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1. Introduction. We are concerned with the exponential sum

Sq(a;z) = Z e(ap)

r<p<l2z q

(p.g)=1
where x > 2; ¢ > 2 is an integer, (a,q) = 1 and @ denotes inverse of w
modulo g. As usual, e(d) = €?™ and e,(6) = e(6/q). The sum is taken over
primes p.

Using bounds for multidimensional exponential sums coming from alge-

braic geometry, Fouvry and Michel [3] showed that

(1.1) Z e(fi]p)) e qB/15+E25/52

r<p<l2z

(p,g)=1
for ¢ prime, 2 < z < ¢, and f(X) a rational function with integer coeffi-
cients, not of the form cX + d. (Values of p with the denominator of f(p)
divisible by ¢ are excluded in ) Here and below, € denotes an arbitrary
positive number, which we may suppose is small. As for the particular case
f(X) =aX~! Fouvry and Michel showed that for every 6 > 0, there exists
n =n(d) > 0 such that

(1.2) Syla;z) <5zt

for ¢ prime, (a,q) = 1 and ¢34t < 2 < q. This was sharpened by Bour-
gain [2], using an ingenious elementary method that will be discussed below.
It is shown in [2] that for every § > 0, holds for ¢ prime, (a,q) = 1,
some 7 =n(d) >0 and ¢*/** < 2 < q.

An effective version of has been given by Garaev [5] for prime ¢
and extended to general modulus ¢ by Fouvry and Shparlinski [4]. In [4] it
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is shown that for q3/ t<p< q4/ 3,

(1.3) Sgla; z) < (@10 + g1 g

Fouvry and Shparlinski also give the average bound

(1.4) Z ((?}Zai(l 1, (a; )| < (Q1/1053/5 1 Q13/1245/6) )¢
QT

for Q3/2 > 2 > 1. We use ‘g ~ Q’ as an abbreviation for ‘Q < ¢ < 2Q".
We extend Bourgain’s result, but with a limitation on the multiplicative
structure of q. We shall write, for an integer ¢ > 2,
qg=uv, (u,v) =1, usquarefree, v squarefull.
THEOREM 1. Letz>2,¢>2 andv < z'/4. Let 0 < 6§ < 1/24. Then
Sqla; ) <5 g1 =6%/2000 for (a,q) =1 and vg'/?t0 <z < ¢3/449,

Obviously it would be desirable to reduce the lower bound on  to ¢'/2+9.
We also give an improvement of (|1.3)) for part of the range of z, which is
nontrivial for z > Q/2+9.

THEOREM 2. We have
Z (mz)xxl 1S, (a; )] < (Q10z/5 4 Qz1*)Q°  for QY2 <z < 2Q.
~Q YT

A nice application of (1.4 given in [4] concerns the values of the quadra-
tic form

A(Xl,XQ,Xg) = X1 X0+ X1 X35+ Xo9X3

at prime triplets. We write P (N) for the largest prime factor of N > 2,
and PT(1) = 1. Let §y = 1.1002. .. be the unique root of the equation

136 — 12
1360 — 16 + 1210g<32) =0.

Then for § < 0y and = > (),

C x3
(1.5) {(p1, p2.p3) : pi ~ 2, PY(A(p1,pa,ps)) > 2%} > (1(()2)3:)3

([, Corollary 1.6]). Here and below, |E| denotes the cardinality of a finite

set E, or the number of elements (counted with multiplicity) of a multiset E.
In the present paper I improve this a little, by applying Theorem [2| and

imposing a simple restriction on the set of triples (p1, p2, p3) considered.

THEOREM 3. Let 81 = 1.1673... be the unique root of the equation
1260 — 11
2460 — 37 4 22 log<2> =0.

Then for any 0 < 01, there exists c(6) > 0 and x1(0) such that (L.5) holds
for x> x1(0).
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2. Proof of Theorem [Il We recall some results about the Fourier
transform on the additive group G := Z/qZ. For f g:G —C,let

=3 f@)ey(~ay), Z f(@)eg(ay).

zeG xeG’

(fx9)w)= > fla

z,2€G
:E+z=y

It may readily be verified that (f) = (H" =, (f * g)\ = fg, and
(2.1) WP =ad I
yeG zeG
Let 9, be the point mass at x. For complex measures
v= Z a(z)dy, pu= Z b(y)d
zeG yeG

with respective density functions af(...), b(...), we define v x u to be the
measure with density function a*b, and define 7 = a, so that (v*u)" = Dji.
We write v(%) for the k-fold convolution v % - -- % v, and ||v|| = > zec la(z)].
Clearly

[l pl| < [l ledl-

We write x g for the indicator function of F.

