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1. Introduction. Let k be a field of zero characteristic and f(x) ∈ k[x]
be of the shape f(x) = g(h(x)), where both g, h ∈ k[x] have degree > 1.
In [Z] we proved in Theorem 1 that, provided h is not of the shape axn+b, the
number l of terms of f satisfies deg f+ l−1 ≤ 2l(l−1) deg h. Essentially as a
remark, we also pointed out that the method could yield similar statements
for Laurent polynomials f, h (and possibly for rational functions). In [Z], for
this case we did not exploit with care the full information coming from the
arguments, which resulted in a weaker dependence of the estimate on deg h.
(For the applications we had in mind this was amply sufficient.) Now, the
above estimate has as a natural consequence an upper bound for deg g only
in terms of l, and this was no more implied by our rough estimate for Laurent
polynomials, stated as Theorem 2 of [Z]. This defect is rather annoying, also
because recently Watt and Zieve required, for certain applications in [WZ],
such a bound for deg g in the case of Laurent polynomials f, h.

Therefore, to supply a bound sufficient for the applications by Watt and
Zieve, we have written this further short note, as an addendum to [Z] (1).
In place of Theorem 2 therein we prove, by similar but more accurate argu-
ments, the following:

Theorem 2*. Let f ∈ k[x, x−1] have l > 0 nonconstant terms. Assume
that f = g(h(x)), where g ∈ k[x], h ∈ k[x, x−1] and where h is not of the
shape axm + a′x−m + b. Then

deg f ≤ 2(2l − 1)(l − 1) deg h, deg g ≤ 2(2l − 1)(l − 1).
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(1) Further applications may come by generalizing the results of [Z2] to Laurent poly-
nomials.
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Here by the degree of a Laurent polynomial we mean its degree as a
rational function, i.e. the maximum of the degrees of the numerator and
denominator. Note that the right estimate immediately follows from the
one on the left. We stress that the main point for writing this addendum is
indeed that the left estimate depends linearly on deg h, so it yields an upper
bound for deg g dependent only on l. (Instead, the version in [Z] bounded
deg f quadratically in deg h, which is not only unnatural but also insufficient
for the said applications in [WZ].)

We also point out that, as shown by the proof, in the non-polynomial
case the term deg h can be replaced with deg h − 2; the dependence on l
too may be possibly refined, but these are minor points for the applications.
Finally, as observed in [Z], the special shape for h has to be in fact forbidden,
as shown by the identity xn+x−n = Tn(x+x−1) where Tn is the Chebyshev
polynomial.

2. Proofs. In the following we suppose, as we may, that k is alge-
braically closed and that h is not a polynomial, for otherwise f too is a
polynomial and Theorem 1 of [Z] yields the present estimates. Note that
this assumption on h entails that also f is not a polynomial. We further
assume (as we may on changing x into 1/x if necessary) that h has a pole
at x =∞ of order at least the order of its pole at 0; automatically, the same
then holds for f = g ◦ h.

We start with two lemmas, similar in nature to some lemmas in [Z].

Lemma 1. Set λ := h(x). Any conjugate y of x over k(λ), y 6= x, has
the following properties:

(i) Let d := [k(x, y) : k(x)]. Then d ≤ deg h− 1.
(ii) The genus of the function field K = k(x, y) (over k) is ≤ (d− 1)2.
(iii) Any zero or pole of x (with respect to K) is a zero or pole of y, and

conversely.

Proof. Plainly, k(x) is an extension of k(λ) of degree deg h. Since y is
conjugate to x over k(λ) we have h(y) = h(x); assertion (i) follows, since
x, y are two (distinct) roots of the equation h(X) = λ.

Let H(X,Y ) ∈ k[X,Y ] be an irreducible polynomial such that H(x, y)
= 0. Since h(x) = h(y) and since the degree is multiplicative in towers, we
have deg(x) = deg(y), considering x, y as rational functions in the function
field k(x, y)/k. Hence degX H = degY H, and certainly degY H = deg(x) =
[k(x, y) : k(x)] = d. Hence, by a theorem of Castelnuovo we obtain the
estimate g ≤ (d − 1)2. (Viewing our curve embedded in P2

1 rather than P2,
one may recover this bound from the well-known formula 2g−2 = X.(X+K)
for the genus of a curve X on a surface S, where K is the canonical class:
see e.g. [S, IV(20)]. See also [St, Thm. III.10.3].)
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Finally, assertion (iii) follows at once from the fact that h is supposed to
be a polynomial neither in x nor in 1/x, so any zero or pole of x is a pole
of λ = h(x) = h(y), and thus is a zero or pole of y.

