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pj-ranks of some groups
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Christophe Delaunay (Besançon) and Frédéric Jouhet (Lyon)

1. Introduction and notation. The Cohen–Lenstra heuristics and
their generalizations to Tate–Shafarevich groups are models for formulating
conjectures related to class groups of number fields and Tate–Shafarevich
groups of elliptic curves varying in some natural families. This article deals
with the coherence of the model. More precisely, our aim is to prove that a
conjecture provided by the Cohen–Lenstra philosophy implies another such
conjecture. This work actually extends and generalizes an earlier one by
É. Fouvry and J. Klüners [FK06] which deals with class groups; we will
follow their presentation and adapt the main techniques of their proofs.

We will use the following notation. The letter d will denote a funda-
mental discriminant and C`(Kd) the class group associated to the quadratic
number field Kd = Q(

√
d). The letter p will always denote a prime num-

ber. If G is a finite abelian group, the pj-rank of G is defined by rkpj (G) =

dimFp p
j−1G/pjG. For any real valued function f defined over isomorphism

classes of finite abelian groups, we say that f(C`(Kd)) has average value
c± ∈ R if ∑

0<±d<X f(C`(Kd))∑
0<±d<X 1

= c± + o(1) as X →∞.

If f is the characteristic function of some property, then c± is called the
probability of the property (or the density of the set of the class groups
satisfying it).

The Cohen–Lenstra heuristics allow one to formulate conjectures for
the average values of f(C`(Kd)odd) for “reasonable” functions f , where
C`(Kd)odd denotes the odd part of C`(Kd). Concerning the 2-part of class
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groups, genus theory enables one to determine the structure of C`(Kd)[2].
However Gerth [Ger84, Ger87] succeeded in generalizing the Cohen–Lenstra
heuristics to the 4-part of class groups, and also obtained conjectures for
the average values of f(C`(Kd)

2) for reasonable functions f .

In particular, the above heuristics give on the one hand a prediction for
the average value of the function f(pk rkp(C`(Kd)

2)) for all k ∈ N, and on
the other hand a prediction for the probability that rkp(C`(Kd)

2) = r for
all r ∈ N (note that for odd p, rkp(C`(Kd)

2) = rkp(C`(Kd))). In [FK06],
the authors proved that the former prediction implies the latter. The aim
of this article is to generalize the results of [FK06] in two directions. First,
we will consider higher moments (including for example the average val-

ues of f(pk rkpj (C`(Kd)
2)) for all positive integers (k, j)) and probability laws

of pj-ranks for j ≥ 1. Note that our discussion about the class groups
remains true if we replace C`(Kd) by the narrow class group of Kd (see
also [FK07]). Secondly, we will obtain analogous results concerning heuris-
tics on Tate–Shafarevich groups and on Selmer groups of elliptic curves
[Del01, Del07, DJ12].

We recall for (a, q) ∈ C2 with |q| < 1 and k ∈ Z the q-shifted factorial

(a; q)k :=


1 if k = 0,

(1− a) · · · (1− aqk−1) if k > 0,

1/(1− aq−1) · · · (1− aqk) if k < 0,

and (a; q)∞ := limk→∞(a; q)k. Note that (1/p; 1/p)k = ηk(p), where ηk is
the function defined in [CL84] and used in [FK06]. We will also use the
q-binomial coefficient [

n

k

]
q

:=
(q; q)n

(q; q)k(q; q)n−k
∈ N[q].

A partition λ := (λ1 ≥ λ2 ≥ · · · ) of a nonnegative integer n is a finite
decreasing sequence of nonnegative integers whose sum is equal to n. If λ
is a partition of n, we write |λ| = n and the notation λ = 1m12m2 · · · `m`

means that mi is the multiplicity of the integer i in λ (hence, we have
n = λ1 + λ2 + · · · = |λ| = m1 + 2m2 + · · ·+ `m`). If µ := (µ1 ≥ µ2 ≥ · · · )
is a second integer partition, then we define (λ|µ) :=

∑
i λiµi (we will often

use the statistics (λ|λ) =
∑

i λ
2
i , which must not be mistaken for |λ|2 =

(
∑

i λi)
2). Finally, the notation µ ⊆ λ means that µi ≤ λi for all i ≥ 1.

Recall that a finite abelian p-group G has type λ = 1m1 · · · `m` if

G ' (Z/pZ)m1 ⊕ · · · ⊕ (Z/p`Z)m` .

If λ = 1m1 · · · `m` is an integer partition, we denote by λ′ := (λ′1 ≥ λ′2 ≥ · · · )
its conjugate defined by λ′k =

∑`
j=kmj for all k. We have |λ| = |λ′|.
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As in [DJ12], we denote by Cλ/µ(p) the number of subgroups of type µ
in a finite abelian p-group of type λ, which can be expressed by

(1.1) Cλ/µ(p) = p
∑

i≥1 µ
′
i+1(λ

′
i−µ′i)

∏
i≥1

[
λ′i − µ′i+1

λ′i − µ′i

]
p

,

showing that it is a polynomial in the variable p, with positive integral
coefficients.

In order to simplify the notations and to get a unified result (both for
p = 2 and odd primes), we write C(Kd) := C`(Kd)

2. Note that for p ≥ 3
and j ∈ N, the pj-ranks of C(Kd) and of C`(Kd) are the same.

Using the Cohen–Lenstra philosophy [CL84] and a combinatorial analy-
sis, we obtained the following conjecture [DJ12, Conjecture 1].