LEMMA 1. Let S C G. For a measure v on G,
(2.2) v(S) == 2y)R-s(y).
yeG

Proof. Tt suffices to prove this for v = §,.. Here the left-hand side of ([2.2))
is xs(x). The right-hand side is

(7 x-5)"(0) = ((f ¥ x-5)")"(0) = (f * x-5)(0),
where f(y) =1 for y = z and f(y) = 0 otherwise. The last expression is
> f)x-s(w) = x—s(—) = xs(z). =
zZ4w=0

LEMMA 2. Let p be prime and let (b, ..., bo) be a 2k-tuple of integers
such that (bgy1, ... ,bax) is not a permutation of (by,...,bx) modulo p. Then
the congruence

(+b1)" 4+ W+be)” = (y+brs1)” — - — (y+bx)” =0 (mod p)
p) =

has at most 2k — 1 solutions in the set {y (mod p) : (y + by, 1=
2k}
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Proof. After removing pairs with j < k < h for which b; = by, (mod p)
until no such pairs remain, and combining like terms, we must solve

(2.3) Z@j(bj +y) - Z cen(bn +y)~ =0 (mod p)
jeA heB

where A C {1,...,k}, BC {k+1,...,2k} are nonempty sets, the integers
bj (j € AU B) are distinct modulo p, and 1 < aj,¢;, < k.
Since the result is trivial for p < k, suppose that p > k. We multiply

(2.3) by T JEAUB (y + bj), obtaining a polynomial congruence
G(y) = 0 (mod p)
of degree < 2k — 1. Since for j € A,
G(=bj) =a; [] (b1 —b;) #0 (mod p),

IEAUB
I#5

G is not identically zero modulo p, and the result follows from Lagrange’s
theorem. m

LEMMA 3. Let B be the set of b= (by,...,boy) in Z* with 1 < b < B
(j = 1,...,2k), where B > 1. Let N(b,q) be the number of solutions y

(mod gq) of
(y+b1)" -+ (y+b)” = (y+beg1)” == (y+bx)” =0 (mod q)
subject to (y +bj,q) =1 (j=1,...,q9). Then
S TN(b,q) ke ¢ (B* v+ B).
beB

Proof. For each factorization u = ujug, let B(ui,us2) be the set of b in
B for which:

o if p|uy, (bgy1,...,box) is not a permutation of (by,...,bx) modulo p;
o if p|ua, (bgy1,...,bo) is a permutation of (by,...,bx) modulo p.

It suffices to show that
(24) Y N(b.q) <ne ¢/2(B* v+ Bq).
bEB(ul,ug)
For b € B(ul,u2),
(2.5) N(b,q) = ( [T N(b.p)) N(b, us)

plur

< ugv H N(b,p) (trivially)

p|u1
< ugv(2k — 1)) < uyugt/?

by Lemma [2| Here w(u1) denotes the number of prime divisors of u;.
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Let I > k. Given the first k£ coordinates of b, the number of possibilities
for by is < k“(“2) (B /ua+1), since there are k<(“2) possibilities for b; (mod us).
Hence,

k 2k
(2.6) ’B(’U,l,UQ)’ < kw(m)Bk <uB + 1> < q8/4<B + Bk> .
2

L)
Now ([2.4) follows on combining (2.5, (2.6]). =

In the proofs in the remainder of this section, we sometimes suppose
implicitly that ¢ is ‘sufficiently large’. An interval I = (a,b] denotes
{z € Z : a<x<b}, rather than {z € R: a <z <b}; similarly for I = [a,b].
We write

I'={nel:(n,q =1}, —-I={¢—n:nel}
and, for o > 0,
2(1,0) = {¢e )| Y ealca)| > I1Mla .
rel*

LEMMA 4. Let 0 < a < 1/5, I = (¢,c+ M] C [1,q| and suppose that
M < ¢Y2. Then

121, a)| <a vt 2,
Proof. Let 7 = a'/? and k = [1/7] + 1. Let us write
Q = Q(I7 a)7 A = [17 q_2TM:|*'

Since the result is trivial for M < ¢*"¢, we suppose that M > ¢*"¢. It
follows that

|A| > ¢ 2" ° M.

