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Sequences with bounded l.c.m. of each pair of terms, III

by

Yong-Gao Chen and Li-Xia Dai (Nanjing)

1. Introduction. Let Ax be a set of positive integers with the least
common multiple of each pair of terms not exceeding x and |Ax| being
the largest. In 1951, P. Erdős [5] (see also Guy [7]) proposed the following
problem: what is the value of |Ax|? It is known that

√

9

8
x + O(1) ≤ |Ax| ≤

√
4x + O(1).

For a proof see Erdős [6]. Choi [2] improved the upper bound to 1.638
√

x,
and later [3] to 1.43

√
x. Let Bx be the union of the set of positive integers

not exceeding
√

x/2 and the set of even integers between
√

x/2 and
√

2x.
It is clear that the least common multiple of each pair of terms of Bx does
not exceed x. By calculation we have

|Bx| =

√

9

8
x + O(1).

Chen [1] gave an asymptotic formula for |Ax| and showed that Ax is almost
the same as Bx, namely

|Ax \ Bx| = o(
√

x).

In particular,

|Ax| = |Bx| + o(
√

x) =

√

9

8
x + o(

√
x).

Dai and Chen [4] gave an explicit bound of the remainder for |Ax|:

|Ax| =

√

9

8
x + R(x),
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where

−2 ≤ R(x) ≤
√

9

8
x + 45

√
x

log x
log log x.

On the other hand, it is natural to ask whether R(x) = O(1).
Let Cx be a set of positive integers with the least common multiple of

each pair of terms not exceeding x, Bx ⊆ Cx and |Cx| being the largest.
Write

|Cx| = |Bx| + R1(x).

If a ∈ Cx \ Bx, then a /∈ Bx and [a, k] ≤ x for all positive integers k not

exceeding
√

x/2 and all even integers k between
√

x/2 and
√

2x. Intuitively,
this seems impossible for sufficiently large x. A more interesting question is
whether R1(x) = O(1).

For any positive real number x we define the function locx to be the
nonnegative integer r with

0 ≤ log log · · · log
︸ ︷︷ ︸

r

x < 1.

In this paper the following results are proved.

Theorem 1.

(i) R1(x) = 0 for infinitely many positive integers x;
(ii) R1(x) ≥ locx − 2 for infinitely many positive integers x.

From Theorem 1 we have immediately

Corollary 1. R(x) ≥ locx− 2 for infinitely many positive integers x.

In order to study the properties of R1(x), we introduce the following
notation.

Definition. Let u be a positive real number. Two positive integers s, t
are u-compromise if there exist primes pi (i = 0, 1, . . . , [us]) and primes qj

(j = 0, 1, . . . , [ut]) such that

pi | s + i, i = 0, 1, . . . , [us],

qj | t + j, j = 0, 1, . . . , [ut],

and pi | s − t when pi is equal to one of qj (0 ≤ i ≤ [us], 0 ≤ j ≤ [ut]).

It is clear that if s, t are u-compromise, then they are also v-compromise
for any 0 < v ≤ u.

Theorem 2. If there are three real numbers 0 < u < 1, τ > 0, T > 0
and a positive integer r such that for any two u-compromise integers s, t
with t > s ≥ T we always have

log log · · · log
︸ ︷︷ ︸

r

t ≥ log log · · · log
︸ ︷︷ ︸

r

s + τ,
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then

R1(x) = O(log log · · · log
︸ ︷︷ ︸

r+1

x).

Corollary 2. R1(x) = O(log log x).

Theorem 3. If there are two real numbers 0 < u < 1, T > 0 and

a positive integer r such that for any two u-compromise integers s, t with

t > s ≥ T we always have

log log · · · log
︸ ︷︷ ︸

r

t ≥ 1

2
log log · · · log
︸ ︷︷ ︸

r−1

s,

then

R1(x) ≤ 2 locx + O(1).

We pose the following problems.

Problem 1. Given any positive integer r, are there three real numbers

0 < u < 1, τ > 0 and T > 0 such that for any two u-compromise integers

s, t with t > s ≥ T we always have

log log · · · log
︸ ︷︷ ︸

r

t ≥ log log · · · log
︸ ︷︷ ︸

r

s + τ ?