Conjecture 1.1. For any positive integer `, let λ = 1m12m2 · · · `m`

be an integer partition. As d varies over the set of fundamental negative
discriminants, the average of |C(Kd)[p]|m1 |C(Kd)[p

2]|m2 · · · |C(Kd)[p
`]|m` is

equal to ∑
µ⊆λ

Cλ/µ(p),

where the sum is over all integer partitions µ ⊆ λ. Similarly, as d varies
over the set of fundamental positive discriminants, the average of the product
|C(Kd)[p]|m1 |C(Kd)[p

2]|m2 · · · |C(Kd)[p
`]|m` is equal to∑

µ⊆λ
Cλ/µ(p)p−|µ|.

Concerning the probability laws of the pj-ranks rkpj (C(Kd)), the follow-
ing conjecture comes naturally from [Del11, Corollary 11].

Conjecture 1.2. Let ` be a positive integer and µ := µ1 ≥ · · · ≥ µ` ≥ 0
a partition of length `(µ) ≤ ` (i.e., µ`+1 = 0). Then, as d varies over the set
of fundamental negative discriminants, the probability that rkpj (C(Kd)) = µj
for all 1 ≤ j ≤ ` is equal to

(1/pµ`+1; 1/p)∞

pµ
2
1+···+µ2`

∏`
j=1(1/p; 1/p)µj−µj+1

.

Moreover, as d varies over the set of fundamental positive discriminants,
the probability that rkpj (C(Kd)) = µj for all 1 ≤ j ≤ ` is equal to

(1/pµ`+2; 1/p)∞

pµ
2
1+···+µ2`+(µ1+···+µ`)

∏`
j=1(1/p; 1/p)µj−µj+1

.

Little is known about these conjectures. Davenport and Heilbronn [DH71]
proved Conjecture 1.1 for p = 3 and λ = 11. In [FK07], Fouvry and Klüners
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proved Conjecture 1.1 for p = 2 (both for the class group and the narrow
class group of Kd) and any λ = 1m1 .

The conjectures mentioned in the introduction coming from the seminal
work of [CL84] and studied in [FK07, FK06] correspond to Conjecture 1.1
for λ = 1m1 and Conjecture 1.2 for ` = 1. More precisely, if λ = 1m,
Conjecture 1.1 says that the average of |C(Kd)[p]|m for imaginary (resp.
real) quadratic fields is equal to (in the notations of [DJ12])

M0(x
1n) =

n∑
k=0

[
n

k

]
p

(
resp. M1(x

1n) =
1

p

n∑
k=0

[
n

k

]
p

)
.

Those correspond to N(n, p) (resp. Mn(p)) used in [FK07, FK06]. Fouvry
and Klüners proved in [FK06] that if Conjecture 1.1 is true with λ = 1m for
all m, then Conjecture 1.2 is true with ` = 1 for all µ1 ≥ 0. We will adapt
their proof and use a result in [DJ12] to simplify one of its steps in order to
obtain the following generalization.

Theorem 1.3. Let ` be a positive integer and assume that for any
λ = 1m12m2 · · · `m`, as d varies over the set of fundamental negative discrim-
inants, the average of |C(Kd)[p]|m1 |C(Kd)[p

2]|m2 · · · |C(Kd)[p
`]|m` is equal

to
∑

µ⊆λCλ/µ(p). Then for any µ1 ≥ · · · ≥ µ` ≥ 0, as d varies over the set of

fundamental negative discriminants, the probability that rkpj (C(Kd)) = µj
for all 1 ≤ j ≤ ` is equal to

(1/pµ`+1; 1/p)∞

pµ
2
1+···+µ2`

∏`
j=1(1/p; 1/p)µj−µj+1

.

Finally, assume that for any positive integer ` and any λ = 1m1 · · · `m`,
as d varies over the set of fundamental positive discriminants, the average
of |C(Kd)[p]|m1 |C(Kd)[p

2]|m2 · · · |C(Kd)[p
`]|m` is

∑
µ⊆λCλ/µ(p)p−|µ|. Then

for any µ1 ≥ · · · ≥ µ`, as d varies over the set of fundamental positive
discriminants, the probability that rkpj (C(Kd)) = µj for all 1 ≤ j ≤ ` is
equal to

(1/pµ`+2; 1/p)∞

pµ
2
1+···+µ2`+(µ1+···+µ`)

∏`
j=1(1/p; 1/p)µj−µj+1

.

One can also adapt the Cohen–Lenstra heuristics to Tate–Shafarevich
groups of elliptic curves. If E is an elliptic curve defined over Q, we de-
note by X(E) its Tate–Shafarevich group. In this context, we assume
in this article that X(E)[p∞] is finite for all elliptic curves E/Q (which
is a classical conjecture). In that case, X(E)[p∞] is a group of type S,
i.e. it is endowed with a bilinear, alternating, nondegenerate pairing
β : X(E)[p∞]×X(E)[p∞]→ Q/Z (this notion of type S is different from
the previously mentioned groups of type λ, where λ is a partition; there will
not be any possible confusion).
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Let Fu be the family of elliptic curves E defined over Q with rank u,
ordered by their conductor, N(E) (note that one can replace in our discus-
sion Q by any other number field K). If f is a real valued function defined
over isomorphism classes of groups of type S (see [Del01, Del07]), then we
say that f(X(E)) has average value c ∈ R for E varying over Fu if∑

E∈Fu
N(E)<X

f(X(E)) = (c+ o(1))
∑
E∈Fu

N(E)<X

1 as X →∞.

If f is the characteristic function of some property, we say that c is the
probability of this property (or the density of the set of Tate–Shafarevich
groups satisfying it) for E varying over Fu. We raised the following conjec-
ture in [DJ12].

Conjecture 1.4. Let ` be a positive integer, let λ = 1m12m2 · · · `m` be a
partition and let u be a nonnegative integer. As E/Q, ordered by conductors,
varies over Fu, the average of |X(E)[p]|m1 |X(E)[p2]|m2 · · · |X(E)[p`]|m` is
equal to ∑

µ⊆λ
Cλ/µ(p2)p−|µ|(2u−1).

