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Sequences with bounded l.c.m. of each pair of terms, II1
by

YONG-GAO CHEN and Li1-X1A DAl (Nanjing)

1. Introduction. Let A, be a set of positive integers with the least
common multiple of each pair of terms not exceeding = and |A,| being
the largest. In 1951, P. Erdés [5] (see also Guy [7]) proposed the following
problem: what is the value of |A;|? It is known that

\/?Jr O(1) < |4, < Viz + O(1).

For a proof see Erdds [6]. Choi [2] improved the upper bound to 1.638+/x,
and later [3] to 1.43,/z. Let B, be the union of the set of positive integers
not, exceeding /x/2 and the set of even integers between /x/2 and v/2z.
It is clear that the least common multiple of each pair of terms of B, does
not exceed x. By calculation we have

|B,| = \/?+ o).

Chen [1] gave an asymptotic formula for |A;| and showed that A, is almost
the same as B, namely

|Az \ Bz| = 0(\/5)-

In particular,

|Ax’ = |B:L’| + O(\/E) = \/g"i_ 0(\/5)

Dai and Chen [4] gave an explicit bound of the remainder for |A;|:

/9
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9
—2<R(z)</sx+45 ? log log x.
8 log

On the other hand, it is natural to ask whether R(z) = O(1).
Let C; be a set of positive integers with the least common multiple of
each pair of terms not exceeding x, B, C C, and |C;| being the largest.

Write

where

|Ca| = | Ba| + Ra(x).
If a € Cy \ By, then a ¢ B, and [a, k] < x for all positive integers k not
exceeding /2 /2 and all even integers k between /x/2 and v/2z. Intuitively,
this seems impossible for sufficiently large x. A more interesting question is
whether R;(z) = O(1).
For any positive real number x we define the function locx to be the
nonnegative integer r with

0 <loglog---logz < 1.
—_———

In this paper the following results are proved.
THEOREM 1.

(i) Ri(z) = 0 for infinitely many positive integers x;
(ii) Ri(z) > locx — 2 for infinitely many positive integers x.

From Theorem 1 we have immediately
COROLLARY 1. R(z) > locx — 2 for infinitely many positive integers x.

In order to study the properties of Rj(x), we introduce the following
notation.

DEFINITION. Let u be a positive real number. Two positive integers s, t
are u-compromise if there exist primes p; (i = 0,1,...,[us]) and primes g;
(7 =0,1,...,[ut]) such that

pils+i, i=0,1,...,[us],
gilt+j4, j=0,1,...,[ut],
and p; | s —t when p; is equal to one of g; (0 <14 < [us], 0 < j < [ut]).

It is clear that if s, ¢ are u-compromise, then they are also v-compromise

for any 0 < v < u.

THEOREM 2. If there are three real numbers 0 < u < 1,7 >0,T >0
and a positive integer r such that for any two u-compromise integers s,t
with t > s > T we always have

loglog---logt > loglog---log s + T,

T s
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then
Ri(x) = O(loglog - - -log x).
—_——
r+1
COROLLARY 2. Ri(z) = O(loglogx).
THEOREM 3. If there are two real numbers 0 < u < 1, T > 0 and

a positive integer v such that for any two u-compromise integers s,t with
t>s>T we always have

1
loglog---logt > §loglog---logs,

T r—1
then
Ri(z) <2locx + O(1).
We pose the following problems.

PROBLEM 1. Given any positive integer r, are there three real numbers
0<u<l,7>0andT >0 such that for any two u-compromise integers
s,t witht > s > T we always have

loglog---logt > loglog---logs+ 717

T T

It is easy to prove that Problem 1 is true for » = 1 (see the proof of
Lemma 4 in the next section).

PROBLEM 2. Are there two real numbers 0 < u < 1, T > 0 and a positive
integer r such that for any two u-compromise integers s,t with t > s > T
we always have

1
loglog---logt > §loglog---logs?

r r—1

It is clear that Problem 2 is stronger than Problem 1.

