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1. Introduction. We are concerned with the exponential sum

Sq(a;x) =
∑

x<p≤2x
(p,q)=1

e

(
ap̄

q

)

where x ≥ 2; q ≥ 2 is an integer, (a, q) = 1 and w̄ denotes inverse of w
modulo q. As usual, e(θ) = e2πiθ and eq(θ) = e(θ/q). The sum is taken over
primes p.

Using bounds for multidimensional exponential sums coming from alge-
braic geometry, Fouvry and Michel [3] showed that

(1.1)
∑

x<p≤2x
(p,q)=1

e

(
f(p)

q

)
�f,ε q

3/16+εx25/32

for q prime, 2 ≤ x ≤ q, and f(X) a rational function with integer coeffi-
cients, not of the form cX + d. (Values of p with the denominator of f(p)
divisible by q are excluded in (1.1).) Here and below, ε denotes an arbitrary
positive number, which we may suppose is small. As for the particular case
f(X) = aX−1, Fouvry and Michel showed that for every δ > 0, there exists
η = η(δ) > 0 such that

(1.2) Sq(a;x)�δ x
1−η

for q prime, (a, q) = 1 and q3/4+δ ≤ x ≤ q. This was sharpened by Bour-
gain [2], using an ingenious elementary method that will be discussed below.
It is shown in [2] that for every δ > 0, (1.2) holds for q prime, (a, q) = 1,
some η = η(δ) > 0 and q1/2+δ ≤ x ≤ q.

An effective version of (1.2) has been given by Garaev [5] for prime q
and extended to general modulus q by Fouvry and Shparlinski [4]. In [4] it
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is shown that for q3/4 ≤ x ≤ q4/3,

(1.3) Sq(a;x)� (x15/16 + q1/4x2/3)qε.

Fouvry and Shparlinski also give the average bound

(1.4)
∑
q∼Q

max
(a,q)=1

|Sq(a;x)| � (Q13/10x3/5 +Q13/12x5/6)Qε

for Q3/2 ≥ x ≥ 1. We use ‘q ∼ Q’ as an abbreviation for ‘Q < q ≤ 2Q’.
We extend Bourgain’s result, but with a limitation on the multiplicative

structure of q. We shall write, for an integer q ≥ 2,

q = uv, (u, v) = 1, u squarefree, v squarefull.

Theorem 1. Let x ≥ 2, q ≥ 2 and v ≤ x1/4. Let 0 < δ ≤ 1/24. Then

Sq(a;x)�δ x
1−δ4/2000 for (a, q) = 1 and vq1/2+δ ≤ x ≤ q3/4+δ.

Obviously it would be desirable to reduce the lower bound on x to q1/2+δ.
We also give an improvement of (1.3) for part of the range of x, which is
nontrivial for x ≥ Q1/2+δ.

Theorem 2. We have∑
q∼Q

max
(a,q)=1

|Sq(a;x)| � (Q11/10x4/5 +Qx11/12)Qε for Q1/2 ≤ x ≤ 2Q.

A nice application of (1.4) given in [4] concerns the values of the quadra-
tic form

A(X1, X2, X3) = X1X2 +X1X3 +X2X3

at prime triplets. We write P+(N) for the largest prime factor of N ≥ 2,
and P+(1) = 1. Let θ0 = 1.1002 . . . be the unique root of the equation

13θ − 16 + 12 log

(
13θ − 12

2

)
= 0.

Then for θ < θ0 and x > x0(θ),

(1.5) |{(p1, p2, p3) : pi ∼ x, P+(A(p1, p2, p3)) > xθ}| ≥ c(θ)x3

(log x)3

([4, Corollary 1.6]). Here and below, |E| denotes the cardinality of a finite
set E, or the number of elements (counted with multiplicity) of a multiset E.

In the present paper I improve this a little, by applying Theorem 2 and
imposing a simple restriction on the set of triples (p1, p2, p3) considered.

Theorem 3. Let θ1 = 1.1673 . . . be the unique root of the equation

24θ − 37 + 22 log

(
12θ − 11

2

)
= 0.

Then for any θ < θ1, there exists c(θ) > 0 and x1(θ) such that (1.5) holds
for x > x1(θ).
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2. Proof of Theorem 1. We recall some results about the Fourier
transform on the additive group G := Z/qZ. For f, g : G→ C, let

f̂(y) =
∑
x∈G

f(x)eq(−xy), f̌(y) =
1

q

∑
x∈G

f(x)eq(xy),

(f ∗ g)(y) =
∑
x,z∈G
x+z=y

f(x)g(z).

It may readily be verified that (f̂)∨ = (f̌)∧ = f , (f ∗ g)∧ = f̂ ĝ, and

(2.1)
∑
y∈G
|f̂(y)|2 = q

∑
x∈G
|f(x)|2.

Let δx be the point mass at x. For complex measures

ν =
∑
x∈G

a(x)δx, µ =
∑
y∈G

b(y)δy,

with respective density functions a(. . .), b(. . .), we define ν ∗ µ to be the
measure with density function a∗ b, and define ν̂ = â, so that (ν ∗µ)∧ = ν̂µ̂.
We write ν(k) for the k-fold convolution ν ∗ · · · ∗ ν, and ‖ν‖ =

∑
x∈G |a(x)|.

Clearly

‖ν ∗ µ‖ ≤ ‖ν‖ ‖µ‖.

We write χE for the indicator function of E.

Lemma 1. Let S ⊆ G. For a measure ν on G,

(2.2) ν(S) =
1

q

∑
y∈G

ν̂(y)χ̂−S(y).