Lemma 2. Let K/k be a function field in one variable, of genus g, and
let z1, . . . , zs ∈ K be not all constant and such that 1 + z1 + · · · + zs = 0.
Suppose also that no proper subsum of the left side vanishes. Then

max(deg(zi)) ≤
(
s

2

)
(#S + 2g − 2),

where S is any set of points of K containing all zeros and poles of all the zi.

Here and below by deg(z) we mean the degree with respect to K, i.e.
[K : k(z)]; equivalently, this is the number of poles (or zeros) of z counted
with multiplicity. This lemma is an immediate consequence of Corollary I
of [BM] (as improved after Thm. B therein); we have just used the fact that
the “K-height” of the projective point (1 : z1 : . . . : zs) is bounded below by
the maximum degree. (Actually, [BM] gives a bound with 2g − 2 replaced
by max(0, 2g − 2), but the same proof yields in fact the above estimate.
This may also be recovered immediately from Theorem 1 in [Z3], without
any modification, and anyway for the present purposes this would make no
difference.)

Proof of Theorem 2*. The Laurent polynomial f(x) will be written as
follows:

f(x) = c0 + c1x
m1 + · · ·+ clx

ml , (1)

where no mi is zero and ci ∈ k, c1 · · · cl 6= 0, m1 < · · · < ml. Recall that we
are assuming that f is not in k[x] and that its pole-order at x = ∞ is at
least the pole-order at x = 0; this entails that ml ≥ −m1 > 0. Hence

ml < deg f = ml −m1 ≤ 2ml.

Suppose first that h ∈ k(xn) for some integer n > 1, so h = h̃(xn),
and f = f̃(xn), where f̃(x) = g(h̃(x)). Since f̃ has the same number of
(nonconstant) terms as f , we may argue with h̃(x) in place of h(x). Note
in fact that h̃(x) cannot be of the forbidden shape for otherwise h(x) would
also be. If we assume the inequality to be proved with h̃ in place of h, f̃ in
place of f and the same g, we find the sought estimate and more.

Therefore, we may suppose that, for any n > 1, h 6∈ k(xn).
Secondly, suppose that h is decomposable in the form h(x) = p(q(x)) for

p ∈ k[x] a polynomial and q ∈ k[x, x−1] a Laurent polynomial. Note that if
q(x) = axm + b + a′x−m then m = ±1 by the previous assumption. If q is
not of this form, we may now write f(x) = r(q(x)), where r(x) = g(p(x)).
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As before, if we assume the sought inequality with q(x) in place of h(x) and
g(p(x)) in place of g(x) we again obtain the inequality we want to prove.
Hence it will suffice to prove the theorem on replacing g, h with g ◦ p, q
respectively.

Therefore, by suitably iterating this argument, we may assume from
now on that the only possible decomposition h(x) = p(q(x)) has either
q = ax+ b+ a′/x (with a, b, a′ ∈ k) or deg p = 1.

We also suppose deg h > 2, for otherwise, on the present assumptions,
h(x) would necessarily be of the forbidden shape ax+ b+ a′/x.

In what follows we adopt the notation of Lemma 1, letting in particular
K = k(x, y). Since f ∈ k(h(x)) we have f(x) − f(y) = 0, where y is as in
Lemma 1. In view of (1) this reads

(2) c1x
m1 − c1ym1 + · · ·+ clx

ml − clyml = 0.

We shall exploit (2) by means of Lemma 2. Before applying it, we deal
with possible vanishing subsums of the left side of (2). We partition the
terms on the left of (2) into minimal subsets with vanishing sum. (A priori
this partition may be done in several ways; we can choose freely one of
them.) Among such subsets we pick the one containing the term clx

ml . We
denote the corresponding terms by w0, . . . , ws agreeing that ws = clx

ml . We
shall then obtain a relation w0 + · · · + ws = 0, without proper vanishing
subsums, where ws = clx

ml and where w0, . . . , ws are distinct terms taken
from the left side of (2). Also, we may clearly write such a vanishing relation
in the form

p(x) = q(y),

where p and q are nonzero Laurent polynomials obtained as certain non-
empty subsums of terms ±wj .

This equation says that p(x) lies in the intersection k(x) ∩ k(y), which
is a field intermediate between k(λ) and k(x) (we are using throughout
the notation of Lemma 1 above). By the Lüroth Theorem (see e.g. [Sc])
the field k(x) ∩ k(y) is of the shape k(u(x)), where u ∈ k(x) is such that
λ = h(x) = t(u(x)) for some t ∈ k(X). Note that we may change t, u to
t ◦ φ, φ−1 ◦ u for any homography φ ∈ PGL2(k).

Now, h is a Laurent polynomial, not a polynomial, and so ∞ ∈ P1(k)
has precisely the preimages 0,∞ under the map P 7→ h(P ). Hence ∞ has
either two or one preimage under the map t(x).

