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1. Introduction. Multiplicative properties of values taken on by inte-
ger polynomials have been the subject of intense scrutiny. This is not only
because of this subject’s intrinsic interest (highlighted in famous problems
like the twin prime conjecture), but also because results in this direction
have more than demonstrated their usefulness as auxiliary tools in diverse
number-theoretic investigations.

The purpose of this paper is to point out how the techniques of [27] can
be applied to attack problems of this type in the setting of polynomials over
finite fields. We concentrate on four concrete examples; in each case we begin
by discussing a problem or result in rational number theory and follow up
with a nontrivial result towards the corresponding polynomial analogue.

1.1. Twin primes and Brun’s constant. We begin by recalling Brun’s
classical result [3] towards the twin prime problem:

Theorem A (Brun). The sum of the reciprocals of those primes which
are members of a twin prime pair converges (or is a finite sum); that is,

B :=
(

1
3

+
1
5

)
+
(

1
5

+
1
7

)
+
(

1
11

+
1
13

)
+ · · · <∞.

While constants like π and e are known to billions of digits, our knowl-
edge of Brun’s constant B is surprisingly modest. The sharpest known un-
conditional bounds are (roughly)

1.830 < B < 2.347.
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(Thus we do not know B to even one decimal place!) The lower bound here
is due to Sebah [29], who computed all the twin prime pairs up to 1016

and summed their reciprocals. The upper bound is due to Crandall and
Pomerance ([5, pp. 16–17], see also [19, Chapter 3]), who bound the sum of
the twin prime pairs past 1016 using an explicit upper estimate of Riesel and
Vaughan [28] for the number of twin prime pairs. Much sharper estimates for
Brun’s constant are available if one assumes a suitable quantitative version
of the twin prime conjecture; e.g., it is plausible that

B = 1.902160583121± 4.08× 10−8.

This last estimate is taken from the recent thesis of Klyve [19], which the
reader should consult for references to earlier work.

Questions analogous to the twin prime conjecture have been considered
in the ring of polynomials over a finite field. Whereas a solution to the
rational twin prime problem remains a holy grail of modern research, in
[14] Hall proves by quite elementary means that there exist infinitely many
prime pairs P, P+1 ∈ Fq[T ] whenever q > 3. In [25] Hall’s result is extended
to the infinitude of prime pairs P, P + α, for any α ∈ F×q and any q 6= 2.
Unfortunately the families of twin prime pairs produced in these papers are
quite sparse, and the consequent lower bounds on the number of such pairs
are quite far from the conjectured asymptotics.

If Fq is a finite field containing the nonzero element α, we define the
Brun constant associated to q and α by

Bq,α :=
∑

P,P+αmonic primes

1
|P |

.

(Here and below we write |M | for the size of Fq[T ]/(M), i.e., |M | = qdegM .)
The proof of Theorem A can be adapted to show that Bq,α is finite for any q
and α (cf. [32, Corollary, p. 349] or [18, Theorem 5.5]). Actually we can be
far more precise about the values of Bq,α:

Theorem 1. If Fq is a finite field with characteristic p > 2, then

(1) Bq,α =
π2

6
+O

(
1
p

+
log log q

log q

)
,

uniformly for α ∈ F×q . Moreover , for every finite field Fq,

(2)
1

q − 1

∑
α∈F×q

Bq,α =
π2

6
+O(q−1/2).

Thus Bq,α tends to π2/6 as the characteristic of Fq tends to infinity, for
example if q tends to infinity through prime values. Moreover, the error
term in this approximation is rather small on average over α once q is
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large (regardless of the characteristic). We suspect that Bq,α tends to π2/6,
uniformly in α, whenever q tends to infinity, but we have not so far succeeded
in showing this.

1.2. The distribution of prime gaps. The following conjecture is a well-
known consequence of Cramér’s probabilistic model (see, e.g., [13] for back-
ground):

Conjecture A. Fix λ > 0. Suppose h and N tend to infinity in such
a way that h ∼ λ logN . Then

lim
N→∞

1
N

#{n ≤ N : π(n+ h)− π(n) = k} = e−λ
λk

k!
for every fixed integer k = 0, 1, 2, . . . .

Additional support for Conjecture A comes from the work of Gallagher
[10], who shows that it follows from a plausible uniform version of Hardy
and Littlewood’s prime k-tuples conjecture.

Granville (personal communication) suggests the following polynomial
analogue of Conjecture A. For a prime p and an integer a, let a denote the
residue class of a in Z/pZ=Fp. For each prime p and each integer h≥0, define

(3) I(p;h) :=
{
a0 + a1T + · · ·+ ajT

j :

0 ≤ a0, . . . , aj < p with
∑

aip
i < h

}
.

Let Pk(p;h, n) be the number of polynomials A(T ) of degree n over Fp for
which the translated “interval” A+ I(p;h) contains exactly k primes.

Conjecture 1. Fix λ > 0. Suppose h and n tend to infinity in such a
way that h ∼ λn. Then

(4)
1
pn
Pk(p;h, n)→ e−λ

λk

k!
(as n→∞)

for each fixed k = 0, 1, 2, . . . , uniformly in the prime p.

In §3.1, we show that, in analogy with Gallagher’s result, this conjecture
follows from a suitable uniform version of the prime k-tuples conjecture.
Our main result towards Conjecture 1 is the following; it shows that (4)
holds whenever p tends to infinity faster than any power of nn

2
, as long as

k = o(
√
n):

Theorem 2. For each compact set I ⊂ (0,∞), there is a constant C
with the following property : For integers n, h and k with n ≥ 2, h ≥ 1,
0 ≤ k ≤ h, and h/n ∈ I, upon setting λ := h/n we have

1
pn
Pk(p;h, n) = e−λ

λk

k!

(
1 +OI

(
(k + 1)2

n

))
+O(p−1/2 exp(Cn2 log n)),

where the second O-constant is absolute.
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1.3. Smooth values of polynomials. Both of the preceding problems con-
cerned the distribution of primes. On the opposite end of the multiplicative
spectrum one has the smooth numbers, those composed only of small prime
factors. (More precisely, an integer n is called y-smooth if its largest prime
factor P (n) is ≤ y.) Dickmann [6] has shown that for fixed u, the number of
n ≤ x which are x1/u-smooth is asymptotic to %(u)x, where % is the (unique)
continuous solution of the differential-delay equation

u%′(u) = −%(u− 1) with the initial condition %(u) = 1 for 0 ≤ u ≤ 1.

