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The distribution of zeros of Epstein zeta functions over GLn

by

Riad Masri (Bonn)

1. Introduction. 1. The study of the distribution of the zeros of Ep-
stein zeta functions has a long and interesting history (see e.g. [BG, BH, BM,
DH, E, H, St]). In this paper we study the distribution of the nontrivial zeros
of ideal class zeta functions associated to elements in the symmetric space of
GLn over a number field K (see Definition 1.1). These zeta functions have
been studied extensively by Terras in [T1–T4]. They generalize the classi-
cal Epstein zeta function of a positive definite quadratic form. Furthermore,
when n = 2 they play an important role in the study of the spectral theory of
the Laplacian through their relationship with SL2-Eisenstein series (see [M]).
We will use a method of Levinson and Montgomery [LM] to establish asymp-
totics for the number of nontrivial zeros up to height T , and asymptotics
for the distribution of the nontrivial zeros with respect to the critical line.
We then combine these results to study the mean value of the real parts of
the nontrivial zeros. Our results generalize those of Steuding [S] for K = Q.

2. We now define the zeta functions to be studied in this paper (see
also [T4]). Let n be a positive integer and K be a number field of degree
N = r1 + 2r2 over Q. The symmetric space Qn

K of positive n-forms over K

consists of r1 + r2-tuples Q = (Q(1), . . . , Q(r1+r2)) of positive definite n × n
matrices such that the first r1 are real symmetric and the second r2 are
complex Hermitian. The determinant one subspace SQn

K consists of Q in
Qn

K such that det(Q(j)) = 1 for j = 1, . . . , r1 + r2. There is an identification

Qn
K ↔ (GLn(R)/O(n))r1 × (GLn(C)/U(n))r2

realizing Qn
K as products of the rank n− 1 symmetric spaces GLn(R)/O(n)

and GLn(C)/U(n), respectively. The group GLn(K) acts on Qn
K by

Q[A] = (A(1)
t
Q(1)A(1), . . . , A(r1+r2)

t
Q(r1+r2)A(r1+r2)) for A ∈ GLn(K),

where A(j) means the jth embedding of K is applied to each entry of A.
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Let OK be the ring of integers and UK be the group of units of K. Given
an integral ideal a in K, let [a] be its ideal class and NK/Q(a) = |OK : a| be
its norm. Two elements a and a′ in a

n are said to be associate modulo UK

if there exists a unit ε in UK such that a = εa′. Let R(an) be a complete
set of nonzero, nonassociate elements in a

n. Finally, let S∞ be a collection
of r1 + r2 infinite places ν of K, and let

Nν =

{

1 if ν is real,

2 if ν is complex.

Definition 1.1. The ideal class zeta function associated to a positive
n-form Q in Qn

K is defined by

ζn(Q, [a], s) = NK/Q(a)2s
∑

a∈R(an)

N(Q[a])−s, Re s > n/2,

where

N(Q[a]) =
∏

ν∈S∞

Q(ν)[a(ν)]Nν .

Remarks. (a) The factor NK/Q(a)2s ensures that ζn(Q, [a], s) depends
only on the ideal class [a].

(b) It is a consequence of the definition that ζn(Q, [a], s) is automorphic
with respect to the action of GLn(OK) on Qn

K , i.e.

ζn(Q[A], [a], s) = ζn(Q, [a], s) for all A ∈ GLn(OK).

(c) When K = Q the zeta function ζn(Q, [a], s) equals the classical Ep-
stein zeta function of a positive-definite real symmetric matrix Q,

ζn(Q, [Z], s) =
1

2

∑

a∈Zn\{0}

Q[a]−s, Re s > n/2.

(d) The zeta functions ζ2(Q, [a], s) can be used to compute the scatter-
ing matrix and scattering determinant associated to the functional equation
satisfied by the SL2-Eisenstein series corresponding to the cusps of the non-
compact, finite volume quotient X = SL2(OK)\SQ2

K (see [M]). One can
combine this information with the Selberg trace formula for X to establish
Weyl’s law for the function N(T ) which counts the number of eigenval-
ues λ ≤ T corresponding to cuspidal eigenfunctions for the Laplacian ∆ in
L2(X) (see [R, Sa1, Sa2]).

3. We will make repeated use of the functional equation for ζn(Q, [a], s)
(for the proof see [M]).

Theorem 1.2. Let A = 2−r2d
1/2
K π−N/2, where dK is the absolute value

of the discriminant of K, and let a
∗ be the dual of a. Then ζn(Q, [a], s) is
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meromorphic on C with a simple pole at s = n/2, and

(1.1) A2sΓ (s)r1Γ (2s)r2ζn(Q, [a], s)

= ‖Q‖−1/2A2(n/2−s)Γ (n/2 − s)r1Γ (2(n/2 − s))r2ζn(Q−1, [a∗], n/2 − s),

where

‖Q‖ =
∏

ν∈S∞

|det(Q(ν))|Nν

is the norm of the determinant of Q.