2. Proof of theorems

LEMMA 1. Let q be a prime with 3 < q < \/x/2 and 4q(q — 2) > z.
Then

C, C{2A|1eN, 1<z/2q)}U{l|leN, I <a/(2q), 211},

Proof. Let a € Cy. Since q < \/x/2, we have ¢ < x/(2¢). Thus we need
only consider a # ¢, 2q. Since 2¢,2(q¢ — 1),2(q — 2) € B, C C,, we have

[a,2q] <z, [a,2(q—1)] <z, [a,2(¢q—2)] <.
CASE 1: 2ta and g1 a. As 2aq = [a,2q] < x we have a < z/(2q).
CASE 2: 2|a and g1 a. As aq = [a,2q] < z we have a/2 < z/(2q).
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CASE 3: q|a. Let a = qbt, where t =1 if 24 a and ¢ = 2 if 2|a. Then
[a,2(¢ = 1)] = [gbt, 2(q — 1)] = 2q[b,q — 1],
[a,2(q — 2)] = [qbt, 2(q — 2)] = 2q[b,q — 2].
Since a # ¢,2q, we have b > 1. Hence either [b,q — 1] # ¢ — 1 or [b,q — 2] #
q — 2. Thus
max{[a” 2(q - 1)]’ [a” 2(q - 2)]} > 4Q(q - 2) >,
a contradiction. This completes the proof of Lemma 1.

LEMMA 2. Let u be a real number with 0 < u < 1, k be an integer with
kE<+\/x/2<k+1 and s be an integer such that

4 1 1—u

+-<s< k
l—u wu U
and either k+s € C, with 2 1 k+ s or 2(k + s) € C,. Then there exist
primes p; (i =0,1,...,[us]) such that

pi|5+i7 pz|k+5, 7::0717""[“5]'
Proof. Let a = k+sif k+s € Cy with 21 k+s, otherwise let a = 2(k+s).
Let i be an integer with 0 < i < ws. Then 2(k — i) € B, C C,. Hence
[a,2(k — )] < x. Since

1o oty
l—u u 2u
we have
st 2
(1—-w)? 1-wu
Hence
) 4 1 4u
2(k‘+s)(k¢—z)22(k+s)(k:—us)>2<k‘—l—1_u+a)(kz—1_u—1)
> 2(k4+1)? > z.
Noting that [a,2(k — )] < z and
» . 2(k+s)(k—1)
[a,2(kz—z)]:2[/€+s,k—z]:m,

we have (k + s,k —i) > 1. Thus (k + s,s + i) > 1. Therefore, for each i
with 0 < i < us we may choose a prime p; with p; | k + s and p; | s + . This
completes the proof of Lemma 2.

LEMMA 3. Let s be a positive integer and k be an integer with k <
Va/2 < k+ 1. Then s = O(logz) if k+s € Cy with 2 1 k+ s or if
2(k+s) € Cy.

Proof. By a result on the distribution of primes and Lemma 1 we have
§ = O(xe), where 6 is a positive constant with § < 1/2, for example we can
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take = 7/24 (see Huxley [8]). Thus we may assume that 10 < s < k/2. By
Lemma 2 there exist primes p; (i =0,1,...,[s/2]) such that

pZ‘S—F’L, pz‘k—i_sa 2:07177[8/2]

H p‘k—i—s

s<p<3s/2

Thus

and so
H p<k+s<uz,
s<p<3s/2
where the product is taken over all primes p in the interval [s, 3s/2]. There-
fore s = O(log z). This completes the proof of Lemma 3.

LEMMA 4. Let k be an integer with k < \/z/2 < k+ 1 and s,t be two
integers with 10 < s <t < k/2 such that either k+ s € C, with 21k + s or
2(k+s) € Cy, and either k+t € Cp with2tk+1t or 2(k+1t) € Cy. Then
t > 5s/4 for s > M, where M is a positive constant.

Proof. By the proof of Lemma 3 we have

H plk+s, H p|k+t.

s<p<3s/2 t<p<3t/2
Hence
H p ‘ t—s.
t<p<3s/2
Thus
H p<t—s.
t<p<3s/2
If t < 5s/4, then
H p < s/4.
5s/4<p<3s/2

This cannot hold for s large enough. This completes the proof of Lemma 4.
LEMMA 5. For any positive integer m we have
m+ [[ p<2®™
p<m

where the product is taken over all primes p less than m.

Proof. We use induction on m. It is easy to verify the assertion for m < 5.
Suppose that it is true for all positive integers less than m. If m > 6, then

m/2l+1+ [[ p<28mEE
p<[m/2]+1
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Since
m
m + | | p<m+ ( > < 2™,
(m/2)+1<p< [m/2]
m p<m

we have
m+ H p S 23[m/2}+3+m S 23m.
p<m

This completes the proof of Lemma 5.

