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Hybrid joint universality theorem for Dirichlet L-functions
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Łukasz Pańkowski (Poznań)

1. Introduction. In 1975 Voronin [9] proved a remarkable universality
theorem for the Riemann zeta function. This result was improved by Reich [6]
and Bagchi [1] and can be formulated as follows: let K be any compact subset
of the strip D := {s ∈ C : 1/2 < <(s) < 1} with connected complement and
let f(s) be a function non-vanishing and continuous on K and analytic in
the interior of K. Then, for every ε > 0, the set of positive real numbers
τ = τ(ε) satisfying

(1) max
s∈K

|ζ(s+ iτ)− f(s)| < ε

has a positive lower density.
Recall that for a Lebesgue measurable set A ⊂ (0,∞) we define the

natural density of A as

lim
T→∞

µ(A ∩ (0, T ])
T

,

if the limit exists, where µ denotes the Lebesgue measure on R. Moreover,
if the lower limit of the same quotient is positive, then we say that A has
a positive lower density.

Further research on universality theorems focused on replacing the Rie-
mann zeta function by other L-functions of importance in analytic num-
ber theory. For details we refer to [5] and [7]. Let us mention only that
Voronin in his Ph.D. thesis [8] proved a joint universality theorem for Dirich-
let L-functions. Roughly speaking, it states that some imaginary shifts of
Dirichlet L-functions associated with non-equivalent characters approximate
simultaneously any functions which are non-vanishing and continuous on
K ⊂ {s ∈ C : 1/2 < σ < 1} and holomorphic in the interior of K, where as
before K is a compact set with connected complement.

Known proofs of universality theorems depend on diophantine approxi-
mations, especially, on the Kronecker–Weyl theorem (proved in the qualita-
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tive and quantitative form by Kronecker and Weyl respectively) which could
be stated as follows.

For x ∈ R let ‖x‖ denote the distance from x to the nearest integer. Then
for arbitrary real numbers α1, . . . , αn linearly independent over Q, any real
numbers θ1, . . . , θn and any positive numbers ε1, . . . , εn, the set of τ such
that

(2) ‖ταi − θi‖ < εi for all 1 ≤ i ≤ n

has a positive density, which is equal to 2n
∏

1≤i≤n εi.

The following question arises in a natural way: does the set of real num-
bers τ satisfying simultaneously (1) and (2) have a positive lower density?
A partial answer was given by Kaczorowski and Kulas [3] in 2007, who proved
that if K ⊂ {s ∈ C : 1/2 < σ < 1} is a compact set with connected comple-
ment, f1, . . . , fn are any functions which are non-vanishing and continuous
on K and analytic in the interior, and χ1, . . . , χn are pairwise non-equivalent
Dirichlet characters, then, for every sequence (θp)p≤z of real numbers indexed
by primes up to z and for every ε > 0, the set of positive real numbers τ
satisfying the inequalities

max
1≤j≤n

max
s∈K
|L(s+ iτ, χj)− fj(s)| < ε, max

p≤z

∥∥∥∥τ log p
2π
− θp

∥∥∥∥ < ε

has a positive lower density.

Although this result is more general than the joint universality theorem,
the second inequality is only a special case of the inequality in the Kronecker–
Weyl theorem. Therefore the purpose of this paper is to prove a theorem of
the above type in full generality, with logarithms of primes replaced by an
arbitrary set of real numbers linearly independent over Q. More precisely, we
prove the following theorem, which can be called the hybrid joint universality
theorem.

Theorem 1.1. Let K ⊂ {s ∈ C : 1/2 < σ < 1} be any compact set with
connected complement, χ1, . . . , χn pairwise non-equivalent Dirichlet charac-
ters and f1, . . . , fn any functions which are non-vanishing and continuous
on K and analytic in the interior. Moreover, let (αi)1≤i≤m be any sequence
of real numbers linearly independent over Q, and (θi)1≤i≤m any sequence of
real numbers. Then, for every ε > 0, the set of real numbers τ satisfying the
inequalities

max
1≤j≤n

max
s∈K
|L(s+ iτ, χj)− fj(s)| < ε, max

1≤i≤m
‖ταi − θi‖ < ε

has a positive lower density.
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In fact, we prove Theorem 1.1 in a more general form, with Dirichlet
L-functions replaced by a finite family of general L-functions (called ac-
ceptable) satisfying some natural analytic and arithmetic conditions like the
Euler product representation, the Ramanujan conjecture and analytic con-
tinuation. For a precise definition of the family of acceptable functions see
Section 2 below. The most general hybrid joint universality theorem is for-
mulated as Theorem 4.2.

