there will always exist an element d ∈ B−B′ having
a unique representation as a difference b1 − b′2, b1 ∈ B, b′2 ∈ B′: First, note
that it suffices to prove this for the set C1 − C ′, where

C1 = m ·B1, C2 = m ·B2, C ′ = m ·B′,
and where m is a dilation constant chosen according to Lemma 1, so that
every element x ∈ C ′ (when considered as a subset of (−p/2, p/2]) satisfies

|x| ≤ p1−1/|B′| < p/(3|B1|).
Now, there must exist an integer interval

I := (u, v) ∩ Z, u, v ∈ C1,

(which we consider as an interval modulo p) such that

|I| ≥ p/|C1| − 1 = p/|B1| − 1,

and such that no element of C1 is congruent modulo p to an element of I.
Clearly, then, v −maxc′∈C′ c′ has a unique representation as a difference.

Now we define the functions

ν(x) := |{(c1, c2) ∈ C1 × C2 : c1 − c2 = x}|,
ν ′(x) := |{(c1, c′2) ∈ C1 × C ′ : c1 − c′2 = x}|.

We claim that with probability exceeding 2/3,

(5) every x ∈ Fp with ν(x) > 20|B2|(log |B1|)2/log p satisfies ν ′(x) ≥ 2.

Note that since the sum of ν(x) over all x ∈ Fp is |B1| · |B2|, the number of
x satisfying this hypothesis on ν(x) is at most, for p sufficiently large,

(6)
|B1| · |B2|

20|B2|(log |B1|)2/log p
=
|B1| log p

20(log |B1|)2
< |B1|,

by (3) and the fact that |B1| ≥ |B2|.
To see that (5) holds, fix x ∈ C1 − C2. Then, ν ′(x) is the following sum

of independent Bernoulli random variables:

ν ′(x) =
ν(x)∑
j=1

Xj , where Prob(Xj = 1) = (log p)/(3|B2| log |B1|).

The variance of ν ′(x) is

σ2 = ν(x)Var(X1) ≤ ν(x)E(X1).
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We will now need the following well-known theorem of Chernoff:

Theorem 3 (Chernoff’s inequality). Suppose that Z1, . . . , Zn are inde-
pendent random variables such that E(Zi) = 0 and |Zi| ≤ 1 for all i. Let
Z :=

∑
i Zi, and let σ2 be the variance of Z. Then

Prob(|Z| ≥ δσ) ≤ 2e−δ
2/4 for any 0 ≤ δ ≤ 2σ.

We apply this theorem using Zi = Xi − E(Xi) and

δσ = ν(x)E(X1)− 1,

and then deduce that if ν(x) > 20|B2|(log |B1|)2/log p, then

Prob(ν ′(x) ≤ 1) = Prob(Z ≤ 1− ν(x)E(Z1)).

Noting that 1− ν(x)E(Z1) < 0, we deduce that

Prob(|Z| ≤ δσ) ≤ 2 exp(−δ2/4) ≤ 2 exp
(
−(ν(x)E(X1)− 1)2

4ν(x)E(X1)

)
<

1
3|B1|

.

Clearly, since there are at most (6) places x where ν(x) satisfies the hy-
potheses of (5), it follows that (5) holds with probability exceeding 2/3. But
also (4) holds with probability at least 1/3; so, there is an instantiation of
the set B′ such that both (5) and (4) hold. Since we proved that such a B′

has the property that there is an element x ∈ B1 − B′ having ν ′(x) = 1, it
follows from (5) that ν(x) ≤ 20|B2|(log |B1|)2/log p, which proves the second
part of our lemma.

3. Proof of Theorem 1. We apply Lemma 2 withB =A= {a1, . . . , ak},
so t = k. Let then d be as in the lemma, and let ax, ay ∈ A satisfy

ay − ax = d.

We define
g(n) := e2πidn/pf(n),

and note that
(f ∗ f)(n) ≥ |(g ∗ f)(n)|.

So, our theorem is proved if we can show that (g ∗ f)(n) is often non-zero.
Proceeding in this vein, let us compute the Fourier transform of g ∗ f : First,
we have

ĝ(a) = En(g(n)e2πian/p) = En(f(n)e2πin(a+d)/p) = f̂(a+ d).

So, by Fourier inversion,

(7) (f ∗ g)(n) = e−2πiaxn/pf̂(ax)f̂(ay) + E(n),

where E(n) is the “error” given by

E(n) =
∑
a6=ax

e−2πian/pf̂(a)f̂(a+ d).
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Note that for every value of a 6= ax we have

(8) either a or a+ d lies in {ak+1, . . . , ap}
⇒ |f̂(a)f̂(a+ d)| ≤ ελ2

k max{|f̂(a)|, |f̂(a+ d)|}.
To finish our proof we must show that “most of the time” |E(n)| is

smaller than the “main term” of (7); that is,

|E(n)| < |f̂(ax)f̂(ay)|.
Note that this holds whenever

(9) |E(n)| < λ2
k.