Let a € Aand b € [1,¢7]. Then
Do) = Y eqlC(wtab)7)

zel* w—+abel
(w+ab,q)=1

= Y egl¢(w+ab)") +0(g TM).
(w+zgl§,51)=1

Since T > a,

(2 7)
=X Y Y elcwran )| > (2l

CeEN aceA1<b<qT wel
(w+ab,q)=1
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Now

(2.8) SIS Y alCwran)

(eacAwel 1<b<q™

(w+ab,q)=1
= Y | Y etwrn).
1<y,z<q 1<b<q”

(y+b,9)=1

where
w(y,z) = {(w,a,{) € I x Ax 2:a =z (mod q), aw =y (mod q)}|.
By Holder’s inequality, the last expression in ([2.8)) is at most

(2.9) ( > u(y,Z))l_l/k< > u(y,2)2>

1<y,2<q 1<y,2<q

(X | X atwra[)™

1<y,z<q 1<b<q"

1/2k

(y+b,9)=1
Clearly
(2.10) Dy 2) < MIA]|Q| < ¢~ M?|0|.
1<y,2<q
Now
(211) Z :u(yvz)QZ ‘{(wl)al)Cthanng) w] 6-[7 CLj EAv C] S ‘Qv
1<y,2<q

a1¢1 = az¢2 (mod q), ajwi = azwy (mod q)}|.
The contribution to the right-hand side of (2.11)) from tuples with w; = wy is

(2.12) < ¢ TTEM?0.
To see this, let d be a divisor of ¢. It suffices to give the bound
< q M0

for the contribution from wy = wa, (w1,q) = d. There are < M/d + 1
possibilities for w;. Once wy is fixed, the congruence

ajwi = agwi (mod q)

implies a; = az (mod ¢/d), and there are < q~2" M (1+ ¢~2"Md/q) possible
pairs a1, ag. Once ay, ag are fixed, we have a1(2 = a2(; (mod ¢), and there are
|£2| possible pairs ((1,(2). Thus the number of tuples (a1, w1, (1, a2, w1, (2)

in question is
M —2TMd
< (d + 1) (1 + q> a2 M|0).
q
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Since

M —27Md
(d + 1) <1 + qq> < M+q¢ ¥ M <« M,

we have verified the bound .

To estimate the contribution to the right-hand side of from tuples
with w; # wa, we fix the values of a = a1 — a9, w1 and (3. We have asw; =
ajwy (mod ¢), hence

a1 (w; — we) = aw; (mod q).

Since 0 < |aj(w; — wa)| < ¢~ 2" M? < g, this determines a;(w; — w2), and
in turn determines a; and wg to within O(¢®) possibilities. Now ag is de-
termined by as = a1 — a, and (2 is determined by a;(as = a2(; (mod q). It
follows that

(2.13) > uly2)? < g MR,

1<y,2<q

We rewrite the last factor F' in (2.9) as
=y > > eqla(y+b0)7 4+ (y+b)

1<y<q  1<by,..,bor<g”™ 1<z<q
S ~ G br)” = = (b))

= Z qN(ba Q)

1<by,...,b2k <q"
< q1+e(q2k:7'v + ql—l—kr) (by Lemma, )

< g\t
by the choice of k. Combining this with (2.8)), (2.9)), (2.10)), (2.12]), we obtain
S(Q) < qS(quTMZQ)lfl/Wc(,Uq1+2k7')1/2k.
In conjunction with (2.7)), this gives
q—T—a—25M2|Q| < qe(q_%—MZ|Q|)1_1/2k(vq1+2k7—)1/2k,
M2|.Q| < ,Uq2ka+27'+1+6k5.

Since 2ka + 27 < 40?2 + 20 < 5a/? — 6ke, the lemma follows. =

LEMMA 5. Let v be the measure

1
V:mzéx

€A
where A C G. Let 0 < a < 1/3, ¢ > 32 and let |l be an integer, | > 1/a; let

B=B(v,a) ={CeG:|p(a)] >q “}.



358 R. C. Baker

Then for any set S C G with

1
(214) B,a)lIS] < 547,
we have
(2.15) u(”(S) <q

Proof. Suppose that ( is false; then

(2.16) - Z >q @

yEG
by Lemma [I] while
(2.17) ’Z (y)'%-s(y ( ¢ R-s)l < ¢8|V < PP
y¢B yeG

by (2.1) and Cauchy’s inequality. Since @2l < 12 < 1q1 * we deduce

from (2.16)) and (2.17)) that
. . 1,
o) xosw)| > 50

yeB
Moreover,
> o) k-sy) =D 0w X-sxB)®) = > ») (x-s * X5)" ().
yeB yeG yeG

For convenience, write v} = > Leq b(2)8:; then Y- o [b(2)| < [lv||' =
We have shown that