Proof of Theorem 1

(i) Take z = 2¢?, where ¢ is an odd prime. By Lemma 1 we have
Cz \ B = 0. Hence Ry (z) = 0.
(ii) Let d; = 2 and

dn+1:dn+ H b, 77,21,2,...,
p<2dy—1

where the product is taken over all primes p less than 2d,, — 1. Then 2|d,
for all n > 1. Let

kn = —dn + H P, xn:Qki, n=12....
p<2dn—1

By Bertrand’s postulate and 2| d,, we have
(1) kp > —dp + %dn(dn +1)>3d,, n>2.
From (1) and k1 = 4, dy = 2, z1 = 32, we have k, +d,, <z, (n > 1). It is
clear that
By, ={2h |1 <h<kp, heZ}U{l|1<I<k, l€Z, 211}
Now we show that [a,b] < z,, for any
a,b € By, U{2(k, +di1), 2(kn + d2),...,2(k, +dp)}.

It is clear for n = 1. Now we assume that n > 2.

CASE 1: a,b € {2(ky, + d1),2(kn + d2),...,2(k, +dpn)}. Let

a=2(k,+d;), b=2(k,+d;).

From 2|d;, 2|d;, 2|k, and (1) we have

1
[a,b] < (kp 4 d;)(kn + d;) < §6 k2 < xp.

CASE 2: a = 2(k, +d;) (1 < i <n)and b €
generality, we may assume that b € {2h | 1 < h
b= 2(/{” - j)

If j > d;, then [a,b] < Jab < 2(k2 — d?) < 2k2 < z.

B,,. Without loss of
< kyn, h € Z}. Write
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If 0 <j <d;—1,let p be a prime with p|d; + j; then p < 2d; — 1. Hence

kn=—-d,=—-dp—1=---=—d; =j (modp).
Thus
(2) (a,b) = 2(kp + di, kn — j) > 2p.
By (1) and (2) we have
la,b] = _ab_ < iabg (kn + di)(ky — j) < ﬁki < .
(a,b) = 2p 3

Therefore [a,b] < x,, for any
a,b € By, U{2(kn +d1), 2(kn +d2),...,2(kn +dpn)}.

To complete the proof, it is enough to prove that n > locz, — 2. By
Lemma 5 we have d; 1 < 25% (i > 1). Thus logd; 41 < 5d; (i > 1). Hence

log z, =log2 + 2logk, <log2+ 2logd,1 < 11d,,
loglogx, <logll +logd, < 7d,_1.
Continuing this procedure, we have
loglog - --logzy, < Tdpt1—i-
_i,_z
Since loc(7d;) = 2, we have locz, < n + 2. This completes the proof of
Theorem 1.

Proof of Theorem 2. Assume that x is large enough. Without loss of
generality, we may assume that

loglog - --logT > 0.
—_——

Let k be an integer with k& < \/x/2 < k + 1 and let ¢y,..., be positive
integers with

1
max{T, +—}<t1<~-<tl
1—u  wu

and either k+t; € C, with 21 k+t; or 2(k+t;) € Cp (1 <i <1). By Lemma
3 we have t; = O(logx). Hence we may assume that ¢; < (1 — u)k/(2u).
By Lemma 2 and the definition of w-compromise we see that t;,¢;11 are
u-compromise (1 <7 <[ —1). Hence
loglog---logtiy1 > loglog---logt; +7, 1<i<I[l-—1.
_T/_/ %’F,—/
Thus
loglog---logt; > loglog---logt; + (I — )7 > (I — 1)7.

T s



132 Y. G. Chen and L. X. Dai

Noting that t; = O(logx), we have

Il =O(loglog---logx).

—— —
r+1
Therefore
Ri(x) = O(loglog - - -log x).
———
r+1

This completes the proof of Theorem 2.

Corollary 2 follows from Lemma 4 and Theorem 2 immediately.

Proof of Theorem 3. The initial part is as in the proof of Theorem 2.
Then

1
loglog - --logtiy1 > Eloglog---logti, 1<e<l-1.
N— N—
T r—1
Without loss of generality, we may assume that

loglog - --logT > 4log4.
—_——

r—1
Thus
loglog---logt; > 4log4, 1<i<1.
r—1
Hence

1
loglog---logt; > log 3 +loglog---logt;_1
N———r SN————r
r+1 T

1 1
> log§ + 2 loglog---logt;_o
——

r—1
> —loglog---logt;_o.
——

r—1

I

Continuing this procedure we have

loglog - --logt; > iloglog--dogtl > iloglog--logT > 1.
r+l—2 r—1 r—1
Hence loct; > r 4+ 1 — 2. Since t; < x, we have
locx >r+1-—2.

Therefore
Ri(z) <214+ 0O(1) <2locz + O(1).
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