It follows from the functional equation (1.1) that ζn(Q, [a], s) has zeros
at m = −1,−2, . . . . We refer to these as trivial zeros and to all other zeros
̺ = β + iγ as nontrivial zeros.

4. We now state our main results. Let

N(Q, [a], T ) = |{̺ = β + iγ : |γ| ≤ T}|

count the number of nontrivial zeros ̺ with |γ| ≤ T . Here the zeros are
counted according to multiplicities. Let

m(Q, [a]) = min{N(Q[a])/NK/Q(a)2 : a ∈ R(an)},

M(Q, [a]) = |{a ∈ R(an) : N(Q[a])/NK/Q(a)2 = m(Q, [a])}|.

It is not difficult to show that m(Q, [a]) and M(Q, [a]) depend only on the
ideal class [a].

In the following theorem we establish asymptotics for the number of
nontrivial zeros up to height T , and asymptotics for the distribution of the
nontrivial zeros with respect to the critical line.

Theorem 1.3. As T → ∞,

(1.2) N(Q, [a], T ) =
2NT

π
log

{

T

πe
√

m(Q, [a])m(Q−1, [a∗])

}

+ O(log T )

and

(1.3)
∑

|γ|≤T

(

β −
n

4

)

= −
NT

π
log

{

‖Q‖1/2N

(

M(Q, [a])

M(Q−1, [a∗])

)1/N(

m(Q−1, [a∗])

m(Q, [a])

)n/4}

+ O(log T ).

Equation (1.3) measures, in some sense, the asymmetries in the distri-
bution of the nontrivial zeros of ζn(Q, [a], s) with respect to the critical line.
To see this, consider the constant

Σ(Q, [a]) = log

{

‖Q‖1/2N

(

M(Q, [a])

M(Q−1, [a∗])

)1/N(

m(Q−1, [a∗])

m(Q, [a])

)n/4}

.



160 R. Masri

If K = Q and n = 2, so that Q corresponds to a binary quadratic form,
then ζ2(Q, [Z], s) is a constant multiple of ζ2(Q

−1, [Z], s), which implies via
the functional equation (1.1) that there is a bijection between the zeros ̺
and 1− ̺. It follows immediately that Σ(Q, [Z]) = 0. Note, however, that it
is possible that there are configurations of a few asymmetrically distributed
zeros such that Σ(Q, [a]) = 0. It is not difficult to construct examples with
Σ(Q, [Z]) 6= 0 (see [S]).

By combining (1.2) and (1.3) we find that the mean value of the real
parts of the nontrivial zeros of ζn(Q, [a], s) exists and equals n/4, and thus
the possible asymmetries in the distribution of the nontrivial zeros are small
when compared with the total number of zeros.

Corollary 1.4. As T → ∞,
1

N(Q, [a], T )

∑

|γ|≤T

β =
n

4
+ O

(

1

log T

)

.

Acknowledgments. I would like to thank the Max-Planck-Institut für
Mathematik in Bonn for support during the preparation of this work.

2. Proof of Theorem 1.3. This proof is based on a method of Levinson
and Montgomery [LM] used to study the distribution of the zeros of the
derivatives of the Riemann zeta function. See also the elaboration on this
method in [S].

We will use the following lemma due to Littlewood [Li].

Lemma 2.1. Let A < B and let f(s) be analytic on R = {s ∈ C : A ≤
σ := Re s ≤ B, |t| ≤ T}. Suppose that f(s) does not vanish on the right

edge σ = B of R. Let R′ be R minus the union of the horizontal cuts from

the zeros of f in R to the left edge of R, and choose a single-valued branch

of log f(s) in the interior of R′. Denote by v(σ, T ) the number of zeros

̺ = β + iγ of f(s) inside R with β > σ including zeros with γ = T but not

those with γ = −T . Then\
∂R

log f(s) ds = −2πi

B\
A

v(σ, T ) dσ.

See [T, Section 9.9] for a proof.
Define

Zn(Q, [a], s) =
m(Q, [a])s

M(Q, [a])
ζn(Q, [a], s).(2.1)

Then Zn(Q, [a], s) has the same zeros as ζn(Q, [a], s), and for σ > n/2,

Zn(Q, [a], s) = 1+
1

M(Q, [a])

∑

a∈R(an)
N(Q[a])/NK/Q(a)2>m(Q,[a])

(

m(Q, [a])

NK/Q(a)−2N(Q[a])

)s

.