We deduce by Parseval and (8) that∑
n

|E(n)|2 = p
∑
a6=ax

|f̂(a)|2|f̂(a+ d)|2 ≤ 2pε2λ4
k

∑
a

|f̂(a)|2

≤ 2pε2λ4
kE(f2) = 2pε2λ4

kθ.

So, the number of n for which (9) holds is at least p(1− 2θε2), as claimed.

4. Proof of Theorem 2. Let

B1 := B2 := A = {a1, . . . , ak}.
Suppose initially that 2|A| log |A| ≥ log p, so that the hypotheses of the

second part of Lemma 3 hold. We then see that there exists d1 ∈ B1−B2 =
A − A with at most 20|A|(log |A|)2/log p representations as d1 = a − b,
a, b ∈ A. Let now A1 denote the set of all the elements b that occur. Clearly,

|A1| ≤ 20|A|(log |A|)2/log p.

Keeping B1 = A, we reassign B2 = A1. So long as 2|A1| log |A| ≥ log p
we may apply the second part of Lemma 3, and when we do we deduce that
there exists d2 ∈ A−A1 having at most 20|A1|(log |A|)2/log p representations
as d2 = a − b, a ∈ A, b ∈ A1. Let now A2 denote the set of all elements b
that occur. Clearly,

|A2| ≤ 20|A1|(log |A|)2/log p.

We repeat this process, reassigning B2 = A2, then B2 = A3, and so
on, all the while producing these sets A1, A2, . . . , and differences d1, d2, . . . ,
until we reach a set Am satisfying

2|Am| log |A| < log p.

We may, in fact, reach this set Am with m = 1 if 2|A| log |A| < log p to begin
with.

It is clear that since at each step we have, for i ≥ 2,

|Ai| ≤ 20|Ai−1|(log |A|)2/log p < |Ai−1|(5 log |A|)2/log p,
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it follows that
|Ai| ≤ |A|(5 log |A|)2i/(log p)i.

Since we have assumed that

|A| < (log p)t−1(5t log log p)−2t+2,

were we to continue our iteration to i = t− 1 we would have

|At−1| < |A|(5 log |A|)2t−2/(log p)t−1 < (t log log p)−2t+2(log |A|)2t−2 �t 1.

So, our number of iterations m satisfies

m ≤ t− 1,

for p sufficiently large.
By the second part of Lemma 3, this set Am will have the property that

there exists dm ∈ A − Am having a unique representation as dm = a − b,
a ∈ A, b ∈ Am.

Now, we claim that there exists a unique b ∈ Fp such that

b, b+ d1, b+ d2, . . . , b+ dm ∈ A.

To see this, first let b ∈ A. Since b+d1 ∈ A we must have b ∈ A1, by definition
of A1. Then, since b + d2 ∈ A, it follows that b ∈ A2. And, repeating this
process, we eventually conclude that b ∈ Am.

So, since b ∈ Am, and b+dm ∈ A, we have dm = a−b, a ∈ A, b ∈ Am. But
this dm was chosen by the second part of Lemma 3 so that it has a unique
representation of this form. It follows that b ∈ A is unique, as claimed.

From our function f : Fp → [0, 1], we define the functions g1, . . . , gm :
Fp → C via

fi(n) := e2πidin/pf(n).

It is obvious that

supp(f ∗ · · · ∗ f ∗ g1 ∗ · · · ∗ gm) ⊆ supp(f ∗ · · · ∗ f),

where there are t convolutions on the left, and t on the right; so, f appears
t−m times on the left.

We also have
ĝi(a) = f̂(a+ di),

and therefore

(f ∗ · · · ∗ f ∗ g1 ∗ · · · ∗ gm)∧(a) = f̂(a)t−mf̂(a+ d1) · · · f̂(a+ dm).

Since there exists a unique a, call it x, such that all these a+di belong to A,
we deduce via Fourier inversion that for any n ∈ Fp,

(f ∗· · ·∗f ∗g1∗· · ·∗gm)(n) = e−2πinx/pf̂(x)t−mf̂(x+d1) · · · f̂(x+dm)+E(n),
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where the “error” E(n) satisfies, by the usual L2 − L∞ bound,

|E(n)| ≤ tλk+1θ
t−3
∑
a

|f̂(a)|2 < λtk.

So, since all of |f̂(a)|, |f̂(a + d1)|, . . . , |f̂(a + dm)| are bounded from above
by λk, we find that |E(n)| is smaller than our main term above, and therefore
(f ∗ · · · ∗ f)(n) > 0.
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