One could ask, more generally, for an asymptotic formula for the number of
x1/u-smooth values assumed by a polynomial F (T ) on integers 1 ≤ n ≤ x.
Denote this number by Ψ(F ;x, x1/u). Then we have the following conjecture
of Martin [21], which we state in a slightly strengthened form:

Conjecture B (Martin). Let F be an arbitrary but fixed nonzero inte-
ger-valued polynomial and let d1, . . . , dK be the degrees of the nonassociate
irreducible factors of F . Then for each U > 0, the asymptotic formula

Ψ(F ;x, x1/u) ∼ x%(d1u) · · · %(dKu)

holds as x→∞, uniformly for 0 < u ≤ U .

This can be viewed as a smooth number analogue of Schinzel’s Hypothe-
sis H. Martin links the two conjectures by showing that a sufficiently uniform
quantitative version of Hypothesis H implies the truth of Conjecture B for
every U < (d − 1/K)−1, where d is the maximal degree of an irreducible
factor of F and K is the number of nonassociate irreducible factors of F of
degree d. (Note that Conjecture B is trivial in the narrower range U < d−1.)

The distribution of smooth polynomials mimics the distribution of
smooth integers: for instance, the number of polynomials of degree n over
Fq all of whose prime factors have degree ≤ n/u is asymptotically %(u)qn (in
large ranges of u and uniformly in q; see, e.g., [4], [24]). This motivates the
following analogue of Conjecture B: For a polynomial F (T ) over Fq, define
Ψ(F ;n,m) as the number of monic, degree n polynomials g(T ) over Fq for
which every prime factor of F (g(T )) has degree bounded by m.

Conjecture 2. Fix B,U ≥ 1. Let F (T ) be a nonconstant polynomial
over Fq of degree at most B. Let K be the number of distinct monic irre-
ducible factors of F , and let d1, . . . , dK be the degrees of those factors. Then
as n→∞,

Ψ(F ;n, n/u) ∼ qn%(d1u) · · · %(dKu)

uniformly for 0 < u ≤ U and uniformly for all q, F, and K.

Once again, the methods of [27] allow us to confirm this conjecture when
q grows much faster than n (say when q grows faster than any power of nn)
and satisfies gcd(q, 2n) = 1:
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Theorem 3. Fix B,U ≥ 1. Let F (T ) be a nonconstant polynomial
over Fq of degree at most B. Let K be the number of distinct monic ir-
reducible factors of F , and let d1, . . . , dK be the degrees of these factors. If
n ≥ BU and (q, 2n) = 1, then

Ψ(F ;n, n/u) = qn%(d1u) · · · %(dKu) +OB(uqn/n) +OB(qn−1/2n!2B)

for 0 < u ≤ U .

Without giving details, we remark that minor modifications of our ar-
guments give analogous results for the number of smooth values of F (h(T ))
when h(T ) is restricted to monic prime values (cf. Martin’s prediction [21,
equation (1.8)]).

1.4. Smooth values of consecutive integers. The final conjecture we con-
sider can be viewed as a smooth number analogue of the prime k-tuples
conjecture:

Conjecture C. Let 0 ≤ α < β ≤ 1, and let A be the set of integers
n ≥ 2 whose largest prime factor P (n) satisfies nα ≤ P (n) ≤ nβ. Then for
every k, one can find k consecutive integers n + 1, . . . , n + k all of which
belong to A.

The origin of this problem lies with Erdős (see, e.g., [7]), who asked for
a proof in the case when k = 2 and [α, β] = [1 − ε, 1]. The case k = 2
was settled in its entirety by Hildebrand [15] (via the solution of a more
general conjecture of Balog). Moreover, when α = 0, Conjecture C follows
(for any β > 0 and every k) from the results of Balog and Wooley [2]. (All
of these theorems can in fact be proved in stronger, quantitative forms.)
Nevertheless, Conjecture C remains open in general. A partial result when
k > 2 is contained in [16]. See also the survey [17].

A similar problem appears in the work of Erdős and Pomerance [8];
they ask whether the largest prime factors of n and n + 1 are independent
events, in the sense that the proportion of n ≤ x with P (n) > xα1 and
P (n + 1) > xα2 tends to a(α1)a(α2), where a(t) := 1 − %(1/t). This is still
unsolved. Even the weaker assertion that asymptotically half of all positive
integers n have P (n) > P (n + 1) remains open. This last problem goes all
the way back to correspondence in the 1930s between Erdős and Turán (see
[30, pp. 100–101]).

The results of Balog and Wooley mentioned above have been translated
into the polynomial setting by Masuda and Panario [22]. However, it seems
that there are no results for polynomials in the direction of Conjecture C
when α > 0. Our next theorem deals with this case, and at the same time
proves an independence statement for the largest prime factors of neighbor-
ing polynomials.
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Write L(A) for the degree of the largest irreducible factor of a polyno-
mial A. Suppose that I = [α, β] is a compact subinterval of [0, 1]. (Here and
in what follows, intervals are always understood to be of nonzero length, so
that α < β.) If α 6= 0, we define κ(I) = 1/α, otherwise we set κ(I) = 1/β.

Theorem 4. Let k be a positive integer , and let S be a k-element subset
of Fq. Suppose that for each s ∈ S we are given a compact subinterval
Is = [αs, βs] ⊂ [0, 1] and let C := maxs∈S κ(Is).

(a) The number of monic, degree n polynomials A(T ) ∈ Fq[T ] with

(5) αs degA(T ) ≤ L(A(T ) + s) ≤ βs degA(T ) for every s ∈ S
is given by

qn
∏
s∈S

(%(β−1
s )− %(α−1

s )) +Ok,C(qn/n) +O(n!2kqn−1/2),

provided that gcd(q, 2n) = 1.
(b) Suppose that the length of each interval Is is bounded below by ε > 0.

If q is odd and sufficiently large (depending only on k and ε), then
there are infinitely many monic polynomials A(T ) ∈ Fq[T ] for which
(5) holds.

We emphasize that the estimate in (a) is only nontrivial when q is large
compared to n, since otherwise our bound on the error term exceeds the
total number of monic, degree n polynomials. The proof of (a) depends on an
extension of the main result of [27]; this extension implies (in particular) the
stronger result that in a similar range of q, the factorization types (defined
below) of neighboring polynomials are close to independent.