If ∞ has two preimages under t(x), we may assume, for a suitable
choice of the said homography φ, that they are 0,∞. Then 0,∞ must each
have a single preimage (in {0,∞}) under the map u(x). This implies that
u(x) = cxρ, c ∈ k∗, ρ ∈ Z, and then we must have ρ = ±1 by the present
normalization of h and in particular deg u = 1.
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If∞ has just one preimage under t(x), we may assume by suitable choice
of φ that it is ∞. Then ∞ has just 0,∞ as preimages under u(x). So t(x) is
a polynomial and u(x) a Laurent polynomial. By our normalization, either
u(x) = ax+ b+ a′/x with b ∈ k, a, a′ ∈ k∗, or deg t = 1.

Let us treat these three cases separately.
In the first case, we have deg u = 1, so k(x)∩k(y) = k(x), i.e., k(x) ⊂ k(y)

and since they have the same degree over k(λ) we have k(x) = k(y) and
y = L(x) for a linear fractional L ∈ PGL2(k); note that L must be of finite
order, because h(x) = h(L(x)). Since h(x) = h(y) (or by Lemma 1(iii))
we deduce that L either fixes both 0,∞ or exchanges them. Hence either
y = αx with a root of unity α of order n, whence h ∈ k(xn) contrary to
the assumptions (if n = 1 we have y = x), or y = β/x for a β ∈ k∗. Note
that the latter holds for at most one conjugate: if another conjugate y′ of x
equals β′/x, then y′ = γy for a γ ∈ k∗ which is necessarily a root of unity,
which case we have just excluded. Since we are working on the assumption
deg h > 2, we can start with another conjugate y if necessary (note that
h(X) = λ has no multiple roots!), and so we can suppose that this case does
not occur at all.

Take now the second case, i.e. u(x) = ax + b + a′/x. We have p(x) =
v(u(x)), where v ∈ k(X). But p is a Laurent polynomial, so necessarily
v ∈ k[X] must be in fact a polynomial: if not, v has some finite pole, whence
p has a pole which is neither 0 nor ∞. In turn, we conclude that p(x) has
equal pole orders at 0 and ∞; since the pole order at ∞ is ml, which is
largest among the |mi|, we conclude that m1 = −ml and that p(x) contains
the term c1x

m1 .
In the third and last case, we have deg t = 1 so k(x) ∩ k(y) = k(λ), so

p(x) ∈ k(h(x)), which means that p(x) = z(h(x)) for some rational function
z ∈ k(x). Again, as in the second case, we reach the conclusion that p(x)
contains the term c1x

m1 : in fact, the ratio between the orders of the poles of
p(x) at ∞, 0 is the same as for h(x), which in turn is the same as for f(x).
(Apart from a factor 2 in the final estimate, it would suffice in these last
two cases to deduce that p(x) contains a term c`x

m` with m` ≤ 0.)
We may now renumber the indices to assume that the said term c`x

m`

is w0.
Dividing the relation w0 + · · · + ws = 0 by w0 = c`x

m` and setting
zj := wj/w0 we find

1 + z1 + · · ·+ zs = 0.

Note that zs = (cl/c`)xml−m` is nonconstant of degree in x equal to
ml + |m`| ≥ ml−m1 = deg f . We are then in a position to apply Lemma 2.
We proceed to estimate the relevant quantities.
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Note that deg(zs) = deg(x)(ml−m`) = d(ml−m`) (where the degree is
meant, as above, relative to k(x, y)). Further, x, y have altogether at most
d distinct zeros each. Each zero or pole of x is a zero or pole of y and
conversely. We can then bound #S by 2d. Finally, by Lemma 1 the genus g
of K = k(x, y) satisfies g ≤ (d− 1)2.

Combining these estimates and using Lemma 2 we find (using now deg f
in the usual way, as the degree of a rational function in k(x), not in k(x, y))

ddeg f ≤ d(ml −m`) ≤
(
s

2

)
(2d+ 2(d− 1)2 − 2) =

(
s

2

)
(2d2 − 2d).

Now, we have s + 1 ≤ 2l, whence deg f ≤ 2(2l − 1)(l − 1)(d − 1). Finally,
recall that d ≤ deg h− 1 by Lemma 3. All of this gives

deg f ≤ 2(2l − 1)(l − 1)(deg h− 2),

which proves Theorem 2* (and slightly more).

Remark. In principle the method also applies to decompositions of ra-
tional functions f, g, h ∈ k(x), where by the number of terms of a rational
function we mean the maximum of the number of terms of the numerator
and denominator in a reduced fraction. However, working out such an ex-
tension, with suitable new assumptions and conclusions, seems not to be
entirely straightforward, and so we leave this out of the present note, which
is conceived just as an addendum.
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