Zeros of Epstein zeta functions 161

Let

m2(Q, [a]) = inf{a ∈ R(an) : N(Q[a])/NK/Q(a)2 > m(Q, [a])}.

Again, it is not difficult to show that m2(Q, [a]) depends only on the ideal
class [a]. Then

Zn(Q, [a], s) = 1 + C(Q, [a])λ−s + o(λ−σ) as σ → ∞,(2.2)

where C(Q, [a]) > 0 is a constant, and

λ = m2(Q, [a])/m(Q, [a]) > 1.

Consequently,

Zn(Q, [a], s) → 1 as σ → ∞,

so there exists a zero-free region for ζn(Q, [a], s) for σ sufficiently large. Sim-
ilarly, there exists a zero-free region for ζn(Q−1, [a∗], s) for σ sufficiently
large. It follows from the functional equation (1.1) that there exists a con-
stant B > 0 such that ζn(Q, [a], s) and ζn(Q−1, [a∗], s) have no nontrivial
zeros outside of the strip −B < σ < B.

Define the function

f(s) = (s − n/2)Zn(Q, [a], s).

Then f(s) is entire and has the same zeros as ζn(Q, [a], s). Let b > B be
sufficiently large. Form the rectangle R with vertices −b ± iT, B ± iT , and
assume that f(s) does not vanish on ∂R. In what follows let ̺ = β + iγ
denote any zero of ζn(Q, [a], s) (for any T there are at most b trivial zeros
of ζn(Q, [a], s) inside R and thus their contribution is negligible).

We now apply Lemma 2.1 to the function f(s). First, observe that

B\
−b

v(σ, T ) dσ

is the total length of the horizontal cuts from the zeros of f(s) in R to the
left edge of R. Then

B\
−b

v(σ, T ) dσ =
∑

|γ|≤T

(β + b),

so that by Lemma 2.1,

i
\

∂R

log f(s) ds = 2π
∑

|γ|≤T

(β + b).(2.3)

Next, write

(2.4) i
\

∂R

log f(s) ds = i
\

∂R

log(s − n/2) ds + i
\

∂R

log Zn(Q, [a], s) ds.
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By Lemma 2.1,

i
\

∂R

log(s − n/2) ds = 2π(n/2 + b).(2.5)

Furthermore (see also [T, Section 9.9, equation (9.9.2)]),

(2.6) i
\

∂R

log Zn(Q, [a], s) ds

=

T\
−T

log Zn(Q, [a],−b + it) dt −

T\
−T

log Zn(Q, [a], B + it) dt

+ i

B\
−b

{log Zn(Q, [a], σ − iT ) − log Zn(Q, [a], σ + iT )} dσ.

By (2.3)–(2.5), the right hand side of (2.6) is real. Expand the right hand
side of (2.6) and let the imaginary part equal zero to express (2.3) in the
form

(2.7) 2π
∑

|γ|≤T

(β + b)

=

T\
−T

log |Zn(Q, [a],−b + it)| dt −

T\
−T

log |Zn(Q, [a], B + it)| dt

−

B\
−b

arg Zn(Q, [a], σ − iT ) dσ +

B\
−b

arg Zn(Q, [a], σ + iT ) dσ + O(1).

From (2.2),

log Zn(Q, [a], s) ∼ C(Q, [a])λ−s as σ → ∞,

thus for sufficiently large B,

T\
−T

log |Zn(Q, [a], B + it)| dt = O(1)(2.8)

as T → ∞.

We now estimate the integral

T\
−T

log |Zn(Q, [a],−b + it)| dt.

From (2.1),

log |Zn(Q, [a],−b + it)|

= −b log m(Q, [a]) − log M(Q, [a]) + log |ζn(Q, [a],−b + it)|.
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Furthermore, from the functional equation (1.1),

log |ζn(Q, [a],−b + it)| = −
1

2
log ‖Q‖ + (n + 4b) log A

+ r1{log |Γ (n/2 + b − it)| − log |Γ (−b + it)|}

+ r2{log |Γ (n + 2b − 2it)| − log |Γ (−2b + 2it)|}

+ log |ζn(Q−1, [a∗], n/2 + b − it)|.

By Stirling’s formula,

(2.9) log |Γ (σ + it)| =

(

σ −
1

2

)

log |t| −
π

2
|t| +

1

2
log(2π) + O(|t|−1)

for |t| ≥ 1 and σ bounded. Using (2.9) we obtain, after a calculation,

T\
−T

log |Zn(Q, [a],−b + it)| dt

= r1(n + 4b)

T\
1

log t dt + r2(n + 4b)

2T\
1

log t dt

− T{log ‖Q‖ − 2(n + 4b) log A + 2b log m(Q, [a]) + 2 log M(Q, [a])}

+

T\
−T

log |ζn(Q−1, [a∗], n/2 + b − it)| dt + O(log T ).