To illustrate Theorem 4, fix α1, α2 ≥ 0. Then applying Theorem 4 with
I0 = [α1, 1], I1 = [α2, 1], and S = {0, 1} ⊂ Fq, we see that the proportion of
degree n polynomials A(T ) over Fq with L(A(T )) ≥ α1n and L(A(T )+1) ≥
α2n is asymptotic to a(α1)a(α2), provided n and q tend to infinity with
q ≥ n4n (say) and gcd(q, 2n) = 1. This confirms, in a certain range, the
polynomial analogue of the independence result conjectured by Erdős and
Pomerance.

1.5. The key estimate. We now turn to a description of the main techni-
cal tool required to obtain these results. First some notational preliminaries:
We use λ to denote a partition of the positive integer n, i.e., λ is a sequence of
positive integers (t1, t2, . . . ) with t1 ≥ t2 ≥ · · · and

∑
ti = n. Alternatively,

we may write λ = 〈1α1 , 2α2 , . . . 〉, where αj is the number of times j occurs in
the sequence of summands ti. If d is a positive integer and λ = (t1, t2, . . . ) is
a partition of n, we write d×λ for the partition of dn given by (dt1, dt2, . . . ).

If f(T ) is a degree n polynomial over a field, the partition corresponding
to the list of degrees of its irreducible factors is referred to as the cycle type
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or factorization type of f(T ). Similarly, the cycle type of a permutation on
n letters refers to the partition 〈1α1 , . . . , nαn〉, where αj is the number of
j-cycles in its decomposition into disjoint cycles. We use the notation T (λ)
for the proportion of permutations on n letters with cycle type λ. Thus, if
λ = 〈1α1 , 2α2 , . . .〉 is a partition of n, then (as proved by Cauchy)

T (λ) =
1

1α1 · · ·nαnα1! · · ·αn!
.

We can now state our main theorem, which extends the main result
of [27]:

Theorem 5. Let n be a positive integer and let λ1, . . . , λr be partitions
of the integer n. Let f1(T ), . . . , fr(T ) be nonassociate irreducible polynomi-
als over Fq of respective degrees d1, . . . , dr, with

∑r
i=1 di ≤ B. The number

of univariate monic polynomials h of degree n for which fi(h(T )) has fac-
torization type di × λi for every 1 ≤ i ≤ r is

qn
r∏
i=1

T (λi) +O((nB)n!Bqn−1/2),

provided gcd(q, 2n) = 1. Here the implied constant is absolute.

Remark. As will be clear from the proof, the same estimate holds if we
also insist that all the polynomials fi(h(T )) are squarefree.

The case when each λi equals (n) (where T (λi) = 1/n) corresponds to
the simultaneous primality of all the fi(h(T )), which was the case treated
in [27]. The proof of Theorem 5 follows [27] closely and is given in §6.

The reader may be puzzled as to why Theorem 5 is stated in terms of
partitions of the form di×λi and not in terms of arbitrary partitions of din.
Actually the mystery surrounding this restriction is easily dispelled. Suppose
that f(T ) is irreducible of degree d. Then if h(T ) is any polynomial over Fq,
every irreducible factor of f(h(T )) has degree divisible by d (and thus its
cycle type must have the form d× λ). Indeed, if π(T ) divides f(h(T )), then
f has a root in the field Fq[T ]/(π). Thus the extension of Fq of degree deg π
must contain a copy of the extension of Fq of degree d, which gives the claim.

Several authors have commented on the structural similarities between
permutations and polynomials over finite fields; see, e.g., [1], where both
objects are considered in the general context of “logarithmic combinatorial
structures”. Theorem 5 provides a bridge between the statistics of random
permutations and those of random polynomial specializations, enabling the-
orems for permutations to be easily transported to the setting of polynomial
specializations. It seems reasonable to expect that this theorem should ad-
mit many additional number-theoretic applications. For inspiration in this
regard we refer the reader to Granville’s survey [12], which in the course
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of comparing the anatomy of integers and permutations, chronicles many
permutation statistics that are of arithmetic significance.

Notation. In addition to the notation already introduced, we use the
symbols µ, ω, and ϕ for the polynomial analogues of the corresponding
arithmetic functions. Thus ω(A) is the number of distinct monic prime divi-
sors of A, while µ(A) := (−1)ω(A) if A is squarefree and zero otherwise, and
ϕ(A) is the number of units in the ring Fq[T ]/(A). We reserve the letter P
for monic irreducibles.

2. Brun’s constant: Proof of Theorem 1. For α ∈ F×q , let π2(q;n, α)
denote the number of monic primes P of degree n over Fq for which P + α
is also prime.

Lemma 1. Let n be a positive integer. If α ∈ F×q and (q, 2n) = 1, then

(6) π2(q;n, α) =
qn

n2
+O(qn−1/2nn!2).

Moreover ,

(7)
∑
α∈F×q

π2(q;n, α) =
qn+1

n2
(1 +O(n2/q)).

Proof. Estimate (6) follows immediately from Theorem 5 upon choosing
f1(T ) = T , f2(T ) = T + α and λ1 = λ2 = (n). To prove (7), note that the
left-hand side of (7) can be viewed as counting the number of not necessarily
monic prime pairs f, f+1 of degree n over Fq. (In fact, the term correspond-
ing to α here counts the number of such pairs with leading coefficient α−1.)
In this guise, estimate (7) is contained in [26, Theorem 1].

Proof of Theorem 1. We have

(8) Bq,α =
∞∑
n=1

1
qn
π2(q;n, α).

We split the sum (8) at a number A with 0 < A < p/2. Then (q, 2n) = 1 for
every n ≤ A, so that (6) yields

Bq,α =
∑
n≤A

1
n2

+O
(
q−1/2

∑
n≤A

nn!2
)

+O
(∑
n>A

q−nπ2(q;n, α)
)
.

The former O-term is � q−1/2A2A. To estimate the latter O-term, we use
the bound (valid uniformly over all q, n, and α)

(9) π2(q;n, α)� qn

n2
,

which follows in a standard way by an application of Selberg’s upper bound
method (as developed for polynomials in, e.g., [32]). This shows that the
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second O-term is �
∑

n>A n
−2 � 1/A. Hence

Bq,α =
π2

6
+O(1/A+ q−1/2A2A),

say. Now take A = min
{

1
3p,

1
6 log q/log log q

}
to obtain (1).

Turning to (2), we observe that for any A > 0,

1
q − 1

∑
α∈F×q

Bq,α =
1

q − 1

∑
n≤A

1
qn

∑
α∈F×q

π2(q;n, α) +O

(
1

q − 1

∑
n>A

∑
α∈F×q

1
n2

)
.