Concerning the probability laws of the pj-ranks rkpj (X(E)), we have
the following [Del11]:

Conjecture 1.5. Let ` be a positive integer, let µ = µ1 ≥ · · · ≥ µ`
≥ 0 be an integer partition of length `(µ) ≤ ` and let u be a nonnegative
integer. As E/Q, ordered by conductors, varies over Fu, the probability that
rkpj (X(E)) = 2µj for all 1 ≤ j ≤ ` is equal to

(1/p2u+2µ`+1; 1/p2)∞

p2(µ
2
1+···+µ2` )+(2u−1)(µ1+···+µ`)

∏`
j=1(1/p

2; 1/p2)µj−µj+1

.

As previously, very little is known about these conjectures. Bhargava
and Shankar [BS10b, BS10a] obtained several results about the average of
|S(E)p| over all elliptic curves E/Q, where S(E)p is the p-Selmer group
of E/Q. Their results, together with a strong form of the rank conjec-
ture (asserting that the rank of E is 0 or 1 with probability 1/2 each and
that elliptic curves with rank ≥ 2 do not contribute to the averages), im-
ply Conjecture 1.4 for λ = 11 and p = 2, 3. Heath-Brown [HB93, HB94],
then Swinnerton-Dyer [SD08] and Kane [Kan11] also obtained results about
S(E)2 when E varies over some families of quadratic twists. Their results,
together with a strong rank conjecture, imply Conjecture 1.4 for λ = 11 and
p = 2 for some families of quadratic twists. Furthermore, Conjecture 1.4 is
compatible with the conjecture of Poonen and Rains [PR12].

In the context of elliptic curves, we will prove the following result.
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Theorem 1.6. Let u be a nonnegative integer and let ` be a positive in-
teger. Assume that for any λ= 1m12m2 · · · `m`, asE/Q, ordered by conductors,
varies over Fu, the average of |X(E)[p]|m1 |X(E)[p2]|m2 · · · |X(E)[p`]|m`

is equal to
∑

µ⊆λCλ/µ(p2)p−|µ|(2u−1). Then for any µ1 ≥ · · · ≥ µ`, as E/Q
varies over Fu, the probability that rkpj (X(E)) = 2µj for all 1 ≤ j ≤ ` is
equal to

(1/p2u+2µ`+1; 1/p2)∞

p2(µ
2
1+···+µ2` )+(2u−1)(µ1+···+µ`)

∏`
j=1(1/p

2; 1/p2)µj−µj+1

.

Remarks. 1. In Theorem 1.3 (resp. Theorem 1.6) one can replace class
groups (resp. Tate–Shafarevich groups) by finite abelian groups (resp. groups
of type S) varying in some families. In particular, we can obtain similar
results for Selmer groups of elliptic curves (see Section 5).

2. From the laws of the pj-ranks for all j = 1, . . . , ` as in Theorems 1.3
and 1.6, one can also deduce the probability that the p`-rank is equal to some
fixed value for a single `. In this case, we recover the results and conjectures
from [Coh85] and [Del11].

3. One can also ask if it is possible to deduce the moments from the
probability laws of the pj-ranks for all j = 1, . . . , `. For this, it seems that
we need to know an error term for the probability laws and this error term
is not given by the heuristic philosophy. However, the theoretical results
of [FK07, HB93, SD08, Kan11] concern the pj-ranks of the groups studied
(with an explicit error term), from which the moments can be deduced.

2. An auxiliary analytic tool. In this section, we prove a generaliza-
tion of [FK06, Lemma 6] which will be useful later.

Lemma 2.1. Let a ∈ C with |a| > 1 and g(z) =
∑

r≥0wrz
r be an entire

function with the following properties:

• there exists an absolute constant C > 0 and α ∈ R such that for all
r ∈ N, we have |wr| ≤ Ca−r

2/2+αr;
• g(am) = 0 for all m ∈ N.

We denote by ω ∈ N ∪ {∞} the vanishing order of g at z = 0. Then, if
ω > α− 1/2, we have g ≡ 0 (i.e. ω =∞).

Proof. Let k be a nonnegative integer. For |z| = |a|k, a direct com-

putation shows that |g(z)| ≤ C ′|a|(k+α)2/2, where C ′ = C
∑

r∈Z |a|−(r−α)
2/2.

Assume that g 6≡ 0. Then [FK06, Lemma 6] gives

sup
|z|=|a|k

|g(z)| � |a|k(k+1)/2+kω.

Hence, we must have (k+α)2 ≥ k(k+ 1) + 2kω for all k ∈ N, which implies
ω ≤ α− 1/2.
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Corollary 2.2. Let ` ∈ N∗, let a ∈ C with |a| > 1 and let g(z) =∑
r wrz

r1
1 · · · z

r`
` with z = (z1, . . . , z`) ∈ C` and where the sum is over all

integer partitions r = r1 ≥ · · · ≥ r` ≥ 0. Assume that:

• |wr| ≤ Ca−(r|r)/2+α|r| for some absolute constant C and α < 3/2;
• g(am1 , . . . , am`) = 0 for all nonnegative integers m1, . . . ,m`.

If α < 1/2, then g ≡ 0 and wr = 0 for all r. If α ∈ [1/2, 3/2[ and
w0,...,0 = 0, then g ≡ 0 (therefore wr = 0 for all r).

Proof. If ` = 1, this is proved by the above lemma, since ω > α− 1/2 in
both cases under consideration. If ` ≥ 2, we fix (m2, . . . ,m`) ∈ N`−1 and set

f(z) =
∑
r1

zr1
( ∑
r1≥r2≥···≥r`

wr1,r2,...,r`a
r2m2 · · · ar`m`

)
.

Then f(z) satisfies the condition of the previous lemma since∣∣∣ ∑
r2≥···≥r`≥0

wr1,r2,...,r`a
r2m2 · · · ar`m`

∣∣∣�m2,...,m`
a−(r1|r1)/2+αr1 .