Proof. It suffices to prove this for ν = δx. Here the left-hand side of (2.2)
is χS(x). The right-hand side is

(ν̂ χ̂−S)∨(0) = ((f ∗ χ−S)∧)∨(0) = (f ∗ χ−S)(0),

where f(y) = 1 for y = x and f(y) = 0 otherwise. The last expression is∑
z+w=0

f(z)χ−S(w) = χ−S(−x) = χS(x).

Lemma 2. Let p be prime and let (b1, . . . , b2k) be a 2k-tuple of integers
such that (bk+1, . . . , b2k) is not a permutation of (b1, . . . , bk) modulo p. Then
the congruence

(y + b1)− + · · ·+ (y + bk)
− − (y + bk+1)− − · · · − (y + b2k)

− ≡ 0 (mod p)

has at most 2k − 1 solutions in the set {y (mod p) : (y + bj , p) = 1 (j =
1, . . . , 2k)}.
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Proof. After removing pairs with j ≤ k < h for which bj ≡ bh (mod p)
until no such pairs remain, and combining like terms, we must solve

(2.3)
∑
j∈A

aj(bj + y)− −
∑
h∈B

ch(bh + y)− ≡ 0 (mod p)

where A ⊆ {1, . . . , k}, B ⊆ {k + 1, . . . , 2k} are nonempty sets, the integers
bj (j ∈ A ∪B) are distinct modulo p, and 1 ≤ aj , ch ≤ k.

Since the result is trivial for p ≤ k, suppose that p > k. We multiply
(2.3) by

∏
j∈A∪B(y + bj), obtaining a polynomial congruence

G(y) ≡ 0 (mod p)

of degree ≤ 2k − 1. Since for j ∈ A,

G(−bj) = aj
∏

l∈A∪B
l 6=j

(bl − bj) 6≡ 0 (mod p),

G is not identically zero modulo p, and the result follows from Lagrange’s
theorem.

Lemma 3. Let B be the set of b = (b1, . . . , b2k) in Z2k with 1 ≤ bj ≤ B
(j = 1, . . . , 2k), where B ≥ 1. Let N(b, q) be the number of solutions y
(mod q) of

(y + b1)− + · · ·+ (y + bk)
− − (y + bk+1)− − · · · − (y + b2k)

− ≡ 0 (mod q)

subject to (y + bj , q) = 1 (j = 1, . . . , q). Then∑
b∈B

N(b, q)�k,ε q
ε(B2kv +Bkq).

Proof. For each factorization u = u1u2, let B(u1, u2) be the set of b in
B for which:

• if p |u1, (bk+1, . . . , b2k) is not a permutation of (b1, . . . , bk) modulo p;
• if p |u2, (bk+1, . . . , b2k) is a permutation of (b1, . . . , bk) modulo p.

It suffices to show that

(2.4)
∑

b∈B(u1,u2)

N(b, q)�k,ε q
ε/2(B2kv +Bkq).

For b ∈ B(u1, u2),

N(b, q) =
(∏
p|u1

N(b, p)
)
N(b, u2v)(2.5)

≤ u2v
∏
p|u1

N(b, p) (trivially)

≤ u2v(2k − 1)ω(u1) � u2vq
ε/4

by Lemma 2. Here ω(u1) denotes the number of prime divisors of u1.



Kloosterman sums with prime variable 355

Let l > k. Given the first k coordinates of b, the number of possibilities
for bl is ≤ kω(u2)(B/u2+1), since there are kω(u2) possibilities for bl (mod u2).
Hence,

(2.6) |B(u1, u2)| � kω(u2)Bk

(
B

u2
+ 1

)k
� qε/4

(
B2k

u2
+Bk

)
.

Now (2.4) follows on combining (2.5), (2.6).

In the proofs in the remainder of this section, we sometimes suppose
implicitly that q is ‘sufficiently large’. An interval I = (a, b] denotes
{x ∈ Z : a<x≤ b}, rather than {x ∈ R : a<x≤ b}; similarly for I = [a, b].
We write

I∗ = {n ∈ I : (n, q) = 1}, −I = {q − n : n ∈ I}

and, for α > 0,

Ω(I, α) =
{
ζ ∈ [1, q] :

∣∣∣ ∑
x∈I∗

eq(ζx̄)
∣∣∣ > |I∗|q−α}.

Lemma 4. Let 0 < α ≤ 1/5, I = (c, c + M ] ⊆ [1, q] and suppose that
M ≤ q1/2. Then

|Ω(I, α)| �α vq
1+5α1/2

M−2.

Proof. Let τ = α1/2 and k = [1/τ ] + 1. Let us write

Ω = Ω(I, α), A = [1, q−2τM ]∗.

Since the result is trivial for M < q2τ+ε, we suppose that M ≥ q2τ+ε. It
follows that

|A| � q−2τ−εM.

Let a ∈ A and b ∈ [1, qτ ]. Then∑
x∈I∗

eq(ζx̄) =
∑

w+ab∈I
(w+ab,q)=1

eq(ζ(w + ab)−)

=
∑
w∈I

(w+ab,q)=1

eq(ζ(w + ab)−) +O(q−τM).

Since τ > α,

(2.7)

S(Ω) :=
∑
ζ∈Ω

∣∣∣∑
a∈A

∑
1≤b≤qτ

∑
w∈I

(w+ab,q)=1

eq(ζ(w + ab)−)
∣∣∣� |Ω|q−τ−α−2εM2.
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Now

S(Ω) ≤
∑
ζ∈Ω

∑
a∈A

∑
w∈I

∣∣∣ ∑
1≤b≤qτ

(w+ab,q)=1

eq(ζ(w + ab)−)
∣∣∣(2.8)

=
∑

1≤y,z≤q
µ(y, z)

∣∣∣ ∑
1≤b≤qτ

(y+b,q)=1

eq(z(y + b)−)
∣∣∣,

where

µ(y, z) = |{(w, a, ζ) ∈ I ×A×Ω : āζ ≡ z (mod q), āw ≡ y (mod q)}|.