(Note that we have once again applied (9).) The error term here is O(1/A).
Using (7) to estimate the inner sum, we obtain a main term of

q

q − 1

∑
n≤A

1
n2

(
1 +O

(
n2

q

))
=

q

q − 1

∑
n≤A

1
n2

+O

(
A

q

)
=
π2

6
+O

(
1
A

+
A

q

)
.

Taking A = q1/2 yields (2).

3. The distribution of prime gaps

3.1. Gallagher’s theorem for polynomials over finite prime fields. For
D = (D1, . . . , Dr) an r-tuple of distinct polynomials over Fq, define

SD =
∏
P

|P |r−1(|P | − ωD(P ))
(|P | − 1)r

,

where ωD(P ) is the number of residue classes mod P occupied byD1, . . . , Dr.
Let πD(n; q) be the number of monic polynomials A of degree n for which
all of A+D1, . . . , A+Dr are irreducible. Then the usual heuristics offered
in favor of the Hardy–Littlewood conjectures suggest that

(10) πD(n; q) = (SD + o(1))
qn

nr
(n→∞).

In fact these heuristics suggest that this relation should hold not merely
when D is fixed and n → ∞, but also whenever qn → ∞, uniformly in D,
provided only that every Di has degree less than n. This suggests the plau-
sibility of the hypothesis in the following theorem, which is an analogue of
Gallagher’s principal result in [10]:

Theorem 6. Fix λ > 0, and suppose that h and n tend to infinity with
h ∼ λn. Then (4) holds uniformly in p, under the following hypothesis:

(A) For each fixed r, (10) holds as n tends to infinity , uniformly in p,
and uniformly for D1, . . . , Dr ∈ I(p;h) with the Di distinct and
S(D1,...,Dr) 6= 0.

As in Gallagher’s paper, the theorem follows from a suitable estimate
for the average value of SD.
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Lemma 2. Fix r ≥ 1. Under hypothesis (A) of Theorem 6, we have∑
distinct D1,...,Dr∈I(p;h)

SD ∼ hr (h→∞),

uniformly in p.

Suppose now that this lemma is proved. Fix k ≥ 0, and let Mk(λ) be the
kth moment of the Poisson distribution with parameter λ. Then as n→∞,
the argument of [10, pp. 5–6] shows that

1
pn

∑
A(T )∈Fp[T ]

A(T )monic, of degreen

|{P ∈ A+ I(p;h) : P prime}|k →Mk(λ),

where the convergence is uniform in p. Theorem 6 then follows by an appli-
cation of the method of moments.

Thus to prove Theorem 6 it only remains to prove Lemma 2.

Lemma 3. Let M be a nonzero polynomial over Fp. If |M | ≤ h, then the
number of elements of I(p;h) which lie in a given residue class modulo M
is h/|M |+O(1), where the implied constant here is absolute.

Proof. Write h in base p, so that h = h0+h1p+· · ·+hkpk with 0 ≤ hi < p
for each i and hk ≥ 1. Represent the given residue class as A mod M , where
degA < degM . Then |M | ≤ h implies that j := degM ≤ k. Assume (with
no loss in generality) that M is monic, and write

M = T j +mj−1T
j−1 + · · ·+m1T +m0.

We wish to count the number of B ∈ Fp[T ] for which A + MB belongs to
I(p;h). Any such B can be written in the form

B = bk−jT
k−j + bk−j−1T

k−j−1 + · · ·+ b0,

and then (if we write A =
∑
aiT

i),

A+MB = bk−jT
k + (bk−jmj−1 + bk−j−1 + ak−1)T k−1 + · · ·+ a0 + b0m0.

Looking at the leading coefficient of A + MB, we see that A + MB
belongs to I(p;h) whenever bk−j is any of 0, 1, . . . , hk − 1 (regardless of the
values of the other bi). There are hkpk−j such choices of B. All other choices
of B with A + MB ∈ I(p;h) have bk−j = hk. For these B, the condition
A+MB ∈ I(p;h) restricts the next-to-leading coefficient of B: if

(11) bk−jmj−1 + bk−j−1 + ak−1 = 0, 1, 2, . . . , or hk−1 − 1,

then automatically A + MB belongs to I(p;h). This gives rise to an addi-
tional hk−1p

k−j−1 permissible values of B. Any B not counted so far for
which A+MB belongs to I(p;h) has both bk−j = hk and the left-hand side
of (11) equal to hk−1. Continuing this process, we find

N := hkp
k−j + hk−1p

k−j−1 + · · ·+ hj = bh/|M |c



Polynomial specializations over finite fields 67

values of B which guarantee that A + MB belongs to I(p;h). Moreover,
there is at most one other value of B for which A+MB belongs to I(p;h),
namely that B for which

|A+MB − (hkT k + hk−1T
k−1 + · · ·+ hjT

j)| < pj .

If A+MB lies outside I(p;h) for this final value of B, then the quantity to
be enumerated is N , otherwise it is N +1. In either case the stated estimate
holds.

Proof of Lemma 2 (sketch). Define ∆ :=
∏

1≤i<j≤r(Di −Dj). Write the
P th factor of SD in the form

1 +
|P |r − ωD(P )|P |r−1 − (|P | − 1)r

(|P | − 1)r
= 1 + a(P, ωD(P )).

For monic, squarefree Q define aD(Q) :=
∏
P |Q a(P, ωD(P )). Then (in anal-

ogy with [10, eq. (7)]) we find that

aD(P )�
{

(|P | − 1)−2 when ωD(P ) = r,
(|P | − 1)−1 when ωD(P ) < r,

these two cases occurring respectively when P does not or does divide ∆.
Here the implied constant, say C, depends only on r. It follows from these
estimates that we have an absolutely convergent series expansion

SD =
∑
Q

aD(Q).

For the tail of this expansion, we have∑
|Q|>x

|aD(Q)| ≤
∑
|Q|>x

µ2(Q)Cω(Q)

ϕ(Q)2
ϕ((Q,∆))(12)

=
∑
A|∆

µ2(A)Cω(A)

ϕ(A)

∑
|B|>x/|A|
(B,∆)=1

µ2(B)Cω(B)

ϕ(B)2
,

where in the last line we have written Q = AB with A |∆ and (B,∆) = 1.
In [10], the analogous double sum is

(13) �r,ε x
−1(xh)ε;

we proceed to establish that this estimate is also valid for (12).
Observe that∑
|B|≤x

µ2(B)Cω(B)

ϕ(B)2
|B| ≤

∏
|P |≤x

(
1 +

C|P |
(|P | − 1)2

)
≤
∏
|P |≤x

(
1 +

4C
|P |

)

≤ exp
(

4C
∑
|P |≤x

1
|P |

)
.
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The number of prime polynomials P of degree n over Fp is bounded above
by pn/n, and this implies that

exp
(

4C
∑
|P |≤x

1
|P |

)
≤ exp

(
4C

∑
1≤n≤log x/log p

1
n

)
� (log x)4C .