It is easy to prove that Problem 1 is true for r = 1 (see the proof of
Lemma 4 in the next section).

Problem 2. Are there two real numbers 0 < u < 1, T > 0 and a positive

integer r such that for any two u-compromise integers s, t with t > s ≥ T
we always have

log log · · · log
︸ ︷︷ ︸

r

t ≥ 1

2
log log · · · log
︸ ︷︷ ︸

r−1

s ?

It is clear that Problem 2 is stronger than Problem 1.

2. Proof of theorems

Lemma 1. Let q be a prime with 3 ≤ q ≤
√

x/2 and 4q(q − 2) > x.

Then

Cx ⊆ {2l | l ∈ N, l ≤ x/(2q)} ∪ {l | l ∈ N, l ≤ x/(2q), 2 ∤ l}.
Proof. Let a ∈ Cx. Since q ≤

√

x/2, we have q ≤ x/(2q). Thus we need
only consider a 6= q, 2q. Since 2q, 2(q − 1), 2(q − 2) ∈ Bx ⊆ Cx, we have

[a, 2q] ≤ x, [a, 2(q − 1)] ≤ x, [a, 2(q − 2)] ≤ x.

Case 1: 2 ∤ a and q ∤ a. As 2aq = [a, 2q] ≤ x we have a ≤ x/(2q).

Case 2: 2 | a and q ∤ a. As aq = [a, 2q] ≤ x we have a/2 ≤ x/(2q).
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Case 3: q | a. Let a = qbt, where t = 1 if 2 ∤ a and t = 2 if 2 | a. Then

[a, 2(q − 1)] = [qbt, 2(q − 1)] = 2q[b, q − 1],

[a, 2(q − 2)] = [qbt, 2(q − 2)] = 2q[b, q − 2].

Since a 6= q, 2q, we have b > 1. Hence either [b, q − 1] 6= q − 1 or [b, q − 2] 6=
q − 2. Thus

max{[a, 2(q − 1)], [a, 2(q − 2)]} ≥ 4q(q − 2) > x,

a contradiction. This completes the proof of Lemma 1.

Lemma 2. Let u be a real number with 0 < u < 1, k be an integer with

k ≤
√

x/2 < k + 1 and s be an integer such that

4

1 − u
+

1

u
< s <

1 − u

2u
k

and either k + s ∈ Cx with 2 ∤ k + s or 2(k + s) ∈ Cx. Then there exist

primes pi (i = 0, 1, . . . , [us]) such that

pi | s + i, pi | k + s, i = 0, 1, . . . , [us].

Proof. Let a = k+s if k+s ∈ Cx with 2 ∤ k+s, otherwise let a = 2(k+s).
Let i be an integer with 0 ≤ i ≤ us. Then 2(k − i) ∈ Bx ⊆ Cx. Hence
[a, 2(k − i)] ≤ x. Since

4

1 − u
+

1

u
< s <

1 − u

2u
k,

we have

k >
8u

(1 − u)2
+

2

1 − u
.

Hence

2(k + s)(k − i) ≥ 2(k + s)(k − us) > 2

(

k +
4

1 − u
+

1

u

)(

k − 4u

1 − u
− 1

)

> 2(k + 1)2 > x.

Noting that [a, 2(k − i)] ≤ x and

[a, 2(k − i)] = 2[k + s, k − i] =
2(k + s)(k − i)

(k + s, k − i)
,

we have (k + s, k − i) > 1. Thus (k + s, s + i) > 1. Therefore, for each i
with 0 ≤ i ≤ us we may choose a prime pi with pi | k + s and pi | s + i. This
completes the proof of Lemma 2.

Lemma 3. Let s be a positive integer and k be an integer with k ≤
√

x/2 < k + 1. Then s = O(log x) if k + s ∈ Cx with 2 ∤ k + s or if

2(k + s) ∈ Cx.