(2.18) > rxos ) @) 2

yeG
The left-hand side of (2.18]) is

gl(bxx-s*x8)0)=q Y bu)x_s)xs(w)

l—«

1
2(1

utv+w=0
< qll¥sllo Y b)Y Ix-s)| < |B||S],
ueG veG

and (2.14)) is false. =

LEMMA 6. Let 0 < a < 1/5, 1 > 1/a, I = (¢,c+ M] C [1,q] where
M < q1/2. Let S C G and

(2.19) S| <o v lg 0 A2,

Let .
= RN

zel* zel*U(—I)*

e u*\
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Then Vfl)(S) Lo ¢~ IfIN(=I) =10, then
() <a g
Proof. We take A ={Z: 2z € I*}, v =1 in Lemma [5| Then
B(vi,a) = Q(L.a),  |B(n,a)| < vg o M
from Lemma 4] Since we may suppose that ¢ is large,
1
Bl a)|[8] < ¢' =" < St

Now 1/9(5’) < ¢~ from Lemma B

Let vg = |(=1)*|7! > ze(—n)- 0z; then D3 = 1. Assume now 1N (—1) = (;
then vy = $(v1 + 13), 02 = Rewvy, and B(va, ) C 2(I, ). We can complete
the proof for 15 as before, and the lemma follows. =

LEMMA 7. Let I = (¢,c+ M], J = (d,d + N] be intervals in [1,q|, with
JO(=J) = 0. Let

1
= E 53_67
SERPANIEY
(220) zeJ*U(=J)*

SI,J) =D D amPueg(amn)

mel* neJ*

where |apy,| < 1, |Bn| < 1. Then for any even natural number k, and any
a >0,
S, )" < (MN)*{q= + 220 (2(1, a))}.

Proof. Let k = 2h. By Cauchy’s inequality,
SR M | Y Buey(amn)

mel* neJ*

‘ 2

=M Z Bnlﬁ_fm Z e(I(am(ﬁl o ﬁ2))

ni,na€J* mel*
<M | Y eglam(n - n0)).
ni,n2€J* mel*
Using Cauchy’s inequality again leads to
ST < MPN? Y ‘ 3 eqlatmy —mo)(mr — ﬁg))‘.
mi,mo€l* nino€J*

By Holder’s inequality,

1S(I, J)Ph < MBh—2N4h Z Z Z

mi,m1EI* ny,na€J* Ngp—1,N4p€J*

eq(a(my —mo)(ny — o + -+ — (Nap—1 — Nap))).
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Renumbering the variables nq,...,n4x, and treating the variable mso triv-
ially, we obtain

(2.21)  |S(I, J)|* < MAR-IN2E

X > ‘ > eglamy(y + -+ g — (g + -+ + Pag)) .
(n1yeeeyno)E(J*)2k  mai€l*
For brevity, let
N=021Ia), T={z:xzeJ U(=J)}
We partition (J*)2* into two sets Aj, As, where
Al ={(n1,...,no) € (JV*:ay + - + g — (psr + -+~ + 7igp) € 2.
The contribution to the right-hand side of from (nq,...,n9) in Ag is
< M*=I N g — (MN)kge,
We also observe that
V2 () = \le% D= |T1\2k | Ay .

(21,00r20k ) ET?F
214 F20, €02

Accordingly, the contribution to the right-hand side of (2.21)) from (nq, . . ., n2g)
in Ay is

< M4kN2k|T‘2kV(2k)(.Q),
and the lemma follows. =
LEMMA 8. Let 0 < § < 1/3. Make the hypothesis of Lemma @ and

suppose in addition that v < ¢*/* and
(2.22) v < Il < |J|, I |J] > vg'/?F°.
Then
(2.23) S(I,J) < |I| | J|q~ /2100,

Proof. If | J| > ¢/?, we partition .J into intervals of length between % qL/?
and ¢'/2, and similarly for I. A pair of intervals I, J' obtained in this way
satisfies

vg’ < || < | T < g2, (I > vg" 2P,
It now suffices to prove (2.21)) for I’, J' in place of I, J. Thus we may add
to (2.22) the hypothesis

] < g2
Let a = §2/32, k = [16/6%] + j, where j = 1 or 2 is chosen to produce

even k. Then

a g 52 B 5 < 5
4k ~ 128(16624+2) 2024 + 25602 ~ 2100
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In view of Lemma[7] it suffices to show that
v ((1,0)) < g7,

where v is given by ([2.20)).
We are going to apply Lemma |§| with 2k, J, 2(I,«) in place of [, I, S.
The hypothesis (2.19)) is satisfied, since