By Hölder’s inequality, the last expression in (2.8) is at most

(2.9)
( ∑

1≤y,z≤q
µ(y, z)

)1−1/k( ∑
1≤y,z≤q

µ(y, z)2
)1/2k

×
( ∑

1≤y,z≤q

∣∣∣ ∑
1≤b≤qτ

(y+b,q)=1

eq(z(y + b)−)
∣∣∣2k)1/2k

.

Clearly ∑
1≤y,z≤q

µ(y, z)�M |A| |Ω| � q−2τM2|Ω|.(2.10)

Now

(2.11)
∑

1≤y,z≤q
µ(y, z)2 = |{(w1, a1, ζ1, w2, a2, ζ2) : wj ∈ I, aj ∈ A, ζj ∈ Ω,

ā1ζ1 ≡ ā2ζ2 (mod q), ā1w1 ≡ ā2w2 (mod q)}|.
The contribution to the right-hand side of (2.11) from tuples with w1 = w2 is

(2.12) � q−2τ+εM2|Ω|.
To see this, let d be a divisor of q. It suffices to give the bound

� q−2τM2|Ω|
for the contribution from w1 = w2, (w1, q) = d. There are ≤ M/d + 1
possibilities for w1. Once w1 is fixed, the congruence

a1w1 ≡ a2w1 (mod q)

implies a1 ≡ a2 (mod q/d), and there are ≤ q−2τM(1 + q−2τMd/q) possible
pairs a1, a2. Once a1, a2 are fixed, we have a1ζ2 ≡ a2ζ1 (mod q), and there are
|Ω| possible pairs (ζ1, ζ2). Thus the number of tuples (a1, w1, ζ1, a2, w1, ζ2)
in question is

≤
(
M

d
+ 1

)(
1 +

q−2τMd

q

)
q−2τM |Ω|.
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Since (
M

d
+ 1

)(
1 +

q−2τMd

q

)
�M + q−2τ−1M2 �M,

we have verified the bound (2.12).

To estimate the contribution to the right-hand side of (2.11) from tuples
with w1 6= w2, we fix the values of a = a1 − a2, w1 and ζ1. We have a2w1 ≡
a1w2 (mod q), hence

a1(w1 − w2) ≡ aw1 (mod q).

Since 0 < |a1(w1 − w2)| ≤ q−2τM2 < q, this determines a1(w1 − w2), and
in turn determines a1 and w2 to within O(qε) possibilities. Now a2 is de-
termined by a2 = a1 − a, and ζ2 is determined by a1ζ2 ≡ a2ζ1 (mod q). It
follows that

(2.13)
∑

1≤y,z≤q
µ(y, z)2 � q−2τ+εM2|Ω|.

We rewrite the last factor F in (2.9) as

F 2k =
∑

1≤y≤q

∑
1≤b1,...,b2k≤qτ

(y+bj ,q)=1 (j=1,...,q)

∑
1≤z≤q

eq(z((y + b1)− + · · ·+ (y + bk)
−

− (y + bk+1)− − · · · − (y + b2k)
−))

=
∑

1≤b1,...,b2k≤qτ
qN(b, q)

� q1+ε(q2kτv + q1+kτ ) (by Lemma 2)

� q1+2kτ+εv

by the choice of k. Combining this with (2.8), (2.9), (2.10), (2.12), we obtain

S(Ω)� qε(q−2τM2Ω)1−1/2k(vq1+2kτ )1/2k.

In conjunction with (2.7), this gives

q−τ−α−2εM2|Ω| � qε(q−2τM2|Ω|)1−1/2k(vq1+2kτ )1/2k,

M2|Ω| � vq2kα+2τ+1+6kε.

Since 2kα+ 2τ < 4α1/2 + 2α < 5α1/2 − 6kε, the lemma follows.

Lemma 5. Let ν be the measure

ν =
1

|A|
∑
x∈A

δx

where A ⊆ G. Let 0 < α ≤ 1/3, q > 32 and let l be an integer, l > 1/α; let

B = B(ν, α) = {ζ ∈ G : |ν̂(α)| > q−α}.
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Then for any set S ⊆ G with

(2.14) |B(ν, α)| |S| < 1

2
q1−α,

we have

(2.15) ν(l)(S) < q−α.

Proof. Suppose that (2.15) is false; then

(2.16)
1

q

∑
y∈G

ν̂(y)lχ̂−S(y) ≥ q−α

by Lemma 1, while∣∣∣∑
y 6∈B

ν̂(y)lχ̂−S(y)
∣∣∣ ≤ q−αl∑

y∈G
|χ̂−S(y)| ≤ q1−αl|S|1/2 ≤ q3/2−αl(2.17)

by (2.1) and Cauchy’s inequality. Since q3/2−αl < q1/2 < 1
2q

1−α, we deduce
from (2.16) and (2.17) that∣∣∣∑

y∈B
ν̂(y)lχ̂−S(y)

∣∣∣ > 1

2
q1−α.

Moreover,∑
y∈B

ν̂(y)lχ̂−S(y) =
∑
y∈G

ν̂(y)l(χ̂−SχB)(y) =
∑
y∈G

ν̂(y)l(χ−S ∗ χ̌B)∧(y).