Proof. By a result on the distribution of primes and Lemma 1 we have
s = O(xθ), where θ is a positive constant with θ < 1/2, for example we can
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take θ = 7/24 (see Huxley [8]). Thus we may assume that 10 < s < k/2. By
Lemma 2 there exist primes pi (i = 0, 1, . . . , [s/2]) such that

pi | s + i, pi | k + s, i = 0, 1, . . . , [s/2].

Thus ∏

s≤p≤3s/2

p
∣
∣ k + s

and so ∏

s≤p≤3s/2

p ≤ k + s ≤ x,

where the product is taken over all primes p in the interval [s, 3s/2]. There-
fore s = O(log x). This completes the proof of Lemma 3.

Lemma 4. Let k be an integer with k ≤
√

x/2 < k + 1 and s, t be two

integers with 10 < s < t < k/2 such that either k + s ∈ Cx with 2 ∤ k + s or

2(k + s) ∈ Cx, and either k + t ∈ Cx with 2 ∤ k + t or 2(k + t) ∈ Cx. Then

t ≥ 5s/4 for s ≥ M , where M is a positive constant.

Proof. By the proof of Lemma 3 we have
∏

s≤p≤3s/2

p
∣
∣ k + s,

∏

t≤p≤3t/2

p
∣
∣ k + t.

Hence ∏

t≤p≤3s/2

p
∣
∣ t − s.

Thus ∏

t≤p≤3s/2

p ≤ t − s.

If t < 5s/4, then
∏

5s/4≤p≤3s/2

p ≤ s/4.

This cannot hold for s large enough. This completes the proof of Lemma 4.

Lemma 5. For any positive integer m we have

m +
∏

p≤m

p ≤ 23m,

where the product is taken over all primes p less than m.

Proof. We use induction on m. It is easy to verify the assertion for m ≤ 5.
Suppose that it is true for all positive integers less than m. If m ≥ 6, then

[m/2] + 1 +
∏

p≤[m/2]+1

p ≤ 23[m/2]+3.
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Since

m +
∏

[m/2]+1<p≤m

p ≤ m +

(
m

[m/2]

)

≤ 2m,

we have

m +
∏

p≤m

p ≤ 23[m/2]+3+m ≤ 23m.

This completes the proof of Lemma 5.

Proof of Theorem 1

(i) Take x = 2q2, where q is an odd prime. By Lemma 1 we have
Cx \ Bx = ∅. Hence R1(x) = 0.

(ii) Let d1 = 2 and

dn+1 = dn +
∏

p≤2dn−1

p, n = 1, 2, . . . ,

where the product is taken over all primes p less than 2dn − 1. Then 2 | dn

for all n ≥ 1. Let

kn = −dn +
∏

p≤2dn−1

p, xn = 2k2
n, n = 1, 2, . . . .

By Bertrand’s postulate and 2 | dn we have

(1) kn ≥ −dn +
1

2
dn(dn + 1) ≥ 3dn, n ≥ 2.

From (1) and k1 = 4, d1 = 2, x1 = 32, we have kn + dn ≤ xn (n ≥ 1). It is
clear that

Bxn
= {2h | 1 ≤ h ≤ kn, h ∈ Z} ∪ {l | 1 ≤ l ≤ kn, l ∈ Z, 2 ∤ l}.

Now we show that [a, b] ≤ xn for any

a, b ∈ Bxn
∪ {2(kn + d1), 2(kn + d2), . . . , 2(kn + dn)}.

It is clear for n = 1. Now we assume that n ≥ 2.

Case 1: a, b ∈ {2(kn + d1), 2(kn + d2), . . . , 2(kn + dn)}. Let

a = 2(kn + di), b = 2(kn + dj).

From 2 | di, 2 | dj , 2 | kn and (1) we have

[a, b] ≤ (kn + di)(kn + dj) ≤
16

9
k2

n < xn.

Case 2: a = 2(kn + di) (1 ≤ i ≤ n) and b ∈ Bxn
. Without loss of

generality, we may assume that b ∈ {2h | 1 ≤ h ≤ kn, h ∈ Z}. Write
b = 2(kn − j).

If j ≥ di, then [a, b] ≤ 1
2ab ≤ 2(k2

n − d2
i ) < 2k2

n ≤ x.
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If 0 ≤ j ≤ di − 1, let p be a prime with p | di + j; then p ≤ 2di − 1. Hence

kn ≡ −dn ≡ −dn−1 ≡ · · · ≡ −di ≡ j (modp).