We conclude the paper by presenting some consequences of our hybrid
joint universality theorem. In particular, we show that no non-trivial density
estimate for zeros of linear combinations of acceptable functions with general
Dirichlet polynomials as coefficients can hold.

2. Preliminaries. As mentioned above, we prove our main theorem for
some large class of functions, which contains the Dirichlet L-functions. We
first define the class E (cf. [3], [4]) to consist of functions

F (s) =
∏
p

Rp(p−s) (σ > 1),

where Rp(z) = 1 +
∑∞

m=1 a(p
m)zm are rational functions, analytic and non-

vanishing on the disk |z| < 1, which satisfy the following conditions:

(1) (Ramanujan conjecture) ∀ε>0 a(pm)�ε p
εm uniformly in p.

(2) F has meromorphic continuation to the half-plane σ > 1/2. It can have
at most a finite number of poles and all of them lie on the straight line
σ = 1.

(3) F is a function of finite order, which means that

F (s)�σ |t|A(σ) for σ > 1/2, |t| → ∞.
(4) For any fixed 1/2 < σ < 1 the square mean-value

1
T

T�

−T
|F (σ + it)|2 dt

is bounded as T →∞.

Moreover, let Ω =
∏
p R denote the set of all sequences Θ = (θp)p of real

numbers indexed by primes.
For any finite setM of prime numbers and any function F ∈ E , we define

for σ > 1/2 the finite products

FM (s,Θ) =
∏
p∈M

Rp(p−se(−θp))

and
F (s)|M = F (s)

∏
p∈M

R−1
p (p−s).
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Now, we are ready to define a class of finite sets of functions which is
characterized by some kind of independence, and is of prime importance for
us. Following [3] we call an open and bounded subset G of C admissible when
for every ε > 0 the set Gε = {s ∈ C : |s − w| < ε for certain w ∈ G} has
connected complement.

We say that a set {F1, . . . , Fn} ⊂ E is acceptable if it satisfies the fol-
lowing condition: For every finite set M of prime numbers, every admissible
domain G such that G ⊂ {s ∈ C : 1/2 < <(s) < 1}, and any analytic and
non-vanishing functions f1, . . . , fn on G, there exists a sequence of finite sets
M1 ⊂M2 ⊂ · · · of primes such that

∞⋃
k=1

Mk = {p : p /∈M}

and for certain Θk ∈ Ω, as k →∞,

Fj,Mk
(s,Θk)→ fj(s) uniformly for s ∈ G, j = 1, . . . , n.

Remark 2.1. As in the proof of [3, Lemma 7] one can prove that the
Dirichlet L-functions for pairwise non-equivalent characters form an accept-
able subset of E . We skip the proof of this fact as the modifications needed
are straightforward and can be left to the reader.

To end this section, let us recall some properties of the sequence log p
2π

where p runs over primes, which play an important role in the proof of the
hybrid joint universality theorem.

First of all, note that the numbers log p
2π are linearly independent over Q,

so we can use the Kronecker–Weyl approximation theorem. The main con-
sequence is that for every finite set M of primes the curve

γ(τ) =
(
τ log p

2π

)
p∈M

, τ > 0,

is uniformly distributed mod 1 in R]M . Obviously, we can say the same about
any sequence linearly independent over Q.

Recall that a curve γ : (0,∞)→ Rn is uniformly distributed mod 1 in Rn

if for every n-dimensional interval Π = [α1, β1] × · · · × [αn, βn] ⊂ [0, 1]n we
have

lim
T→∞

1
T
µ{τ ∈ (0, T ] : γ(τ) ∈ Π mod 1} =

n∏
j=1

(βj − αj),

where γ(τ)∈Π mod 1 means that there exists y ∈ Zn such that γ(τ)−y∈Π.
The following lemma plays a crucial role in the proof of our main theorem.