Partial summation now shows that the inner sum in (12) is� |A|x−1 log4C x,
so that (12) is

� (x−1 log4C x)
∑
A|∆

µ2(A)Cω(A) |A|
ϕ(A)

≤ (x−1 log4C x)
∏
P |∆

(1 + 2C)(14)

≤ (x−1 log4C x)|∆|ε
∏

P∈Fp[T ]

|P |<(1+2C)1/ε

(1 + 2C)|P |−ε �ε (x−1 log4C x)hε(
r
2)

for any ε > 0. (Note that the last product over P is finite for each fixed p and
empty for p > (1+2C)1/ε, and so it is�ε 1.) To obtain (13), we replace ε in
(14) with εr−2 (say). From this point the proof proceeds exactly as in [10],
save that the “lattice point argument” of [10, p. 7] now requires an appeal
to Lemma 3.

Remark. The restriction to prime fields Fp was introduced to ensure a
canonical embedding from [0, p−1] into Fp. This restriction is in some sense
merely cosmetic. More precisely, suppose that for each q we have fixed a
bijection a 7→ a between [0, q − 1] and Fq. Define I(q;h) as in (3) with p
replaced by q. Then the proofs of this section show that Theorem 6 remains
valid with p replaced by q throughout.

3.2. Proof of Theorem 2. We may assume that p > max{h, n}, for oth-
erwise the theorem is trivial. Thus Theorem 5 can be employed to count the
occurrences of prime r-tuples A+D1, . . . , A+Dr with Di ∈ I(p;h).

Fix one of the
(
h
k

)
subsets S ⊂ I(p;h) with k elements. We first count

the number of monic, degree n polynomials A for which A + s is prime
for all s ∈ S and reducible for all s ∈ I(p;h) \ S. By the principle of
inclusion-exclusion, this is given by∑

T⊇S
T⊆I(p;h)

(−1)|T |−|S|#{A : every element of A+ T is irreducible}.

According to Theorem 5,

#{A : every element of A+ T is irreducible} =
pn

n|T |
+O((hn)n!hpn−1/2).

We insert this estimate above, and sum over the
(
h
k

)
k-element subsets S of

I(p;h) to find that
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Pk(p;h, n) =
(
h

k

)(
pn

nk
−
(
h− k

1

)
pn

nk+1
+ · · ·+ (−1)h−k

pn

nh

)
+O

((
h

k

)
2h−k(hn)n!hpn−1/2

)
.

The error term here is

� 22h(nh)nnhpn−1/2 � exp(Cn2 log n)pn−1/2

for a constant C depending on I, and the main term is(
h

k

)
pn

nk

(
1− 1

n

)h−k
.

The theorem follows upon inserting into this expression for the main term
the estimates (

h

k

)
=
hk

k!

(
1− 1

h

)(
1− 2

h

)
· · ·
(

1− k − 1
h

)
=
hk

k!

(
1 +O

(
k2

h

))
=
hk

k!

(
1 +OI

(
k2

n

))
,(

1− 1
n

)h−k
=
(

1 +OI

(
k

n

))(
1− 1

n

)h
= exp(−h/n)

(
1 +OI

(
k

n

))(
1 +OI

(
1
n

))
= exp(−h/n)

(
1 +OI

(
k + 1
n

))
,

once we recall that we are writing λ for h/n.

4. Smooth values of polynomials: Proof of Theorem 3. For a
permutation σ on a finite set, let L(σ) denote the length of the longest
cycle in the decomposition of σ into disjoint cycles. The following result is
extracted from the thesis of X. Gourdon (cf. [11, Chapitre VII, Théorème 1]).

Lemma 4 (Gourdon). Let n be a positive integer and suppose m > 0.
Then the proportion of permutations σ on n letters with L(σ) ≤ m is
%(n/m) +O(1/m).

Thus, by the results mentioned in the introduction just before Conjec-
ture 2, the proportion of permutations on n letters with largest cycle length
≤ n/u is close to the proportion of degree n polynomials over a finite field
with largest prime factor of degree ≤ n/u. (The idea that the decomposi-
tion of random permutations should mimic the decomposition of random
arithmetic structures seems to appear first in the work of Knuth and Trabb
Pardo [20] in their study of the rth largest prime factor of a random integer.)
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Remarks. (i) In the original theorem of Gourdon, m is restricted to
integral values in the interval [2, n]. However, the restriction to integral
values is inessential; for any real m with 2 ≤ m ≤ n,

%(n/m)− %(n/bmc) =
n/bmc�

n/m

%(u− 1)
u

du� log
m

bmc
� 1

m
.

Moreover, for m < 2 or m > n, Lemma 4 is trivial.
(ii) By a simple inductive argument, Omar et al. obtain Lemma 4 under

the additional hypothesis that m ≥ εn for an arbitrary fixed ε > 0 (see [23,
Theorem 1]). This result gives Theorem 3 with its first error term replaced
with the less uniform bound OB,U (uqn/n). However, it suffices to establish
Theorem 4(a) as stated.

Proof of Theorem 3. Let P1, . . . , PK be the distinct monic irreducible
factors of F , numbered so that degPi = di. Then F (h(T )) has all its prime
factors of degree ≤ n/u precisely when the same is true for each of the
polynomials Pi(h(T )). For 1 ≤ i ≤ K, let λi run over the cycle types of
permutations on n letters corresponding to permutations σ with L(σ) ≤
n/diu. By Theorem 5, we have

Ψ(F ;n, n/u) =
∑

λ1,...,λK

qn
K∏
i=1

T (λi) +OB

( ∑
λ1,...,λK

nn!Bqn−1/2
)
.

Since the number of possibilities for each λi is (crudely) bounded above
by 2n, the error here is

�B 2nKnn!Bqn−1/2 ≤ 22nBn!Bqn−1/2 �B n!2Bqn−1/2.

Using Lemma 4, we see that the main term here is

qn
K∏
i=1

(∑
λi

T (λi)
)

= qn
K∏
i=1

(%(diu) +O(diu/n))

= qn%(d1u) · · · %(dKu) +OB(uqn/n).

Combining these two estimates completes the proof of Theorem 3.