For convenience, write ν(l) =
∑

z∈G b(z)δz; then
∑

z∈G |b(z)| ≤ ‖ν‖l = 1.
We have shown that

(2.18)
∣∣∣∑
y∈G

(b ∗ χ−S ∗ χ̌B)∧(y)
∣∣∣ ≥ 1

2
q1−α.

The left-hand side of (2.18) is

q|(b ∗ χ−S ∗ χ̌B)(0)| = q
∑

u+v+w=0

b(u)χ−S(v)χ̌B(w)

≤ q‖χ̌B‖∞
∑
u∈G
|b(u)|

∑
v∈G
|χ−S(v)| ≤ |B| |S|,

and (2.14) is false.

Lemma 6. Let 0 < α ≤ 1/5, l > 1/α, I = (c, c + M ] ⊆ [1, q] where
M ≤ q1/2. Let S ⊆ G and

(2.19) |S| �α v
−1q−6α1/2

M2.

Let

ν1 =
1

|I∗|
∑
x∈I∗

δx̄, ν2 =
1

|I∗ ∪ (−I)∗|
∑

x∈I∗∪(−I)∗
δx̄.
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Then ν
(l)
1 (S)�α q

−α. If I ∩ (−I) = ∅, then

ν
(l)
2 (S)�α q

−α.

Proof. We take A = {x̄ : x ∈ I∗}, ν = ν1 in Lemma 5. Then

B(ν1, α) = Ω(I, α), |B(ν1, α)| � vq1+5α1/2
M−2

from Lemma 4. Since we may suppose that q is large,

|B(ν1, α)| |S| < q1−α1/2+ε <
1

2
q1−α.

Now ν
(l)
1 (S) < q−α from Lemma 5.

Let ν3 = |(−I)∗|−1
∑

x∈(−I)∗ δx̄; then ν̂3 = ¯̂ν1. Assume now I ∩ (−I) = ∅;
then ν2 = 1

2(ν1 + ν3), ν̂2 = Re ν1, and B(ν2, α) ⊆ Ω(I, α). We can complete
the proof for ν2 as before, and the lemma follows.

Lemma 7. Let I = (c, c+M ], J = (d, d+N ] be intervals in [1, q], with
J ∩ (−J) = ∅. Let

ν =
1

|J∗ ∪ (−J)∗|
∑

x∈J∗∪(−J)∗

δx̄,

S(I, J) =
∑
m∈I∗

∑
n∈J∗

αmβneq(am̄n̄)
(2.20)

where |αm| ≤ 1, |βn| ≤ 1. Then for any even natural number k, and any
α > 0,

|S(I, J)|4k ≤ (MN)4k{q−α + 22kν(2k)(Ω(I, α))}.
Proof. Let k = 2h. By Cauchy’s inequality,

|S(I, J)|2 ≤M
∑
m∈I∗

∣∣∣ ∑
n∈J∗

βneq(am̄n̄)
∣∣∣2

= M
∑

n1,n2∈J∗
βn1 β̄n2

∑
m∈I∗

eq(am̄(n̄1 − n̄2))

≤M
∑

n1,n2∈J∗

∣∣∣ ∑
m∈I∗

eq(am̄(n̄1 − n̄2))
∣∣∣.

Using Cauchy’s inequality again leads to

|S(I, J)|4 ≤M2N2
∑

m1,m2∈I∗

∣∣∣ ∑
n1,n2∈J∗

eq(a(m̄1 − m̄2)(n̄1 − n̄2))
∣∣∣.

By Hölder’s inequality,

|S(I, J)|8h ≤M8h−2N4h
∑

m1,m1∈I∗

∑
n1,n2∈J∗

· · ·
∑

n4h−1,n4h∈J∗

eq(a(m̄1 − m̄2)(n̄1 − n̄2 + · · · − (n̄4h−1 − n̄4h))).
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Renumbering the variables n1, . . . , n4h, and treating the variable m2 triv-
ially, we obtain

(2.21) |S(I, J)|4k ≤M4k−1N2k

×
∑

(n1,...,n2k)∈(J∗)2k

∣∣∣ ∑
m1∈I∗

eq(am̄1(n̄1 + · · ·+ n̄k − (n̄k+1 + · · ·+ n̄2k))
∣∣∣.

For brevity, let

Ω = Ω(I, α), T = {x̄ : x ∈ J∗ ∪ (−J)∗}.
We partition (J∗)2k into two sets A1, A2, where

A1 = {(n1, . . . , n2k) ∈ (J∗)2k : n̄1 + · · ·+ n̄k − (n̄k+1 + · · ·+ n̄2k) ∈ Ω}.
The contribution to the right-hand side of (2.21) from (n1, . . . , n2k) in A2 is

≤M4k−1N4kMq−α = (MN)4kq−α.

We also observe that

ν(2k)(Ω) =
1

|T |2k
∑

(z1,...,z2k)∈T 2k

z1+···+z2k∈Ω

1 ≥ 1

|T |2k
|A1|.

Accordingly, the contribution to the right-hand side of (2.21) from (n1, . . . ,n2k)
in A2 is

≤M4kN2k|T |2kν(2k)(Ω),

and the lemma follows.

Lemma 8. Let 0 < δ ≤ 1/3. Make the hypothesis of Lemma 7 and
suppose in addition that v ≤ q1/4 and

(2.22) vqδ � |I| � |J |, |I| |J | � vq1/2+δ.

Then

(2.23) S(I, J)� |I| |J |q−δ4/2100.