With the conditions of the corollary, we deduce that f(z) = 0, therefore for
any fixed r1 ≥ 0, we must have∑

r1≥r2≥···≥r`≥0
wr1,r2,...,r`a

r2m2 · · · ar`m` = 0

for all m2, . . . ,m`. We conclude by using the fact that when r1 is fixed,∑
r1≥r2≥···≥r`≥0

wr1,r2,...,r`z
r2
2 · · · z

r`
r

is a polynomial.

3. Class groups of number fields. We will actually prove a more
general result, displayed in Theorem 3.1 below (which clearly implies The-
orem 1.3). If K is a number field, we denote by C`(K) its class group. Let
K be a fixed set of number fields ordered by the absolute value of their dis-
criminant disc(K). If f is a real valued function defined over isomorphism
classes of finite abelian groups, then, as before, we say that f(C`(K)) has
average value c ∈ R for K varying over K if∑

K∈K
|disc(K)|<X

f(C`(K)) = (c+ o(1))
∑
K∈K

|disc(K)|<X

1 as X →∞.

As before, if f is the characteristic function of some property, we say that
c is the probability of this property (or the density of the set of the class
groups satisfying it) for K varying in K.

Theorem 3.1. Let u be a nonnegative integer and let ` be a positive
integer. Assume that for every integer partition λ = 1m12m2 · · · `m`, as
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K varies over K, the average of |C`(K)[p]|m1 · · · |C`(K)[p`]|m` is equal to∑
µ⊆λCλ/µ(p)p−u|µ|. Then for any µ1 ≥ · · · ≥ µ`, as K varies over K, the

probability that rkpj (C`(K)) = µj for all 1 ≤ j ≤ ` is equal to

(1/pu+µ`+1; 1/p)∞

pµ
2
1+···+µ2`+u(µ1+···+µ`)

∏`
j=1(1/p; 1/p)µj−µj+1

.

We generalize the proof from [FK06]. First, we will need the following
proposition.

Proposition 3.2. Let u ∈ N and ` ∈ N. For all λ = 1m12m2 · · · `m` we
have

(3.1)
∑
µ⊆λ

Cλ/µ(p)p−u|µ| = Op,`(p
(λ′|λ′)/2).

Proof. Set Cλ :=
∑

µ⊆λCλ/µ(p)p−u|µ|. The equality[
n

k

]
p

=
(p; p)n

(p; p)k(p; p)n−k
= pk(n−k)

(1/p; 1/p)n
(1/p; 1/p)k(1/p; 1/p)n−k

,

and (1/p; 1/p)∞ ≤ (1/p; 1/p)k ≤ 1, together with the expression (1.1) of the
coefficients Cλ/µ(p), imply that

Cλ ≤ C
∑
µ⊆λ

p
∑

i µ
′
i(λ
′
i−µ′i) ≤ Cp

∑
i λ
′2
i /4

∑
µ⊆λ

1

for some constant C depending only on p and ` (we used µ′i(λ
′
i−µ′i) ≤ λ′2i /4

for all 0 ≤ µ′i ≤ λ′i, noting that µ ⊆ λ if and only if µ′ ⊆ λ′). Now, since
` is fixed, the number of subpartitions µ ⊆ λ is certainly bounded by the
product (λ1 + 1)(λ2 + 1) · · · (λ` + 1). By the arithmetico-geometric mean
inequality, we obtain ∑

µ⊆λ
1 ≤

(
1 +
|λ|
`

)`
= O`(|λ|`).

Finally, we have Cλ = Op,`(p
(λ′|λ′)/4|λ|`) = Op,`(p

(λ′|λ′)/2).

Remark. As can be seen in the proof of the above proposition, we have
the more precise upper bound Cλ = Op,`(p

(λ′|λ′)/4|λ|`). Nevertheless, the
upper bound given in the proposition will be sufficient for our application.

Proof of Theorem 3.1. For X ≥ 1 and r := r1 ≥ · · · ≥ r` ≥ 0, set

N(X) := |{K ∈ K : |disc(K)| ≤ X}|,
N(X, r) := |{K ∈ K : |disc(K)| ≤ X,

rkpi(C`(K)) = ri for all i = 1, . . . , `}|.
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For every λ = 1m12m2 · · · `m` , Theorem 3.1 implies that

(3.2)∑
r

N(X, r)

N(X)
pm1r1+m2(r1+r2)+···+m`(r1+···+r`) =

∑
µ⊆λ

Cλ/µ(p)p−|µ|u + oλ(1),

where the sum on the left is over all integer partitions r = r1 ≥ · · · ≥ r` ≥ 0.
Note that m1r1 + m2(r1 + r2) + · · · + m`(r1 + · · · + r`) = (λ′|r). Hence,
equation (3.2) can be written as

(3.3)
∑
r

N(X, r)

N(X)
p(λ
′|r) =

∑
µ⊆λ

Cλ/µ(p)p−|µ|u + oλ(1) (X →∞).

For each integer partition r, the sequence n 7→ N(n, r)/N(n) is a real se-
quence in the compact set [0, 1]. We deduce that there exists a real number
dr ∈ [0, 1] and an infinite subset M of N such that

N(m, r)/N(m)→ dr (m ∈M, m→∞).

Replacing mi by 2mi + 1, we see from (3.2) and Proposition 3.2 that

(3.4)
N(X, r)

N(X)
�λ p

−(2m1+1)r1−(2m2+1)(r1+r2)−···−(2m`+1)(r1+···+r`),

uniformly in X and r, from which we deduce that∑
r

N(m, r)

N(m)
p(λ
′|r) = Oλ(1).

Hence by Lebesgue’s Dominated Convergence Theorem we have∑
r

drp
(λ′|r) =

∑
µ⊆λ

Cλ/µ(p)p−|µ|u.