Thus

(2) (a, b) = 2(kn + di, kn − j) ≥ 2p.

By (1) and (2) we have

[a, b] =
ab

(a, b)
≤ 1

2p
ab ≤ (kn + di)(kn − j) ≤ 4

3
k2

n < xn.

Therefore [a, b] ≤ xn for any

a, b ∈ Bxn
∪ {2(kn + d1), 2(kn + d2), . . . , 2(kn + dn)}.

To complete the proof, it is enough to prove that n ≥ locxn − 2. By
Lemma 5 we have di+1 ≤ 25di (i ≥ 1). Thus log di+1 ≤ 5di (i ≥ 1). Hence

log xn = log 2 + 2 log kn ≤ log 2 + 2 log dn+1 ≤ 11dn,

log log xn ≤ log 11 + log dn ≤ 7dn−1.

Continuing this procedure, we have

log log · · · log
︸ ︷︷ ︸

i

xn ≤ 7dn+1−i.

Since loc(7d1) = 2, we have locxn ≤ n + 2. This completes the proof of
Theorem 1.

Proof of Theorem 2. Assume that x is large enough. Without loss of
generality, we may assume that

log log · · · log
︸ ︷︷ ︸

r

T > 0.

Let k be an integer with k ≤
√

x/2 < k + 1 and let t1, . . . , tl be positive
integers with

max

{

T,
4

1 − u
+

1

u

}

< t1 < · · · < tl

and either k+ti ∈ Cx with 2 ∤ k+ti or 2(k+ti) ∈ Cx (1 ≤ i ≤ l). By Lemma
3 we have tl = O(log x). Hence we may assume that tl < (1 − u)k/(2u).
By Lemma 2 and the definition of u-compromise we see that ti, ti+1 are
u-compromise (1 ≤ i ≤ l − 1). Hence

log log · · · log
︸ ︷︷ ︸

r

ti+1 ≥ log log · · · log
︸ ︷︷ ︸

r

ti + τ, 1 ≤ i ≤ l − 1.

Thus

log log · · · log
︸ ︷︷ ︸

r

tl ≥ log log · · · log
︸ ︷︷ ︸

r

t1 + (l − 1)τ ≥ (l − 1)τ.
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Noting that tl = O(log x), we have

l = O(log log · · · log
︸ ︷︷ ︸

r+1

x).

Therefore

R1(x) = O(log log · · · log
︸ ︷︷ ︸

r+1

x).

This completes the proof of Theorem 2.

Corollary 2 follows from Lemma 4 and Theorem 2 immediately.

Proof of Theorem 3. The initial part is as in the proof of Theorem 2.
Then

log log · · · log
︸ ︷︷ ︸

r

ti+1 ≥ 1

2
log log · · · log
︸ ︷︷ ︸

r−1

ti, 1 ≤ i ≤ l − 1.

Without loss of generality, we may assume that

log log · · · log
︸ ︷︷ ︸

r−1

T > 4 log 4.

Thus

log log · · · log
︸ ︷︷ ︸

r−1

ti > 4 log 4, 1 ≤ i ≤ l.

Hence

log log · · · log
︸ ︷︷ ︸

r+1

tl ≥ log
1

2
+ log log · · · log

︸ ︷︷ ︸

r

tl−1

≥ log
1

2
+

1

2
log log · · · log
︸ ︷︷ ︸

r−1

tl−2

≥ 1

4
log log · · · log
︸ ︷︷ ︸

r−1

tl−2.

Continuing this procedure we have

log log · · · log
︸ ︷︷ ︸

r+l−2

tl ≥
1

4
log log · · · log
︸ ︷︷ ︸

r−1

t1 ≥ 1

4
log log · · · log
︸ ︷︷ ︸

r−1

T ≥ 1.

Hence loc tl ≥ r + l − 2. Since tl ≤ x, we have

locx ≥ r + l − 2.

Therefore

R1(x) ≤ 2l + O(1) ≤ 2 locx + O(1).
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