Proof. If |J | > q1/2, we partition J into intervals of length between 1
2 q

1/2

and q1/2, and similarly for I. A pair of intervals I ′, J ′ obtained in this way
satisfies

vqδ � |I ′| � |J ′| � q1/2, |I ′| |J ′| � vq1/2+δ.

It now suffices to prove (2.21) for I ′, J ′ in place of I, J . Thus we may add
to (2.22) the hypothesis

|J | ≤ q1/2.

Let α = δ2/32, k = [16/δ2] + j, where j = 1 or 2 is chosen to produce
even k. Then

α

4k
≥ δ2

128(16δ−2 + 2)
=

δ4

2024 + 256δ2
≥ δ4

2100
.
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In view of Lemma 7, it suffices to show that

ν(2k)(Ω(I, α))� q−α,

where ν is given by (2.20).

We are going to apply Lemma 6 with 2k, J , Ω(I, α) in place of l, I, S.
The hypothesis (2.19) is satisfied, since

M2N2 ≥ v2q1+2δ ≥ v2q1+11α1/2

and

|Ω(I, α)| � vq1+5α1/2
M−2 � v−1q−6α1/2

N2

by Lemma 4. We conclude that (2.23) holds.

In [2], Lemma A.7 corresponds to Lemma 8 above. The author of [2]
has inadvertently omitted to assume any lower bound on |I| (|I1| in
his notation), but it is implicit in his proof of Lemma A.7, being requir-
ed to get a suitable lower bound for the quantity |I ′| |J ′|. The reader
will easily see that Lemma 8 would not be true without a lower bound
on |I|.

Proof of Theorem 1. We begin by recalling some facts from Heath-
Brown’s decomposition [6] of Λ(n). A function f(n) on K = (x, (1 + β)x]
is given, where 0 < β ≤ 1. The decomposition enables us to express∑

r∈K, (r,q)=1 Λ(r)f(r) as a sum of O((log x)6) sums SI, S
′
I, SII. Here

(2.24)

SI = SI(q, a) =
∑
m∼N

∑
n∼N

mn∈K
(mn,q)=1

amf(mn), SI′ =
∑
m∼N

∑
n∼N

mn∈K
(mn,q)=1

(log n)amf(mn),

with am � xε for every ε > 0, and MN � x, N � x1−λ; while

(2.25) SII = SII(q, a) =
∑
m∼N

am
∑
n∼N

mn∈K

bnf(mn)

with am, bn � xε for every ε > 0; MN � x, xλ � N � x1/2. Here
the parameter λ in

(
0, 1/3

]
is at our disposal. See [1] for a discussion of

an almost identical situation. We can reduce S′I to SI (with a different β)
by partial summation. Let δ1 = 99δ/100. For the proof of Theorem 1 we
take f(r) = eq(ar̄), K = (x, x′], x′ ≤ 2x, xλ = vqδ1 ≤ x1/3 (since v ≤ x1/4,

q ≤ x2, δ ≤ 1/24). We shall show that SI, SII are O(x1−δ4/2000−ε), leading to
a suitable bound for

∑
x<r≤x′, (r,q)=1 Λ(r)eq(ar). The corresponding bound

for Sq(a;x) follows easily.
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Lemma 8, with δ1 in place of δ, gives

SII � xq−δ
4
1/2100+ε � x1−δ4/2000−ε

for vqδ1 � N � x(vqδ1)−1. This requires a short calculation: we have
δ4

1 ≥ 96
100δ

4, x ≤ q19/24 and

xδ
4/2000 ≤ q

19
24

100
96

δ41
2000 ≤ qδ41/2100−2ε.

It remains to show that

SI � x1−δ4/2000−2ε for N � x

vqδ1
.

We note that

N � x

vqδ1
� q1/2+δ/100.

By a standard estimate (see e.g. [4, Lemma 2.1]), the inner sum in SI is
� q1/2+ε. Hence

SI �Mq1/2+ε � x
q1/2+ε

N
� xq−δ/200.

This completes the proof of Theorem 1.

3. Proof of Theorem 2. In the present section, we suppose that Q is
large and Q1/2 ≤ x ≤ 2Q. It is convenient for use in Section 4 to work with
the sum

Sq(a;x, β) =
∑

x<p≤(1+β)x

e

(
ap̄

q

)
where β is a constant in (0, 1]. Define SI and SII by (2.24), (2.25) with
f(r) = eq(ar̄). We now take λ = 1/3 in our application of Heath-Brown’s
identity. Thus in order to show that

(3.1)
∑
q∼Q

max
(a,q)=1

|Sq(a;x, β)| � (Q11/10x4/5 +Qx11/12)Qε,

it is sufficient to show that

(3.2)
∑
q∼Q

max
(a,q)=1

|SI(q, a)| � (Q11/10x4/5 +Qx11/12)Qε/2

whenever N � x2/3, and that

(3.3)
∑
q∼Q

max
(a,q)=1

|SII(q, a)| � (Q11/10x4/5 +Qx11/12)Qε/2

whenever x1/2 � N � x2/3.



Kloosterman sums with prime variable 363

Let JK(q) denote the number of solutions of the congruence

n̄1 + n̄2 ≡ n̄3 + n̄4 (mod q) with 1 ≤ ni ≤ K.

Lemma 9. For M ≤ q, N ≤ q, (a, q) = 1 we have

SII(q, a)� q1/8+ε/4(MN)1/2JM (q)1/8JN (q)1/8.

Proof. See Garaev [5]. The restriction to prime q in [5] plays no role in
the argument.

Lemma 10. We have, for K ≥ 1,∑
q∼Q

JK(q)� (K2Q+K4)Kε.

Proof. This is Lemma 2.3 of [4].