From (2.1),

(2.10)

T\
−T

log |ζn(Q−1, [a∗], n/2 + b − it)| dt

=

T\
−T

log |Zn(Q−1, [a∗], n/2 + b − it)| dt

+ T{2 log M(Q−1, [a∗]) − (n + 2b) log m(Q−1, [a∗])}.

The integral on the right hand side of (2.10) can be estimated as in (2.8).
Furthermore, it follows from

T\
1

log t dt = T log T + T log(e−1) + O(1)

and

log A =
r1

2
log(π−1) + r2 log(2−1π−1) + O(1)

that
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r1(n + 4b)

T\
1

log t dt + r2(n + 4b)

2T\
1

log t dt + 2T (n + 4b) log A

= N(n + 4b)T log
T

πe
+ O(1).

Combining the preceding analysis yields

(2.11)

T\
−T

log |Zn(Q, [a],−b + it)| dt

= N(n + 4b)T log
T

πe
− T{2 log M(Q, [a]) − 2 log M(Q−1, [a∗]) + log ‖Q‖

+ 2b log m(Q, [a]) + (n + 2b) log m(Q−1, [a∗])} + O(log T )

as T → ∞.
We now estimate the integrals

B\
−b

arg Zn(Q, [a], σ ± iT ) dσ.

As remarked in [LM], integrals of this type can be estimated by bounding the
number of zeros of Re ζn(Q, [a], σ + iT ) using Jensen’s formula. Arguing as
in [S], we first reduce the problem to bounding the number of zeros. Suppose
that Re ζn(Q, [a], σ+iT ) has M zeros for −b ≤ σ ≤ B. Divide [−b, B] into at
most M +1 subintervals in each of which ReZn(Q, [a], σ+ iT ) is of constant
sign. The variation of arg Zn(Q, [a], σ + iT ) is at most π in each subinterval,
thus

|arg Zn(Q, [a], σ + iT )| ≤ (M + 1)π.(2.12)

We now estimate M by an application of Jensen’s formula. Let

g(z) =
1

2
{Zn(Q, [a], z + iT ) + Zn(Q, [a], z + iT )}.

Then g(σ) = ReZn(Q, [a], σ + iT ). Let R = b+B and choose T so that T >
2R. Because Im(z + iT ) > 0 in the open disc |z−B| < T , Zn(Q, [a], z + iT ),
and hence g(z), is analytic in |z−B| < T (that is, we avoid the pole at n/2).

Let n(r) denote the number of zeros of g(z) in the closed disc |z−B| ≤ r.
A simple estimation yields

2R\
0

n(r)

r
dr ≥ n(R)

2R\
R

dr

r
= n(R) log 2,

and by Jensen’s formula,

2R\
0

n(r)

r
dr =

1

2π

2π\
0

log |g(B + 2Reiθ)| dθ − log |g(B)|,
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so that

n(R) ≤
1

2π log 2

2π\
0

log |g(B + 2Reiθ)| dθ −
log |g(B)|

log 2
.

It follows from (2.2) that log |g(B)| is bounded. Furthermore, from the
Phragmén–Lindelöf theorem we obtain, in any strip of bounded width,

ζn(Q, [a], s) = O(|t|c(Q,[a],σ)), |t| → ∞,

for a constant c(Q, [a], σ) > 0. The same estimate holds for g(z). Therefore,

2π\
0

log |g(B + 2Reiθ)| dθ = O(log T ),

which implies that n(R) = O(log T ). Because (−b, B) is contained in the
disc |z − B| ≤ R, we obtain M ≤ n(R). A similar argument can be made
for arg Zn(Q, [a], σ − iT ). Finally, we obtain from (2.12) the estimate

B\
−b

|arg Zn(Q, [a], σ ± iT )| dσ = O(log T ).(2.13)

Combining (2.8), (2.11), and (2.13), we get in (2.7), after a tedious but
straightforward algebraic manipulation,
∑

|γ|≤T

(β + b) =

(

b +
n

4

)

2NT

π
log

{

T

πe
√

m(Q, [a])m(Q−1, [a∗])

}

−
NT

π
log

{

‖Q‖1/2N

(

M(Q, [a])

M(Q−1, [a∗])

)1/N(

m(Q−1, [a∗])

m(Q, [a])

)n/4}

+ O(log T )

as T → ∞. The assumption that f(s) does not vanish on ∂R can be removed
with an error O(1). Using the identity

∑

|γ|≤T

(β + b) = (b + n/4)
∑

|γ|≤T

1 +
∑

|γ|≤T

(β − n/4),

we obtain (1.2) and (1.3). This completes the proof.
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