If we consider the infinite multi-dimensional system

(S)
∑
r

xrp
(λ′|r) =

∑
µ⊆λ

Cλ/µ(p)p−|µ|u for all λ = 1m12m2 · · · `m` ,

where the unknowns are xr ≥ 0, then (dr)r is a solution of (S). We already
know that

xµ =
(1/pµ`+u+1; 1/p)∞

pµ
2
1+···+µ2`+u(µ1+···+µ`)

∏`
j=1(1/p; 1/p)µj−µj+1

gives a solution (xµ)µ (see [DJ12, Theorem 14 or the equality just before]).
Therefore we need to prove that there exists at most one solution to the
system.

Let (xr)r be a solution of (S). Since λ 7→ λ′ is a bijection, the system is
equivalent to ∑

r

xrp
(λ|r) = Cλ′ for all λ,
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where Cλ′(p) =
∑

µ⊆λ′ Cλ′/µ(p)p−|µ|u = O(p(λ|λ)/2) by Proposition 3.2. From

xr ≥ 0, we deduce xr = O(p−(λ|r)+(λ|λ)/2), so when λ = r, we get

0 ≤ xr ≤ c0p−(r|r)/2

for some absolute constant c0. Now, if (x′r)r is another solution of (S), then
setting wr = xr − x′r, we have a function

(3.5) f(z) = f(z1, . . . , z`) =
∑
r

wrz
r1
1 · · · z

r`
`

satisfying f(z) = 0 if z1 = pm1 , . . . , z` = pm` for all m1, . . . ,m` ∈ N, and

|wr| ≤ 2c0p
−(r|r)/2.

Thus we can apply Corollary 2.2 to conclude that xr = x′r. So, as X →∞,
the sequence N(X, r)/N(X) has only one limit point, which is dr = xr.

Corollary 3.3. Let u be a nonnegative integer and let ` be a positive
integer. Assume that for every integer partition λ = 1m12m2 · · · `m`, as K
varies over K, the average of |C`(K)[p]|m1 |C`(K)[p2]|m2 · · · |C`(K)[p`]|m` is
equal to

∑
µ⊆λCλ/µ(p)p−u|µ|. Then for k ∈ N, as K varies over K, the

probability that rkp`(C`(K)) = k is equal to

(1/pu+k+1; 1/p)∞

(1/p; 1/p)kp`k(u+k)
Q1/p,`,1

(
1

p2k+u−1

)
,

where Qq,`,1(x) :=
∑
n≥0

(−1)nx`nqn(n+1)(2`+1)/2−n(1− xq2n+1)

(q; q)n(xqn+1; q)∞
.

The series Qq,`,k(x) was defined by Andrews (see [And74]). The formula
of the above corollary is the u-probability that the p`-rank of a finite abelian
p-group is equal to k, as obtained in [Coh85] (note that we use the definition
of u-averages and u-probabilities of that article).

Proof of Corollary 3.3. We define N(X) and N(X, r) as before. More-
over, set

N(X, `, k) = |{K ∈ K : |disc(K)| ≤ X and rkp`(C`(K)) = k}|.
We have

(3.6)
N(X, `, k)

N(X)
=

∑
µ1≥···≥µ`−1≥k

N(X,µ)

N(X)
,

where the sum is over integer partitions µ = µ1 ≥ · · · ≥ µ`−1 ≥ µ` = k. By
the assumptions and Theorem 3.1, we have

lim
X→∞

N(X,µ)

N(X)
=

(1/pu+µ`+1; 1/p)∞

pµ
2
1+···+µ2`+u(µ1+···+µ`)

∏`
j=1(1/p; 1/p)µj−µj+1

.
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In (3.6) we take the limit as X →∞ and use Lebesgue’s Dominated Conver-
gence Theorem (with (3.4)) to deduce that the probability that rkp`(C`(K))
= k is equal to∑
µ1≥···≥µ`−1≥µ`=k

(1/pu+µ`+1; 1/p)∞

pµ
2
1+···+µ2`+u(µ1+···+µ`)

∏`
j=1(1/p; 1/p)µj−µj+1

=
(1/pu+k+1; 1/p)∞

p`k(u+k)(1/p; 1/p)k

∑
µ1≥···≥µ`−1≥0

(1/p)µ
2
1+···+µ2`−1+(u+2k)(µ1+···+µ`−1)∏`−1
j=1(1/p; 1/p)µj−µj+1

,

the equality being derived by shifting all indices by k. Now, from [Del11, Pro-
position 13] (or [And74, eq. (2.5)]), the last sum is exactly

Q1/p,`,1

(
1

p2k+u−1

)
,

as expected (note that Qq,1,1(x) = 1).

4. Tate–Shafarevich groups of elliptic curves. In this section, we
prove Theorem 1.6. We follow the previous proof. We just need an upper
bound for the coefficients

∑
µ⊆λCλ/µ(p2)p−|µ|(2u−1), which is given in the

following result.

Proposition 4.1. Let u ∈ N and ` ∈ N∗. For all λ = 1m1 · · · `m`, we
have ∑

µ⊆λ
Cλ/µ(p2)p−|µ|(2u−1) = Op,`(p

(λ′|λ′)).

Proof. We have∑
µ⊆λ

Cλ/µ(p2)p−|µ|(2u−1) =
∑
µ⊆λ

p2(
∑

i µ
′
i+1(λ

′
i−µ′i))

∏
i

[
λ′i − µ′i+1

λ′i − µ′i

]
p2
p−|µ|(2u−1)

≤ p|λ|
∑
µ⊆λ

p2(
∑

i µ
′
i+1(λ

′
i−µ′i))

∏
i

[
λ′i − µ′i+1

λ′i − µ′i

]
p2
.