M2N2 > v2q1+25 > 1}2q1+11a1/2

and
2,a)<Kv ! 5C“l/zM 2<<v ! 60‘1/2]\[2
q q

by Lemma {4l We conclude that (2.23]) holds. =

In [2], Lemma A.7 corresponds to Lemma 8 above. The author of [2]
has inadvertently omitted to assume any lower bound on |I| (|I;] in
his notation), but it is implicit in his proof of Lemma A.7, being requir-
ed to get a suitable lower bound for the quantity |I’||J’|. The reader
will easily see that Lemma [§ would not be true without a lower bound
on |I|.

Proof of Theorem We begin by recalling some facts from Heath-
Brown’s decomposition [6] of A(n). A function f(n) on K = (z, (1 + f)x]
is given, where 0 < B < 1. The decomposition enables us to express
>orek, (ng=1 A(r) f(r) as a sum of O((log z)%) sums Sy, Sj, Sii. Here

(2.24)
Si=5Si(g,a) = > > amf(mn), Sy= Y Y (logn)amf(mn),
m~N n~N m~N n~N
mneK mneK
(mn,q)=1 (mmn,q)=1

with a,, < ¢ for every € > 0, and MN =<z, N > 2'~*; while
(2.25) St = Su(q,a Z Ao, anf mn)

m~N n~N
mneK

with am, b, < 2f for every € > 0; MN =< z, 2 < N < z'/2. Here
the parameter A in (0, 1/ 3] is at our disposal. See [1] for a discussion of
an almost identical situation. We can reduce S to Sp (with a different /)
by partial summation. Let §; = 995/100. For the proof of Theorem 1 we
take f(r) = eq(a7), K = (x,2'], 2’ < 2z, 2* = vg® < /3 (since v < /4,
q < 22,6 < 1/24). We shall show that S, Sy are O(2179%/2000—2) ‘Jeading to
a suitable bound for 3>, ../ ;. ;=1 A(r)eq(ar). The corresponding bound
for S,(a; x) follows easily.
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Lemma [§ with d; in place of §, gives

S < ZI}(]_(S%/mOO"'E < 1‘1_64/2000_5

for vg" < N < z(vg®)~'. This requires a short calculation: we have

5t > %54, z < ¢'9/24 and

4
4 19 100 97 4
25*/2000 < 03596 3006 < O1/2100—2¢

It remains to show that

1—64/2000—2¢ for N >

X
S << x 5
Uq1

We note that
T
N> -2 §H/2+8/100,
vq°1

By a standard estimate (see e.g. 4, Lemma 2.1]), the inner sum in Sy is
< ¢'/?*¢. Hence

1/2+€
S < Mq1/2+e < q —8/200

<K xq
This completes the proof of Theorem [I] =

3. Proof of Theorem In the present section, we suppose that @ is
large and Ql/ 2 <2 <2Q. It is convenient for use in Section 4 to work with

the sum .
Sqla;x, B) = Z e<ap>

z<p<(1+p) 4

where [ is a constant in (0, 1]. Define St and Sip by (2.24), (2.25) with
f(r) = eq(ar). We now take A = 1/3 in our application of Heath-Brown’s

identity. Thus in order to show that

(3.1) > [mex 1S,(a; 2, B)| < (Q/102Y5 4 Qut1/1?) e,
~Q VT

it is sufficient to show that

(3:2) D max [Sifa, @)l < (QU1001/° + Qut/1)Q7N2
g~Q

whenever N >> 22/3, and that

(33) Z (mf)in ‘SII((L a)’ < (Q11/10$4/5 + Qx11/12)Q€/2
~Q VT

whenever /2 « N < 22/3.
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Let Jk(q) denote the number of solutions of the congruence
N1+ ng =n3 + 14 (mod ¢)  with 1 <n; < K.
LEMMA 9. For M < gq, N <gq, (a,q) =1 we have
Sti(g, a) < g3/ MNYY2 Ty ()3 In (@) V3.