5. Smoothness of neighboring polynomials: Proof of Theorem 4

Proof of Theorem 4(a). We may assume n ≥ 2, since the estimate is
trivial for n = 1 (or for any absolutely bounded n). By Lemma 4, the
proportion of permutations σ on n letters for which

(15) αn ≤ L(σ) ≤ βn
is given by

%(β−1)− %(α−1) +O(κ/n),
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where κ = κ([α, β]), provided we adopt the convention that %(0−1) = 0. (Re-
call that if I = [α, β], then κ(I) = 1/α if α 6= 0 and κ(I) = 1/β otherwise.)
For each s ∈ S, let λs run over the cycle types of permutations satisfying
(15) with [α, β] = [αs, βs]. Proceeding as in the proof of Theorem 3, we find
that the number of polynomials A(T ) satisfying the conclusion of part (a) is

qn
∏
s∈S

(∑
λs

T (λs)
)

+O
( ∑
λ1,...,λk

(nk)n!kqn−1/2
)
.

The error term here is

� 2nk(nk)n!kqn−1/2 � n!2kqn−1/2.

Moreover, since κ([αs, βs]) ≤ C for each s, the main term here is

qn
∏
s∈S

(%(β−1
s )−%(α−1

s ) +O(C/n)) = qn
∏
s∈S

(%(β−1
s )−%(α−1

s )) +Ok,C(qn/n).

Combining these estimates finishes the proof.

To prove part (b), we require the following auxiliary result (see [25,
Theorem 2]):

Theorem B. Let f1(T ), . . . , fr(T ) be irreducible polynomials over Fq. If
q is large compared to the sum of the degrees of the fi, then there is a prime
l dividing q − 1 and an element β ∈ Fq for which every substitution

T 7→ T l
k − β with k = 0, 1, 2, . . .

leaves all of f1, . . . , fr irreducible.

Proof of Theorem 4(b). Let n be the least positive integer which is
prime to q and exceeds 2ε−1; then n = Oε(1). For each s ∈ S, choose a⌊

1
2(αs + βs)n

⌋
-cycle σs from Sn. Since n ≥ 2ε−1 ≥ 2(βs − αs)−1, we have

αsn ≤ L(σs) ≤ βsn

for each s ∈ S. Let λs be the cycle type of σs. By Theorem 5 (applied to the
k linear polynomials fs(T ) = T + s), if q is chosen large enough (depending
on k and ε), then we can find a monic, degree n polynomial A(T ) for which
A(T ) + s has cycle type λs for all s ∈ S. For this choice of A(T ), we have

αsn ≤ L(A(T ) + s) ≤ βsn

for all s ∈ S. We have thus constructed a polynomial satisfying (5).
If q is large, we can use this polynomial A(T ) to construct an infinite

sequence of solutions to (5): For each s ∈ S, let Ps(T ) be a monic prime
of maximal degree dividing A(T ) + s. Then the degree of

∏
s∈S Ps(T ) is

Ok,ε(1), and so by Theorem B, if q is large enough (again depending only on
k and ε) one can find a prime l and a β ∈ Fq for which all the polynomials



72 P. Pollack

Ps(T l
k − β) are irreducible for every k ≥ 0. It is now easy to check that all

the polynomials A(T l
k−β), with k = 0, 1, 2, . . . , have the desired property.

6. Proof of Theorem 5. We recall the basic setup of [27], referring to
that paper for details and proofs. Our strategy is to count, for fixed values
of

(16) h(T ) = Tn + an−1T
n−1 + · · ·+ a1T ∈ Fq[T ],

the number of a ∈ Fq for which fi(h(T )− a) has cycle type di×λi for every
1 ≤ i ≤ r. We then sum over h to complete the proof.

Fix an algebraically closed field Ω of infinite transcendence degree con-
taining Fq(u); all fields appearing below are to be understood as subfields
of Ω. Let d1, . . . , dr be the degrees of the polynomials f1, . . . , fr, respectively,
and fix roots θ1, . . . , θr of f1, . . . , fr (respectively) from Ω. For each integer j,
define θ(j)

i := θq
j

i . Now define the function fields Ki,j/Fq, Li,j/Fq and Mi/Fq
(for 1 ≤ i ≤ r, 1 ≤ j ≤ di) as follows (suppressing the dependence on h):

Ki,j field obtained by adjoining a fixed root of h(T ) − u − θ(j)
i to

Fqdi (u),
Li,j normal closure of Ki,j over Fqdi (u), that is, the splitting field

of h(T )− u− θ(j)
i over Fqdi (u),

Mi compositum of the fields Li,j for j = 1, . . . , di, that is, the
splitting field of fi(h(T )− u) over Fqdi (u).

Let D be the least common multiple of d1, . . . , dr, and set K̃i,j := Ki,jFqD ,
L̃i,j := Li,jFqD and M̃i := MiFqD . Finally, let M̃ be the compositum
of M̃1, . . . , M̃r. (Thus M̃ is the splitting field of

∏r
i=1 fi(h(T ) − u) over

FqD(u).) The assumption that p does not divide n implies that the exten-
sions Mi/Fq(u) (for 1 ≤ i ≤ r) are all Galois, as are all the M̃i/Fq(u) and
M̃/Fq(u) (see [27, Lemma 5]).

The groups Gal(M̃/Fq(u)) and Gal(Mi/Fq(u)) are related as follows. Let
Si,j denote the full set of roots of h(T )− u− θ(j)

i (thus Si,j is periodic in j
with period di). Then we have for each k = 1, . . . , r a commutative diagram

(17)

Gal(M̃/Fq(u)) ι1−−−−→ Gal(FqD/Fq)×
∏r
i=1 Sym(

⋃di
j=1 Si,j)

σ 7→σ|Mk

y π

y
Gal(Mk/Fq(u)) ι2−−−−→ Gal(Fqdk/Fq)× Sym(

⋃dk
j=1 Sk,j)

Here the maps ι1, ι2 are given by

ι1 : σ 7→ (σ|F
qD
, σ|Sd1

j=1 S1,j
, . . . , σ|Sdr

j=1 Sr,j
), ι2 : σ 7→ (σ|F

qdk
, σ|Sdk

j=1 Sk,j
),
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and
π : (τ, σ1, . . . , σr) 7→ (τ |F

qdk
, σk).

(Note that ι1 and ι2 are embeddings while π is a surjection.)
For most choices of h(T ) it is possible to describe, in a simple and explicit

way, the images of ι1 and ι2. Indeed, assume that

discn−1
u discnT (h(T )− u− θ(j)

i ) 6= 0 for all 1 ≤ i ≤ r, 1 ≤ j ≤ di,(18)

resn−1,n−1
u (discnT (h(T )− u− θ(j)

i ),discnT (h(T )− u− θ(j′)
i′ )) 6= 0(19)

whenever i, i′, j, j′ are as above and (i, j) 6= (i′, j′).