Using the same method as in the proof of Proposition 3.2, we obtain

(4.1)
∑
µ⊆λ

Cλ/µ(p2)p−|µ|(2u−1) = Op,`(p
(λ′|λ′)/2+|λ||λ|`),

which implies the upper bound given in the proposition.

Proof of Theorem 1.6. For r := r1 ≥ · · · ≥ r` ≥ 0, we denote by 2r the
integer partition 2r := 2r1 ≥ · · · ≥ 2r`. For X ≥ 1, set

N(X) := |{E ∈ F : NE ≤ X}|,
N(X, r) := |{E ∈ F : NE ≤ X and rkpi(X(E)) = ri for all i = 1, . . . , `}|.
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Note that since X(E) is a group of type S, rkpj (X(E)) must be even.
Hence if one of the rj ’s is odd, then N(X, r) = 0 for all X. So, for any
λ = 1m12m2 · · · `m` , the assertion of Theorem 1.6 implies that

(4.2)
∑
r

N(X, 2r)

N(X)
p(λ
′|2r) =

∑
µ⊆λ

Cλ/µ(p2)p−|µ|(2u−1) + oλ(1),

where the sum is over all integer partitions r = r1 ≥ · · · ≥ r`. As before,
we will prove that the sequence N(X, 2r)/N(X) has only one limit point as
X →∞. We are led to consider the system

(T)
∑
r

x2rp
(λ′|2r) =

∑
µ⊆λ

Cλ/µ(p2)p−|µ|(2u−1) for all λ = 1m12m2 · · · `m` ,

where the unknowns are x2r ≥ 0. If e2r is a limit point of N(X, 2r)/N(X),
then (e2r)r is a solution of (T). We already know that

x2µ =
(1/p2u+2µ`+1; 1/p2)∞

p2(µ
2
1+···+µ2` )+(2u−1)(µ1+···+µ`)

∏`
j=1(1/p

2; 1/p2)µj−µj+1

yields a solution (x2µ)µ (see [DJ12, Remark after Theorem 14]). If (x2r)r is
a solution of (T), then∑

r

x2rp
2(λ|r) =

∑
µ⊆λ

Cλ′/µ(p2)p−|µ|(2u−1) for all λ,

where
∑

µ⊆λCλ′/µ(p2)p−|µ|(2u−1) = O(p(λ|λ)), from which we deduce

x2r � p(r|r)−2(r|r) � p−(r|r) = (p2)−(r|r)/2.

Therefore Corollary 2.2 with a = p2 gives the unicity.

Corollary 4.2. Let u be a nonnegative integer and let ` be a pos-
itive integer. Assume that for any λ = 1m12m2 · · · `m`, as E/Q, ordered
by conductors, varies over Fu, the average of |X(E)[p]|m1 |X(E)[p2]|m2 · · ·
|X(E)[p`]|m` is equal to

∑
µ⊆λCλ/µ(p2)p−|µ|(2u−1). Then for k ∈ N, as E/Q

varies over Fu, the probability that rkp`(X(E)) = 2k is equal to

(1/p2u+2k+1; 1/p2)∞

(1/p2; 1p2)kp`k(2u+2k−1) Q1/p2,`,1(1/p
4k+2u−3).

Proof. We proceed as in the proof of Corollary 3.3.

The formula in the above corollary is the u-probability that the p`-rank
of a finite abelian p-group of type S is equal to 2k, as obtained in [Del11].

5. Selmer groups of elliptic curves. In the proof of Theorem 1.6, it
is essential that X(E) is a group of type S and rkpj (X(E)) is even, since
on the left hand side of (4.2) the sum involves partitions with only even
parts µj . Nevertheless, one can ask what should be the pj-rank probability
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laws for other families of groups if we assume that their moments are given
as in Conjecture 1.4. This question can be naturally asked in particular for
Selmer groups of elliptic curves (or more precisely for the p-primary parts of
the Selmer groups). If E is an elliptic curve defined over Q, then we denote
by S(E) the p-primary part of its Selmer group. It is the inductive limit of
the pn-Selmer group S(E)pn of E:

S(E) = lim−→S(E)pn .

We have the exact sequence

0→ E(Q)⊗Qp/Zp → S(E)→X(E)[p∞]→ 0,

which can be seen as the limit of

0→ E(Q)/pnE(Q)→ S(E)pn →X(E)[pn]→ 0.

We assume for simplicity that E(Q)tors is trivial: this is not a restriction
since we are considering averaging over elliptic curves, and on average, el-
liptic curves have trivial rational torsion. The Selmer group S(E) can be an
infinite group, nevertheless its subgroup of pn-torsion points is finite and we
have

S(E)[pn] = S(E)pn .

We define the pj-rank of S(E) by rkpj (S(E)) = rkpj (S(E)[pj ]). Note that

rkpj (S(E)) = rkpj (S(E)[pk]) for all k ≥ j.
Since X[p∞] is finite by assumption, we have S(E) ' (Qp/Zp)r(E), where

r(E) is the rank of the Mordell–Weil group E(Q) and

rkpj (S(E)) = r(E) for pj large enough.

Furthermore,

rkpj (S(E)) ≡ r(E) (mod 2),

so the parities of rkpj (S(E)) are determined by the parity of r(E).

If ` is a positive integer and λ = 1m12m2 · · · `m` is an integer partition,
then

|S(E)[p]|m1 |S(E)[p2]|m2 · · · |S(E)[p`]|m`

is meaningful and we can consider the average value of this function as E
varies over a family of elliptic curves. The work of [PR12] suggests that the
p-Selmer groups should behave in a “global” way independently of the rank
of E (except for the parity of the p-ranks). From [DJ12], we can extract the
following conjecture.