Proof. See Garaev [5]. The restriction to prime ¢ in [5] plays no role in
the argument. =

LEMMA 10. We have, for K > 1,

> Jxle) < (K*Q + KK~
q~Q

Proof. This is Lemma 2.3 of [4]. =
LEMMA 11. Let M < N < Q, MN = z. We have

> max [Siu(g, a)] < Q/X(QV"a* + Qo AN,
~Q ™

Proof. By Holder’s inequality and Lemma
1/8
ZJM(q)l/BJN(q)l/B §Q3/4<ZJM(Q)> (ZJN(Q>>
q~Q q~Q q~Q

< Q3/4+€/4(M1/4Q1/8 +M1/2)(N1/4Q1/8 +N1/2)

1/8

< Q3/4+a/4($1/4Q1/4 + x1/4N1/4Q1/8)
since z'/2 < 2Q'/4z'/*. Combining this with Lemma EI, we get
> max |Su(g,a)| < QYL N " T (g) E TN (g) '
(a,q9)=1
~Q q~Q
< Q&/Q(Q9/8x3/4 + Q$3/4N1/4). .

Proof of Theorem@r We begin by showing that (3.2)) holds for N > x2/3.
We distinguish two cases.

CASE 1: N > Q%°z'/5 For each m ~ M, (m,q) = 1, we have the
estimate

Z eq(amn) < ¢/*e/2

n~N
z/m<n<(1+8)z/m
(n,q)=1

for ¢ > 1, (a,q) = 1, as noted earlier. Thus for ¢ ~ @, (a,q) =1,
Si(q,a) < N~lzql/2+e/2 « Q1/10+¢/2,4/5
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and
> max [Si(ga)] < QU125
g (BD=1

CASE 2: 2%/3 < N < Q*5z/5. (This case occurs only if Q > z7/6.) We
observe that N < ). By Lemma

Z (m?xl |S1(gq,a)| < QE/Q(Q9/8:L,3/4 + Q11/10x4/5)
~Q T
< Qa/Q(Q11/10$4/5 4 an/m)

since Q¥/8x3/* < QU/10z4/5 for Q < 22.

Thus (3.2)) holds in both cases.
It remains to prove (3.3). Let MN <z, M < N, 21?2 <« N <« 2%/3; then
M < N < Q. From Lemma [11]

D max [Su(g,a)] < Q*(QYPa 4 Qal/1)
~Q VT
< QE/z(Q11/10x4/5 + an/u)

as above. This establishes (3.3), and (3.1)) follows; in particular, we have
proved Theorem [2| =
4. Proof of Theorem Let 8 be a small positive constant. We write

m(z,B) =[{p:z<p < (1+ B},
T (2, 8) = {(p1,p2,p3) 1 ® <p; < (1+ B)z}

and

A(Qa ow) = ‘{(p17p27p3) € T(ow) : A(p17p27p3) =0 (mOd q)}7
L=logz, 7(q)=I[{d:d|q}
We shall show that for § < 01, and 8 < p1(0), > x1(0),

(41)  H(p1,p2,p3) € T2, ) : P*(A(p1, p2.p3)) > 2’} > ¢ (O)n(x, B)°

where ¢/(#) > 0; this suffices for Theorem [3] We draw heavily on the analysis
in [4] and indicate briefly the changes in the argument that are needed.

LEMMA 12. Let A>0, B> 0, ¢ < L4, (a,q) = 1. Then

;T = MTF T zL™B
(42) Sq(av aﬁ) - SD(Q) ( aﬁ)"’OA,B(q L )

Proof. This follows at once from [4], (3.13)]. =
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LEMMA 13. Let A > 0. Forz > 2,1 < ¢ < 2Y7/1=¢ we have

T 3
(4.3) A(q;%ﬁ)—H(l—(pll)Q) (@.6)

q
plg

e (L—A+£5 3 (Tg))l/?) w(x(,lﬁ)é

tlq
t>L4

Moreover, for x > 2, B >0,

T 3
(4.4) > |AlgeB) -] (1 o j 1)2> ( C’]ﬁ)

q<gl7/16—¢ plg
<pem(x,B)3LE.

Proof. Let

A*(q;x, B) = {(p1,p2,p3) €T (2, 8) = (pi,q) = 1, A(p1,p2,p3) = 0 (mod q)}|.
It is clear that

0 < A(g;z,B) — A*(q; %, B) < Bw(q)m(x, B).