Lemma 11. Let M ≤ N ≤ Q, MN � x. We have∑
q∼Q

max
(a,q)=1

|SII(q, a)| � Qε/2(Q9/8x3/4 +Qx3/4N1/4).

Proof. By Hölder’s inequality and Lemma 10,∑
q∼Q

JM (q)1/8JN (q)1/8 ≤ Q3/4
(∑
q∼Q

JM (q)
)1/8(∑

q∼Q
JN (q)

)1/8

� Q3/4+ε/4(M1/4Q1/8 +M1/2)(N1/4Q1/8 +N1/2)

� Q3/4+ε/4(x1/4Q1/4 + x1/4N1/4Q1/8)

since x1/2 ≤ 2Q1/4x1/4. Combining this with Lemma 9, we get∑
q∼Q

max
(a,q)=1

|SII(q, a)| � Q1/8+ε/2x1/2
∑
q∼Q

JM (q)1/8JN (q)1/8

� Qε/2(Q9/8x3/4 +Qx3/4N1/4).

Proof of Theorem 2. We begin by showing that (3.2) holds for N � x2/3.
We distinguish two cases.

Case 1: N > Q2/5x1/5. For each m ∼ M , (m, q) = 1, we have the
estimate ∑

n∼N
x/m<n≤(1+β)x/m

(n,q)=1

eq(am̄n̄)� q1/2+ε/2

for q ≥ 1, (a, q) = 1, as noted earlier. Thus for q ∼ Q, (a, q) = 1,

SI(q, a)� N−1xq1/2+ε/2 � Q1/10+ε/2x4/5
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and ∑
q∼Q

max
(a,q)=1

|SI(q, a)| � Q11/10+ε/2x4/5.

Case 2: x2/3 � N ≤ Q2/5x1/5. (This case occurs only if Q� x7/6.) We
observe that N ≤ Q. By Lemma 11,∑

q∼Q
max

(a,q)=1
|SI(q, a)| � Qε/2(Q9/8x3/4 +Q11/10x4/5)

� Qε/2(Q11/10x4/5 +Qx11/12)

since Q9/8x3/4 ≤ Q11/10x4/5 for Q ≤ x2.

Thus (3.2) holds in both cases.

It remains to prove (3.3). Let MN � x, M ≤ N , x1/2 � N � x2/3; then
M ≤ N ≤ Q. From Lemma 11,∑

q∼Q
max

(a,q)=1
|SII(q, a)| � Qε/2(Q9/8x3/4 +Qx11/12)

� Qε/2(Q11/10x4/5 +Qx11/12)

as above. This establishes (3.3), and (3.1) follows; in particular, we have
proved Theorem 2.

4. Proof of Theorem 3. Let β be a small positive constant. We write

π(x, β) = |{p : x < p ≤ (1 + β)x}|,

T (x, β) = {(p1, p2, p3) : x < pi ≤ (1 + β)x}

and

A(q;x, β) = |{(p1, p2, p3) ∈ T (x, β) : A(p1, p2, p3) ≡ 0 (mod q)},

L = log x, τ(q) = |{d : d | q}|.

We shall show that for θ < θ1, and β ≤ β1(θ), x > x1(θ),

(4.1) |{(p1, p2, p3) ∈ T (x, η) : P+(A(p1, p2, p3)) > xθ}| > c′(θ)π(x, β)3

where c′(θ) > 0; this suffices for Theorem 3. We draw heavily on the analysis
in [4] and indicate briefly the changes in the argument that are needed.

Lemma 12. Let A > 0, B > 0, q ≤ LA, (a, q) = 1. Then

(4.2) Sq(a;x, β) =
µ(q)

ϕ(q)
π(x, β) +OA,B(qxL−B).

Proof. This follows at once from [4, (3.13)].
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Lemma 13. Let A > 0. For x ≥ 2, 1 ≤ q ≤ x17/16−ε, we have

(4.3) A(q;x, β)−
∏
p|q

(
1− 1

(p− 1)2

)
π(x, β)3

q

�A,ε

(
L−A + L5

∑
t|q

t≥L−A

(
τ(t)

t

)1/2)π(x, β)3

q
.

Moreover, for x ≥ 2, B > 0,

(4.4)
∑

q≤x17/16−ε

∣∣∣∣A(q;x, β)−
∏
p|q

(
1− 1

(p− 1)2

)
π(x, β)3

q

∣∣∣∣
�B,ε π(x, β)3L−B.

Proof. Let

A∗(q;x, β) = |{(p1, p2, p3)∈ T (x, β) : (pi, q) = 1, A(p1, p2, p3) ≡ 0 (mod q)}|.
It is clear that

0 ≤ A(q;x, β)−A∗(q;x, β) ≤ 3ω(q)π(x, β).

Moreover,

A∗(q;x, β) =
1

q

q∑
a=1

S3
q (a;x, β).

Just as in [4, (4.4)] this relation leads to

A∗(q;x, β) = MT(q;x, β) +O(ET(q;x, β) + L3)

where

MT(q;x, β) =
1

q

∑
t|q

t∑
b=1

(b,t)=1

S3
t (b;x, β),

ET(q;x, β) =
L
q

∑
t|q

t∑
b=1

(b,t)=1

|St(b;x, β)|2.

As in [4, (4.5)],

(4.5)
t∑

b=1

|St(b;x, β)|2 � x2 + tx,

leading to
ET(q;x, β)� q−1x(x+ q)τ(q)L.

We partition MT(q;x, β) as

MT(q;x, β) = M1(LA) +M2(LA),
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where

M1(∆) =
1

q

∑
t|q
t≤∆

S3
t (b;x, β).