Conjecture 5.1. Let ` be a positive integer and let λ = 1m12m2 · · · `m`

be an integer partition. As E/Q, ordered by conductors, varies over
all elliptic curves, the average of |S(E)[p]|m1 |S(E)[p2]|m2 · · · |S(E)[p`]|m` is
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equal to ∑
µ⊆λ

Cλ/µ(p2)p|µ|.

If ` = 1, this conjecture is originally due to Poonen and Rains [PR12],
where they use a completely different model for Selmer groups.

Proposition 5.2. Let ` be a positive integer and let δ ∈ {0, 1}. Assume
that for any partition λ = 1m12m2 · · · `m`, the average of

|S(E)[p]|m1 |S(E)[p2]|m2 · · · |S(E)[p`]|m`

is equal to
∑

µ⊆λCλ/µ(p2)p|µ| as E/Q, ordered by conductors, varies over

a family F of elliptic curves, and assuming that the even (resp. odd) rank
elliptic curves in F contribute in a ratio α (resp. 1 − α). Then, for all
µ1 ≥ · · · ≥ µ`, as E/Q varies over F, the probability that rkpj (S(E)) =
2µj + δ for all 1 ≤ j ≤ ` is equal to

(δ(1− α) + α(1− δ)) (1/p2δ+2µ`+1; 1/p2)∞

p2(µ
2
1+···+µ2` )+(2δ−1)(µ1+···+µ`)

∏`
j=1(1/p

2; 1/p2)µj−µj+1

.

Proof. For X ≥ 1 and r = r1 ≥ · · · ≥ r` ≥ 0, set as before

N(X) := |{E ∈ F : NE ≤ X}|,
N(X, r) := |{E ∈ F : NE ≤ X and rkpi(S(E)) = ri for all i = 1, . . . , `}|.

Let λ = 1m12m2 · · · `m` be an integer partition. Since the rkpj (S(E))’s all
have the same parity for j ∈ N, and by the assumptions of the proposition,
we have ∑

r

N(X, 2r)

N(X)
p(λ
′|2r) = α

∑
µ⊆λ

Cλ/µ(p2)p|µ| + oλ(1),

∑
r

N(X, 2r + 1)

N(X)
p(λ
′|2r+1) = (1− α)

∑
µ⊆λ

Cλ/µ(p2)p|µ| + oλ(1).

For δ ∈ {0, 1}, set

(5.1) e2µ+δ =
(1/p2δ+2µ`+1; 1/p2)∞

p2(µ
2
1+···+µ2` )+(2δ−1)(µ1+···+µ`)

∏`
j=1(1/p

2; 1/p2)µj−µj+1

.

Thus for δ = 0, we recover e2µ which was defined in the previous section,
where we already saw that∑

r

αe2rp
(λ′|2r) = α

∑
µ⊆λ

Cλ/µ(p2)p|µ|,

that (αe2r)r is the only solution of the above system, and N(X, 2r)/N(X)
→ e2r as X →∞.
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Now, by the same arguments as before, there exists a unique solution to
the system

(T′)
∑
r

(x2r+1p
(λ′|2r+1)) = (1− α)

∑
µ⊆λ

Cλ/µ(p2)p|µ|

for all λ = 1m12m2 · · · `m` ,

where the unknowns are x2r+1. Furthermore x2r+1 = (1 − α)e2r+1 yields a
solution (x2r+1)r of (T′). Indeed, by [DJ12, Remark after Theorem 14],∑

r

e2r+1p
(λ′|2r+1) = p|λ

′|
∑
r

e2r+1p
(λ′|2r) = p|λ|

∑
µ⊆λ

Cλ/µ(p2)p−|µ|,

and moreover by [DJ12, Theorem 1],

p|λ|
∑
µ⊆λ

Cλ/µ(p2)p−|µ| =
∑
µ⊆λ

Cλ/µ(p2)p|µ|.

Finally, N(X, 2r + 1)/N(X)→ e2r+1 as X →∞.

Now, adapting the proof of Corollary 3.3, we have the following result.

Corollary 5.3. Let ` be a positive integer and let δ ∈ {0, 1}. Assume
that for every λ = 1m12m2 · · · `m` the average of

|S(E)[p]|m1 |S(E)[p2]|m2 · · · |S(E)[p`]|m`

is equal to
∑

µ⊆λCλ/µ(p2)p|µ|, as E/Q, ordered by conductors, varies over

a family F of elliptic curves, and assuming that the even (resp. odd) rank
elliptic curves in F contribute in a ratio α (resp. 1 − α). Then, for k ∈ N,
the probability that rkp`(S(E)) = 2k + δ is equal to

(δ(1− α) + α(1− δ)) (1/p2k+2δ+1; 1/p2)∞

(1/p2; 1/p2)kp`k(2k+2δ−1)Q1/p2,`,1(1/p
4k+2δ−3).

The value of α can of course be 6= 1/2. Furthermore, even in the case
of a family of quadratic twists of an elliptic curve E defined over a number
field K, it is possible to have α 6= 1/2 (see [KMR13a]; in that case we have
K 6= Q).

If we consider the family of all elliptic curves, then a general conjecture
states that α = 1/2, which leads to the following:

Conjecture 5.4. Let ` be a positive integer and let k ∈ N and
δ ∈ {0, 1}. Then, as E/Q, ordered by conductors, varies over all elliptic
curves, the probability that rkp`(S(E)) = 2k + δ is equal to

f(p, `, 2k + δ) :=
1

2

(1/p2k+2δ+1; 1/p2)∞

(1/p2; 1/p2)kp`k(2k+2δ−1)Q1/p2,`,1(1/p
4k+2δ−3).
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For ` = 1, we recover the conjectural distribution XSelp of [PR12] and
the proved distribution of Sel2 in [HB93, HB94, Kan11, SD08, KMR13b] for
some families of quadratic twists of an elliptic curve.