18
a=1
Just as in [4, (4.4)] this relation leads to
A*(g; 2, f) = MT(g; 2, ) + O(ET(g; 2, B) + L)

Moreover,

where

MT(q; 2, 8) = Z Z SP (b, B),

ta (bt:>
ET(q;x, ) = Z Z |Si(bs @, B)|?
t|q b=1
(bt)=1
As in [ (4.5)],
t
(4.5) Z |S¢(b; x, B)|* < 2° + tz,

b=1
leading to
ET(g;z,8) < ¢ 'z + q)7(g) L,

We partition MT(q; z, §) as
MT(q;x, B) = Mi(L?Y) + Ma(L?),



366 R. C. Baker

where
Z S3(b; x, B).
tlg
<A
As in (4.7)-(4.9) of [4 ] an application of Lemma [12] yields
M1(EA):*Z M —|—O( —1x3£—A)
t<£A
1 1
= - l—- — +O£_A>7Tl‘, S 0(g 3.
q<r|[< (p_1)2> (£74) ). 8)? + O "4 L)

For the remainder of the proof of (4.3), we follow the argument below
[4, (4.10)], verbatim, using (4.5) (above) along the way. By applying the

inequality
SS )/ < L7V2Qog L)Y

q~Q tlq
t>1L

(see [4, (1.4)]), we deduce (4.4]) from (4.3]).

We now sharpen Theorem 1.5 of [4], where the corresponding range for
q is [171,14/1375]

THEOREM 4. Let B > 0. Then for x > 2,

T\r 3
ae) 2 |- (1ot ) T < nte e,

_ 2
q§z13/12_‘5 p|q 1) q

Proof. By Lemma it suffices to estimate the part of the sum in (4.6)
with ¢ > z. Let n = /6. We say that ¢ is (1, x)-good if for all divisors t|q
with t > x, we have
(7) max [5i(bi, )] < (1/1%15 4 o11/12)00

t)=
Otherwise, we say that ¢ is (n, z)-bad.
We claim that for @ < :U2/4

(4.8) {g~Q:qis (n,z)bad}| <. Qu "2

This is trivial for Q < ZL‘/2 since t|q ~ @ implies t < 2Q) < z. Suppose now
that Q > z/2. For z < T < 2Q, consider the set of ¢ € [T, 2T) for which (4.7)
fails. By Theorem [2| with 77/3 in place of ¢, there are O.(T"~27/3) values of t
with this property. For each t € [T,2T), there are O(Q/T) integers ¢ ~ Q
with ¢ | g. So there are at most O(Qz~2"/3) values of ¢ ~ Q for which
fails. Summing over O(L) values of T', we obtain (4.8)).

For (n, x)-good values of ¢, we see from the proof of Lemma [13| that it
is enough to estimate Ma(L?). The contribution to My(LP) of those t in
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[1,z) is estimated as before (individually for every ¢). Thus it is enough to

prove By
3 ZZ Sitis 2, B < T

$<q<$13/12 5 th —
¢ (n,z)-good  t>z (b t)

in order to obtain a satisfactory contribution to (4.6) from {z < ¢ < z13/12-¢ .

q is (n,z)-good}. Using (L.5), ([1.7), we get
SIS S s

x<q<x13/12 5 t‘q —
o 120 (D1

<z Z Z (£1/1044/5 4 p11/12y4 14
$<q<x13/12 e t>|q
t>x
<z Z T(q)(q1/10x4/5—|—:c11/12)q77
q§w13/12_5

< w((x13/1278)11/10w4/5 +x275)x3n < x37s/2.
As for the (n, z)-bad values of ¢, we use a bound from [4] for

p(n) = ’{(p17p27p3) pi~ T, A(plapQ)p?)) = I’}’,

namely
p(n) < 7(n)zL
(see [4, (1.6))]. Thus the contribution to (4.6) from (7, z)-bad values of ¢ is

x3+n/4
Y Y e ¥
e<q<zld/12—c  p<a? w<q<ald/12—¢ q
q (n,x)-bad n=0(modq) q (n,x)-bad
p3+n/4

Qu"? < 2?L B

>

‘TSQS$13/12_6
Q:Qj

where we use (4.8) in the penultimate bound. This completes the proof of
Theorem [ =

Proof of Theorem[3 Consider the ‘Chebyshev—Hooley’ sum
CH(ZE) = Z IOgA(plap%piS)'
pi€(x,(1+8)z]
Since all A(p1,p2,p3) are in [3z%,3(1 + 5)?2?], we have
(4.9) CH(z) ~ 2L (z, B)® (z — o0).
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Let
X =n(x,8)%, Y :=a¥127  z.=40

Arguing as in the proof of [4] (4.14)], we have

(4.10) =Y AQAGe.B) =) +D  F> D .