(Here the subscripts indicate the variable with respect to which the resul-
tants and discriminants are to be computed, and the superscripts indicate
the formal degrees of the arguments.) Together these conditions exclude at
most

4n2qn−2

(
1 +

(
B

2

))
values of h(T ) of the form (16) (see [27, Lemma 6]) and for the remaining
choices of h(T ) the following holds (see [27, Lemma 7]): Let Frob denote
the qth power map; then the image of ι1 consists of all pairs (Frobl, σ) ∈
Gal(FqD/Fq)×

∏r
i=1 Sym(

⋃di
j=1 Si,j) which obey the compatibility condition

(20) σ(Si,j) ⊂ Si,j+l for all 1 ≤ i ≤ r and all j.

Similarly, for each k = 1, . . . , r, the image of ι2 consists of all pairs (Frobl, σ)
∈ Gal(Fqdk/Fq)× Sym(

⋃dk
j=1 Sk,j) satisfying

(21) σ(Sk,j) ⊂ Sk,j+l
for all j.

The following result supersedes Lemma 12 of [27].

Lemma 5. Let g(T ) be a squarefree polynomial of degree n over Fqd which
is coprime to all its conjugates over Fq, that is, gcd(g(T ), σ(g(T ))) = 1 for
every σ ∈ Gal(Fqd/Fq). If λ is the factorization type of g(T ), then d × λ is
the factorization type of NmF

qd/Fq
(g(T )) :=

∏
σ∈Gal(F

qd/Fq) σ(g(T )).

Proof. Since g(T ) is squarefree, so are all the polynomials σ(g(T )), and
as g(T ) is coprime to its conjugates, NmF

qd/Fq
(g(T )) is also squarefree.

Suppose that Q is a monic prime of Fqd [T ] that divides g(T ), and let P
be the monic prime of Fq[T ] that lies below Q. Let f(Q/P ) be the inertial
degree of Q over P . Since NmF

qd/Fq
(Q) = P f(Q/P ) divides the squarefree

polynomial NmF
qd/Fq

(g(T )), we must have f(Q/P ) = 1 and NmF
qd/Fq

(Q)
= P . In particular, degP = d degQ.
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Thus, if we start with a factorization of g(T ) exhibiting cycle type λ,
taking norms gives us a corresponding factorization of NmF

qd/Fq
(g(T )) with

cycle type d× λ.

The next lemma replaces [27, Lemma 13]. For a ∈ Fq, we use Pa to
denote the prime of Fq(u) corresponding to the (u− a)-adic valuation.

Lemma 6. Assume h(T )obeys the nondegeneracy conditions [27, eqs. (2.2)
and (2.3)]. If λ1, . . . , λr are arbitrary partitions of n, then Gal(M̃/Fq(u))
contains a conjugacy class C, of size

n!d1+···+dr

r∏
i=1

T (λi),

with the following property : Suppose that a is an element of Fq which is not
a zero of any of the polynomials

(22) discT (h(T )− u− θ(j)
i ) for 1 ≤ i ≤ r, 1 ≤ j ≤ di.

Then fi(h(T )−a) has factorization type λi for every 1 ≤ i ≤ r exactly when
C coincides with the Frobenius conjugacy class (M̃/Fq(u), Pa).

Proof. Since a is not a root of any of the polynomials (22), Pa is unram-
ified in M̃ and the polynomials h(T )−a− θ(j)

i are squarefree for all i and j.
Now fix 1≤ i≤r. Applying Lemma 5 with g(T )=h(T )−a−θ(1)

i , we see that

h(T )− a− θ(1)
i has type λi over Fqdi

⇔ fi(h(T )− a) has type d× λi over Fq.
There is a unique prime Qa of Fqdi (u) that lies over Pa, and for this prime
we have

(23) f(Qa/Pa) = di and e(Qa/Pa) = 1.

By Kummer’s theorem [31, Theorem 3.3.7], the factorization of h(T ) − a
− θ(1)

i mirrors the factorization of Qa in Ki,1. So if λi = (t1, . . . , ts), then
fi(h(T ) − a) has type di × λi if and only if Qa factors in Ki,1 into primes
of relative degrees t1, . . . , ts. By (23), this in turn occurs exactly when Pa
factors in Ki,1 into primes of degrees dit1, . . . , dits.

This last possibility can be recast in terms of the action of Frobenius.
Let σ denote any element of the Frobenius conjugacy class (Mi/Fq(u), Pa);
then necessarily

(24) σ restricts to the qth power map on Fqdi ,

so that the image of σ under ι2 has the form (Frob, σ′) for some per-
mutation σ′ of

⋃di
j=1 Si,j (obeying the compatibility condition (21) with

k = i and l = 1). Then Pa factors as indicated above if and only if σ
has cycles of lengths dit1, . . . , dits when acting by right-multiplication on
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the right-cosets of H = Gal(Mi/Ki,1) in the group Gal(Mi/Fq(u)). We
claim that this is equivalent to σ′, considered as a permutation of the ndi-
element set

⋃di
j=1 Si,j , decomposing as a product of s disjoint cycles of lengths

dit1, . . . , dits. To prove this, we exhibit a bijective length-preserving corre-
spondence between the cycles in the decomposition of σ′ and the cycles
appearing when σ acts by right-multiplication on the right-cosets of H.

We set this correspondence up as follows. Write Ki,1 = Fqdi (u)(α), where
α ∈ Si,1. Let C ′ be a cycle appearing in the decomposition of σ′, and let β
be an element appearing in C ′. Choose an element τ of Gal(Mi/Fq(u)) with
τ(β) = α. (The existence of such an element follows from our description of
the image of ι2 above.) We define our bijection by sending

(25) C ′ 7→ C, where C is that cycle of the right-action containing Hτ.

We must check that this does not depend on the particular choice of τ and β.
To this end, suppose that τ1(β) = τ2(β) = α. Then τ1τ

−1
2 fixes both α and

Fq(u), so must also fix the entire field

Fq(u)(α) = Fq(u)(h(α), α) = Fq(u)(θ(1)
i )(α) = Fqdi (u)(α) = Ki,1.