The conjectural distribution on the pj-rank of the Selmer groups given
above is of course compatible with the rank conjecture. Indeed, note that
Qq,∞,1(x) = 1/(xq2; q)∞, from which we easily deduce that

lim
`→∞

f(p, `, 2k + δ) =

{
0 if k ≥ 1,

1/2 if k = 0.

Since for ` large enough, rkp`(S(E)) = r(E), we recover the fact that, on
average, half of the elliptic curves should have rank 0 and half of the elliptic
curves should have rank 1. On the other hand, if we assume Conjecture 5.1
for ` = 1 for infinitely many primes p with α = 1/2, then we also recover
the previous distribution for the rank of E(Q), since

lim
p→∞

f(p, 1, 2k + δ) =

{
0 if k ≥ 1,

1/2 if k = 0.

We give some numerical approximations for the function f(p, `, 2k + δ)
for p = 2, 3, 5 and for small values of ` and of 2k+ δ in the following tables.

p = 2 p = 3

2k + δ \ ` 1 2 3

0 0.2097 0.3541 0.4271

1 0.4194 0.4899 0.4987

2 0.2796 0.1456 0.0729

3 0.0798 0.1009 0.0012

2k + δ \ ` 1 2 3

0 0.3195 0.4398 0.4799

1 0.4792 0.4992 0.4999

2 0.1797 0.0601 0.0201

3 0.0207 0.0007 2 · 10−5

p = 5

2k + δ \ ` 1 2 3

0 0.3966 0.4793 0.4959

1 0.4958 0.4999 0.4999

2 0.1033 0.0207 0.0041

3 0.0042 3 · 10−5 2 · 10−7

Remark. As pointed out by the referee, we can also use our techniques
for some other situations and in particular the one in the paper [FK10].
There, Fouvry and Klüners studied the class groups and the narrow class
groups of quadratic number fields with some restrictions on the discrimi-
nants. Set

D = {d > 0 fund. disc. : p | d⇒ p ≡ 1 or 2 (mod 4)},
and for X ∈ R, write D(X) = D ∩ [1, X]. Denote by NC(Kd) the narrow
class group of Kd. In [FK10, Theorem 3], the authors proved for all m ≥ 0



Cohen–Lenstra heuristics 261

the following result on the moments of the 4-rank of NC(Kd) (i.e. the 2-rank
of NC(Kd)

2):

(5.2) lim
X→∞

1

|D(X)|
∑

d∈D(X)

2m rk4(NC(Kd)) =
m−1∏
k=0

(1 + 2k),

where the empty product is equal to 1 (moreover, with our notations we have
p = 2, ` = 1, and λ = 1m). They deduced that the probability of having
rk4(NC(Kd)) = r is equal to α∞(r) :=

∏
j≥1(1 + 2−j)−1/

∏r
j=1(2

j − 1)
([FK10, Corollary 2]). One can recover the probability law from (5.2) with
our results. Indeed, if we look at the equation

(5.3)
∑
j≥0

ẽj2
mj =

m−1∏
k=0

(1 + 2k),

then we set ẽj = 2−jej (where the ej ’s are defined in (5.1), with the raw
partition µ = (j) and p = 2). Using for δ ∈ {0, 1} the formula∑

j≥0
e2j+δ2

m(2j+δ) =
∑
µ⊆1m

C1m/µ(22)2|µ| =

m∏
k=1

(1 + 2k),

we deduce that ẽj is a solution of (5.3). Hence, the probability of having
rk4(NC(Kd)) = r is equal to 2−rer, which is exactly α∞(r). The article
[FK10] contains other results on (mixed) moments involving narrow class
groups and classical class groups. Our study could be used to consider (at
least conjecturally) higher and mixed moments with pj-ranks in more gen-
erality. This will be done in a forthcoming publication.

6. Remark on the uniqueness of the solution. In our study relat-
ing to Tate–Shafarevich groups, we were led to consider and to discuss the
unicity of the solution of the following infinite multi-dimensional system

(U)
∑
r

xrp
(λ|r) =

∑
µ⊆λ′

Cλ′/µ(p2)p−|µ|(2u−1) for all λ = 1m12m2 · · · `m` ,

where the unknowns are xr ≥ 0. We only considered solutions (xr)r such
that xr = 0 if in r = r1 ≥ · · · ≥ r` at least one of the rj ’s does not have the
same parity as r1. In that case, the term p(λ|r) involved in the sum is of the
form p(λ|2r+δ), and the factor 2 allowed an asymptotic 0 ≤ x2r+δ � p(−r|r)/2

which implied the unicity of the solution. One can ask about the unicity
of the solution without the assumption that the partitions involved in the
system have parts with the same parity.

Let µ ∈ R, and for a partition r define

yr(µ) =


µer if r is even,

(1− µ)er if r is odd,

0 otherwise.
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Then yr(µ) is a solution of equation (U). If xr ≥ 0 is a solution of (U) then,
using (4.1), we see that for any fixed α > 1, we have

0 ≤ xr � p−(r|r)/2+α|r|

for all r. Now, if we let wr = xr − yr(x0,...,0) then it is easy to see that also

|wr| � p−(r|r)/2+α|r|

(wr is not necessarily nonnegative), and the function g(z) =
∑

r wrz
r1
1 · · · z

r`
`

satisfies the hypothesis of Corollary 2.2 with α ∈ ]1, 3/2[ and with w0,...,0 = 0.
Hence wr = 0 for all r and xr = yr(x0,...,0). We deduce the following propo-
sition.

Proposition 6.1. If xr ≥ 0 is a solution of (U) then xr = yr(µ) for
some µ. In particular, xr = 0 if r is not an even or odd partition.

It would be interesting to study the (uniqueness of the) solutions of (U)
if we do not assume that xr ≥ 0.

Acknowledgments. The authors thank the anonymous referee for
his/her comments and remarks.
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