q<Lx?
where
Yo =2 A@AGe B, Y = Y A@AlgeB),
q<Y >Y
g not prime
Y= D> AA@z B, Y = Y AAlgz,h).
Y<q<Z >Z
g prime g prime
Theorem [ easily yields
13
1 — -
(4.11) Zl <12 E)X[, (x — 00),
while, just as in the argument leading to [4, (4.16)],
(4.12) 22 <zt
We can follow the proof of [4, (4.17)] to obtain
k+1 k
(4.13) ZS < > log(2MlY) 23(2 Y),
0<k<Ko

where Ky = [log(Z/Y)/log 2] and
> (P)=) Alpix,p).
p~P

If rp is an integer counted by A(p; z, 5) in Y 4(P), then rp = A(p1, p2, p3)
and
2,2
3—<r<73(1+5) x .
2P — — P
For a fixed r satisfying (4.14)), let C(") be the set of integers A(p1,p2, p3) /T

for which (p1,p2,p3) € T (x,8) and A(p1,p2,p3) =0 (mod 7). We see that
for any z < z,

(4.15) Zg(P) < > 8", ).
rsatisﬁes

Here we use the standard notation: S(C("), z) counts the elements of C(")
coprime to Hpgz p.

(4.14)
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Let
wfm) =0~ -1, x0=Ux
plm
R(z;m) = A(m;x, B) — MX.

Let d denote a squarefree positive integer, and

|{a€C :d|a}l.

It is clear that
Cfﬁ = A(z;dr, B).

We rewrite this as a ‘main term’ plus an ‘error term’:
d

Using the theory of the linear sieve just as in [4] (4.20)], we have, with an
O(...) error independent of r, z,

(4.16)
2 < 1 <1 _ W) <F<logD> 4 O((logD)_1/3)>X(T)
P log z
p<z
+ > |R(a;dr)]
d<D
for any choice of D > 1. For the sieve function F', we only need the formula

2e7
F(s):% 0<s<3),

where  is Euler’s constant.
In view of (4.13] -, we need to give an acceptable upper bound for

Z Z |R(x; dr)|.
d<D r<3(1+p)%z2/P
LEMMA 14. For Y < P < Z and D < PY/x?, we have
E(D) < XL73.

Proof. We follow the proof of [4, Lemma 4.1], substituting Theorem
for the corresponding result in [4]. w

By (4.15]), (4.16) and Lemma (14 we have

e 5t (s
r satisfies p<z

-2
XF<10g(PYx )>
log 2z
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for every € > 0 and for every sufficiently large x and every z < x. We choose
z:= (PYz 2)1/2,
As noted in [4],
(=) o)
p<z pl|r
where

(= O (O =g

p>2 p<z p

Inequality (4.17) now simplifies to the form

(24+¢)CoX v(r)
. E < —r E
(4.18) 3(P) ~ log(PYz~2) _ r
r satisfies (4.14))

where v is the multiplicative function

v(r) = w(r) H <1 1—;(1/)7P>

From the analysis in [4], we know that

S G og R+ Fy+ O(R)

r<R r
where dp is a positive absolute constant, Fp is a constant, and G(s) is defined
by

[+
N
~~
=
S~—
I
LA
—~
V)
~—
@
—~
»
:—/

rs
r=1

G is holomorphic in Res > 1/2 and CyG(1) = 1. We use this to reduce

(4.18]) to the form
(2+¢)X 2
P) < —————— log{2(1 .
S7L(P) < s log(2(1 + 6}
Combining with (4.13)), we obtain

o k
(419) ) < @+e)n(e B log{2(1+8)% bglggk(;zfz}/)—%
0<k<Kp
Now
(4.20)

log(2"Y)  [log2 (logY)/L+ (klog2)/L
(082) 2. Topivie?) ~° { 2 Ton(V a2 £+ (Rlog 2) f
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As in [4], we only have to consider the expression in brackets as a Riemann
sum to obtain the asymptotic formula

o k
(log2) > bgléf%wu (z — o0),

0<k<Ko
where
log(Z/Y)/L
Jo ol g i t+(logY)/L dt
B o t+log(YZz2)/L
_ log(Z/Y) n log(22/Y) 1 log(Y Zx~?)
N L L log(Y2x~2)
_0 13+ n 11+ 1 1260 — 11 — 12¢
T T T T 12T )T e e
Combining this with (4.19), (4.20)), for large = we have

(421) Y < (2+29)(z, 5)35<1 + W)

1 ) (1 ) g 120 - 11— 12
12 ° 2 7%) % T e |

Since 8 < 01, we may choose positive numbers € and 5 so small that the

right-hand side of ([#.21)) is less than (11/12 — &) (x, 8)3L. It now follows
from (4.9)—(4.12)) and (4.21)) that, for large x,

24 > 7T($,,8)3,C.
This completes the proof of Theorem |3| =
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