As in (4.7)–(4.9) of [4], an application of Lemma 12 yields

M1(LA) =
1

q

∑
t|q

t≤LA

µ(t)

ϕ2(t)
π(x, β)3 +O(q−1x3L−A)

=
1

q

(∏
p|q

(
1− 1

(p− 1)2

)
+O(L−A)

)
π(x, β)3 +O(q−1x3L−A).

For the remainder of the proof of (4.3), we follow the argument below
[4, (4.10)], verbatim, using (4.5) (above) along the way. By applying the
inequality ∑

q∼Q

∑
t|q
t≥L

(τ(t)/t)1/2 � L−1/2Q(logL)
√

2−1

(see [4, (1.4)]), we deduce (4.4) from (4.3).
We now sharpen Theorem 1.5 of [4], where the corresponding range for

q is [1, x14/13−ε].

Theorem 4. Let B > 0. Then for x ≥ 2,

(4.6)
∑

q≤x13/12−ε

∣∣∣∣A(q;x, β)−
∏
p|q

(
1− 1

(p− 1)2

)
π(x, β)3

q

∣∣∣∣� π(x, β)3L−B.

Proof. By Lemma 13, it suffices to estimate the part of the sum in (4.6)
with q > x. Let η = ε/6. We say that q is (η, x)-good if for all divisors t | q
with t ≥ x, we have

(4.7) max
(b,t)=1

|St(b;x, β)| ≤ (t1/10x4/5 + x11/12)tη.

Otherwise, we say that q is (η, x)-bad .
We claim that for Q < x2/4,

(4.8) |{q ∼ Q : q is (η, x)-bad}| �ε Qx
−η/2.

This is trivial for Q < x/2, since t | q ∼ Q implies t ≤ 2Q < x. Suppose now
that Q > x/2. For x ≤ T ≤ 2Q, consider the set of t ∈ [T, 2T ) for which (4.7)
fails. By Theorem 2 with η/3 in place of ε, there are Oε(T

1−2η/3) values of t
with this property. For each t ∈ [T, 2T ), there are O(Q/T ) integers q ∼ Q
with t | q. So there are at most O(Qx−2η/3) values of q ∼ Q for which (4.7)
fails. Summing over O(L) values of T , we obtain (4.8).

For (η, x)-good values of q, we see from the proof of Lemma 13 that it
is enough to estimate M2(LB). The contribution to M2(LB) of those t in
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[1, x) is estimated as before (individually for every q). Thus it is enough to
prove ∑

x≤q≤x13/12−ε
q (η,x)-good

1

q

∑
t|q
t≥x

t∑
b=1

(b,t)=1

|St(b;x, β)|3 �B
π(x, β)3

LB

in order to obtain a satisfactory contribution to (4.6) from {x≤ q≤ x13/12−ε :
q is (η, x)-good}. Using (4.5), (4.7), we get

∑
x≤q≤x13/12−ε
q (η,x)-good

1

q

∑
t|q
t≥x

t∑
b=1

(b,t)=1

|St(b;x, β)|3

� x
∑

x≤q≤x13/12−ε

1

q

∑
t|q
t≥x

(t1/10x4/5 + x11/12)t1+η

≤ x
∑

q≤x13/12−ε
τ(q)(q1/10x4/5 + x11/12)qη

� x((x13/12−ε)11/10x4/5 + x2−ε)x3η � x3−ε/2.

As for the (η, x)-bad values of q, we use a bound from [4] for

ρ(n) = |{(p1, p2, p3) : pi ∼ x, A(p1, p2, p3) = x}|,
namely

ρ(n)� τ(n)xL
(see [4, (1.6))]. Thus the contribution to (4.6) from (η, x)-bad values of q is

�
∑

x≤q≤x13/12−ε
q (η,x)-bad

∑
n�x2

n≡0 (mod q)

ρ(n)�
∑

x≤q≤x13/12−ε
q (η,x)-bad

x3+η/4

q

�
∑

x≤Q≤x13/12−ε
Q=2j

x3+η/4

Q
Qx−η/2 � x3L−B

where we use (4.8) in the penultimate bound. This completes the proof of
Theorem 4.

Proof of Theorem 3. Consider the ‘Chebyshev–Hooley’ sum

CH(x) :=
∑

pi∈(x,(1+β)x]

logA(p1, p2, p3).

Since all A(p1, p2, p3) are in [3x2, 3(1 + β)2x2], we have

(4.9) CH(x) ∼ 2Lπ(x, β)3 (x→∞).



368 R. C. Baker

Let

X := π(x, β)3, Y := x13/12−ε, Z := xθ.

Arguing as in the proof of [4, (4.14)], we have

CH(x) =
∑
q�x2

Λ(q)A(q;x, β) =
∑

1
+
∑

2
+
∑

3
+
∑

4
,(4.10)

where∑
1

:=
∑
q≤Y

Λ(q)A(q;x, β),
∑

2
:=

∑
q>Y

q not prime

Λ(q)A(q;x, β),

∑
3

:=
∑

Y <q≤Z
q prime

Λ(q)A(q;x, β),
∑

4
:=

∑
q>Z
q prime

Λ(q)A(q;x, β).

Theorem 4 easily yields

(4.11)
∑

1
∼
(

13

12
− ε
)
XL (x→∞),

while, just as in the argument leading to [4, (4.16)],

(4.12)
∑

2
� x2.

We can follow the proof of [4, (4.17)] to obtain

(4.13)
∑

3
≤

∑
0≤k≤K0

log(2k+1Y )
∑

3
(2kY ),

where K0 = [log(Z/Y )/log 2] and∑
3
(P ) =

∑
p∼P

A(p;x, β).