Thus τ1τ−1
2 ∈ Gal(M/Ki,1) = H, and so Hτ1 = Hτ2, proving that our map

is independent of the choice of τ . Now suppose β1 and β2 both appear in
the cycle C ′; then β2 = σj(β1) for some j. If τ(β1) = α, then (τσj)(β2) = α.
Thus (25) associates to C ′ both the cycle containing Hτ and the cycle
containing Hτσj . But these coincide, since our action is right-multiplication
by σ.

Suppose now that two cycles C ′1 and C ′2 are mapped to the same cy-
cle C. Choose elements β1 and β2 which appear in the cycles C ′1 and C ′2
respectively, and choose τ1 and τ2 from Gal(Mi/Fq(u)) with τ1(β1) = α and
τ2(β2) = α. It follows that Hτ1 and Hτ2 appear in the same cycle of our
right-action, so that Hτ1 = Hτ2σ

j for some j. Hence the left-cosets τ−1
1 H

and σ−jτ−1
2 H coincide. But elements of the former coset send α to β1 and

elements of the latter send α to σ−j(β2). It follows that β1 and β2 belong
to the same cycle of σ; i.e., C ′1 = C ′2. This proves injectivity.

Now we show that the association (25) takes cycles C ′ to cycles C of the
same length. Writing | · | for the length of a cycle in both cases, we observe
that for an arbitrary integer j,

|C| divides j ⇔ Hτσj = Hτ ⇔ τ−1H = σ−jτ−1H

⇔ τ−1(α) = σ−jτ−1(α) ⇔ β = σ−j(β) ⇔ |C ′| divides j.

This forces |C| = |C ′|.
Surjectivity of our map now follows, as the lengths of the cycles of C

and the lengths of the cycles of C ′ must both sum to n. This completes the
proof that (25) defines a bijective, length-preserving map.
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At this point we have reduced the problem to a consideration of those
permutations σ′ of

⋃di
j=1 Si,j which obey the compatibility condition (21)

(with k = i and l = 1) and which decompose into disjoint cycles of lengths
dit1, . . . , dits. Such cycles can be explicitly constructed as follows: Take any
permutation of Si,1 of cycle type λi; there are T (λi)n! of these. This permu-
tation serves as a template for a permutation σ′ with the desired properties:
use the given permutation to fill in every dth element in the cycles of σ′,
and fill in the remaining spots arbitrarily, subject only to the compatibility
condition. The latter task can be done in n!di−1 ways, and this shows that
the total number of such σ′ is T (λ)n!di .

Suppose γ ∈ Gal(M̃/Fq(u)) belongs to the Frobenius conjugacy class
(M̃/Fq(u), Pa). Then in order that fi(h(T )− a) have cycle type di × λi for
every i = 1, . . . , r, it is necessary and sufficient that γ|Mi obey the condi-
tions imposed on σ′ above for every i. That is, it is necessary and sufficient
that γ (identified with its image under ι1) have the form (Frob, σ1, . . . , σr),
where each σi is one of the previously constructed n!diT (λi) permutations on⋃di
j=1 Si,j . There are n!d1+···+dr

∏r
i=1 T (λi) possible tuples (Frob, σ1, . . . , σr),

and because the σi obey the stated compatibility conditions, these tuples
correspond to distinct, well-defined elements of Gal(M̃/Fq(u)).

For a set S, let Sym(S) denote the group of permutations on S. Then
(see [27, Lemma 8(i), (ii)])

(26) Gal(M̃/Fq(u)) ⊃ Gal(M̃/FqD(u)) =
∏

1≤i≤r
1≤j≤di

Sym(Si,j),

where each Sym(Si,j) is thought of as a subgroup of Sym(
⋃

1≤i≤r, 1≤j≤di
Si,j).

From (26) and our construction of the σi, it is easy to convince oneself that
the set of elements C (say) constructed above constitutes a single conjugacy
class of Gal(M̃/Fq(u)).

We can now complete the proof of Theorem 5 much as in [27]. We once
again require the following version of the Chebotarev density theorem. (This
result is implicit in the proof of [9, Proposition 6.4.8].)

Explicit Chebotarev density theorem for first degree primes.
Suppose that M/Fq(u) is a finite Galois extension having full field of con-
stants FqD . Let C be a conjugacy class of Gal(M/Fq(u)) every element of
which restricts to the qth power map on FqD . Let

P :=
{

degree 1 primes P of Fq(u) unramified in M :
(
M/Fq(u)

P

)
= C

}
.
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Then∣∣∣∣#P − C
[M : FqD(u)]

q

∣∣∣∣ ≤ 2
#C

[M : FqD(u)]
(gq1/2 + g + [M : FqD(u)]),

where g denotes the genus of M/FqD .

Proof of Theorem 5. As always, we may assume n ≥ 2, since Theorem 5
is trivial otherwise. Let X be the number of polynomials h(T ) = Tn +
an−1T

n−1 + · · ·+a1T ∈ Fq[T ] satisfying both nondegeneracy conditions [27,
eqs. (2.2) and (2.3)].

Suppose h(T ) is one of the polynomials counted by X, and let Nh be the
number of a ∈ Fq with the property that fi(h(T )− a) has cycle type λi for
all 1 ≤ i ≤ r. For all but at most (n−1)B values of a, Lemma 6 asserts that
this property is equivalent to (M̃/Fq(u), Pa) coinciding with the conjugacy
class C of that lemma. Since

|C| = n!d1+···+dr

r∏
i=1

T (λi) and [M̃ : FqD(u)] = n!d1+···+dr ,

the Chebotarev density theorem in the above explicit form gives us∣∣∣Nh − q
r∏
i=1

T (λi)
∣∣∣ ≤ (2

r∏
i=1

T (λi)
)

(gq1/2 + g + n!d1+···+dr) + (n− 1)B.

Since g ≤ Bnn!B [27, Corollary 15], the right-hand side of this inequality
is O((Bn)n!Bqn−1/2). Thus the total number of polynomials h̃(T ) for which
fi(h̃(T )) has cycle type λi for all 1 ≤ i ≤ r is

Xq
r∏
i=1

T (λi) +O(X(Bn)n!Bq1/2) +O((qn−1 −X)q).

Making use of the bounds

qn−1 − 4n2qn−2

(
1 +

(
B

2

))
≤ X ≤ qn−1,

we find that this number is

qn
r∏
i=1

T (λi) +O((Bn)n!Bqn−1/2) +O(n2B2qn−1).

The proof is completed by the (easy) verification that the first O-term is
dominant (using n ≥ 2).
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les dénominateurs sont “nombres premiers jumeaux” est convergente ou finie, Bull.
Sci. Math. 43 (1919), 100–104, 124–128.
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