If rp is an integer counted by A(p;x, β) in
∑

3(P ), then rp = A(p1, p2, p3)
and

(4.14)
3x2

2P
≤ r ≤ 3(1 + β)2x2

P
.

For a fixed r satisfying (4.14), let C(r) be the set of integers A(p1, p2, p3)/r
for which (p1, p2, p3) ∈ T (x, β) and A(p1, p2, p3) ≡ 0 (mod r). We see that
for any z < x,

(4.15)
∑

3
(P ) ≤

∑
r satisfies (4.14)

S(C(r), z).

Here we use the standard notation: S(C(r), z) counts the elements of C(r)

coprime to
∏
p≤z p.
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Let

ω(m) =
∏
p|m

(1− (p− 1)−2), X(r) =
ω(r)

r
X,

R(x;m) = A(m;x, β)− ω(m)

m
X.

Let d denote a squarefree positive integer, and

C
(r)
d = |{a ∈ C(r) : d | a}|.

It is clear that
C

(r)
d = A(x; dr, β).

We rewrite this as a ‘main term’ plus an ‘error term’:

C
(r)
d =

ω(dr)/ω(r)

d
X(r) +R(x; dr).

Using the theory of the linear sieve just as in [4, (4.20)], we have, with an
O(. . .) error independent of r, z,

S(C(r), z) ≤
∏
p≤z

(
1− ω(pr)/ω(dr

p

)(
F

(
logD

log z

)
+O((logD)−1/3)

)
X(r)

(4.16)

+
∑
d<D

|R(x; dr)|

for any choice of D ≥ 1. For the sieve function F , we only need the formula

F (s) =
2eγ

s
(0 < s ≤ 3),

where γ is Euler’s constant.
In view of (4.13), (4.15), we need to give an acceptable upper bound for

E(D) :=
∑
d<D

∑
r≤3(1+β)2x2/P

|R(x; dr)|.

Lemma 14. For Y ≤ P < Z and D ≤ PY/x2, we have

E(D)� XL−3.

Proof. We follow the proof of [4, Lemma 4.1], substituting Theorem 4
for the corresponding result in [4].

By (4.15), (4.16) and Lemma 14, we have∑
3
(P ) ≤ (1 + ε)X

∑
r satisfies (4.14)

ω(r)

r

∏
p≤z

(
1− ω(pr)/ω(r)

P

)
(4.17)

× F
(

log(PY x−2)

log z

)
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for every ε > 0 and for every sufficiently large x and every z ≤ x. We choose

z := (PY x−2)1/2.

As noted in [4],∏
p≤z

(
1− ω(pr)/ω(r)

p

)
≤ (1 +O(z−1))C0V (z)

∏
p|r

(
1− 1/p

1− ω(p)/p

)
,

where

C0 :=
∏
p≥2

(
1− ω(p)/p

1− 1/p

)
, V (z) :=

∏
p≤z

(
1− 1

p

)
∼ e−γ

log z
(x→∞).

Inequality (4.17) now simplifies to the form

(4.18)
∑

3
(P ) ≤ (2 + ε)C0X

log(PY x−2)

∑
r satisfies (4.14)

ν(r)

r
,

where ν is the multiplicative function

ν(r) = ω(r)
∏
p|r

(
1− 1/p

1− ω(p)/p

)
.

From the analysis in [4], we know that∑
r≤R

ν(r)

r
= G(1) logR+ F0 +O(R−δ2),

where δ0 is a positive absolute constant, F0 is a constant, and G(s) is defined
by

∞∑
r=1

ν(r)

rs
= ζ(s)G(s);

G is holomorphic in Re s > 1/2 and C0G(1) = 1. We use this to reduce
(4.18) to the form∑

3
(P ) ≤ (2 + ε)X

log(PY x−2)
log{2(1 + β)2}.

Combining with (4.13), we obtain

(4.19)
∑

3
≤ (2 + ε)π(x, β)3 log{2(1 + β)2}

∑
0≤k≤K0

log(2kY )

log(2kY 2x−2)
.

Now

(4.20)

(log 2)
∑

0≤k≤K0

log(2kY )

log(2kY 2x−2)
= L

{
log 2

L
∑

0≤k≤K0

(log Y )/L+ (k log 2)/L
log(Y 2x−2)/L+(k log 2)/L

}
.
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As in [4], we only have to consider the expression in brackets as a Riemann
sum to obtain the asymptotic formula

(log 2)
∑

0≤k≤K0

log(2kY )

log(2kY 2x−2)
∼ LJ (x→∞),

where

J =

log(Z/Y )/L�

0

t+ (log Y )/L
t+ log(Y 2x−2)/L

dt

=
log(Z/Y )

L
+

log(x2/Y )

L
log

[
log(Y Zx−2)

log(Y 2x−2)

]
= θ − 13

12
+ ε+

(
11

12
+ ε

)
log

12θ − 11− 12ε

2− 24ε
.

Combining this with (4.19), (4.20), for large x we have∑
3
≤ (2 + 2ε)π(x, β)3L

(
1 +

2 log(1 + β)

log 2

)
(4.21)

×
[(
θ − 13

12
+ ε

)
+

(
11

12
+ ε

)
log

12θ − 11− 12ε

2− 24ε

]
.

Since θ < θ1, we may choose positive numbers ε and β so small that the
right-hand side of (4.21) is less than (11/12 − ε)π(x, β)3L. It now follows
from (4.9)–(4.12) and (4.21) that, for large x,∑

4
� π(x, β)3L.

This completes the proof of Theorem 3.
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