Lemma 2.2. Let (αi)1≤i≤m be a sequence of real numbers linearly inde-
pendent over Q, and (θi)1≤i≤m any real numbers. Then there exist a finite set
B = B(α1, . . . , αm) of primes and a sequence (θ∗p)p∈B of real numbers such
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that for every finite set M of primes with M ∩B = ∅, any real numbers θp,
p ∈M , and every ε > 0, the set of real numbers τ satisfying the inequalities

max
1≤i≤m

‖ταi − θi‖ < ε,

max
p∈M

∥∥∥∥τ log p
2π
− θp

∥∥∥∥ < ε, max
p∈B

∥∥∥∥τ log p
2π
− θ∗p

∥∥∥∥ < ε

has a positive density, which can be explicitly calculated.

Proof. Let P denote the set of all primes and

A = spanQ

{
log p
2π

}
p∈P

, V = spanQ{α1, . . . , αm},

where spanQ{ai} denotes the vector space over Q generated by the real
numbers ai.

Obviously, if V ∩ A = {0}, then the elements log p
2π , p ∈ P, and αi, 1 ≤

i ≤ m, are linearly independent over Q. Hence, putting B = ∅ and using the
Kronecker–Weyl theorem yields the assertion.

Therefore, assume that the vector space V ∩ A is non-trivial and has a
basis {β1, . . . , βk}. It is clear that we can complete {β1, . . . , βk} by elements
αi to a basis of V , say

{β1, . . . , βk, αk+1, . . . , αm}.

Observe that

(3) spanQ{αk+1, . . . , αm} ∩ A = {0}.

It is also clear that {k + 1, . . . ,m} is the largest set of indices for which (3)
holds.

Now, let B = {p1, . . . , pr} be the minimal set of primes such that

β1, . . . , βk ∈ spanQ

{
log p1

2π
, . . . ,

log pr
2π

}
.

Notice that k ≤ r <∞ and

α1, . . . , αk ∈ V ⊂ spanQ

{
log p1

2π
, . . . ,

log pr
2π

, αk+1, . . . , αm

}
.

Thus, there exists a positive integer N such that for all 1 ≤ i ≤ k we have

Nαi =
r∑
j=1

nij
log pj
2π

+
m∑

j=k+1

mijαj

for suitable integers nij and mij .
By the linear independence of α1, . . . , αm it is easy to see that the vectors

(ni1, ni2, . . . , nir), i = 1, . . . , k, are linearly independent over Q. Hence, as
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k ≤ r, for any real numbers b1, . . . , bk the matrices

A = (nij)1≤i≤k;1≤j≤r, (A|b) = (nij |bi)1≤i≤k;1≤j≤r,
where bT =(b1, . . . , bk), have rank k. Therefore for any real numbers b1, . . . , bk
the system of linear equations

A · x = b

has at least one solution.
Let θ′p, p ∈ B, be a solution of the above system with

bi = θi −
m∑

j=k+1

mij
θj
N

(i = 1, . . . , k).

In addition, we put θ∗p = Nθ′p for p ∈ B.
Now, recalling (3), we see that the elements of the set{

N
log p
2π

}
p∈M
∪
{

log p
2π

}
p∈B
∪ {αk+1, . . . , αm}

are linearly independent over Q for every finite set M of primes with
M ∩B = ∅.

Hence, by the Kronecker–Weyl theorem, for any real numbers θp, p ∈M ,
the set of real numbers τ satisfying the inequalities

max
k+1≤i≤m

∥∥∥∥ταi − θi
N

∥∥∥∥ < ε

N
,(4)

max
p∈M

∥∥∥∥Nτ log p
2π
− θp

∥∥∥∥ < ε,(5)

max
p∈B

∥∥∥∥τ log p
2π
− θ′p

∥∥∥∥ < ε

N
(6)

has a positive density, which can be explicitly calculated. Moreover, by the
definition of θ′p, p ∈ B, and the inequalities (4) and (6), we see that for
those τ ,

(7) max
1≤i≤k

‖Nταi − θi‖ < ε.

Thus, multiplying (6) by N completes the proof.

3. The main lemma

Lemma 3.1. Let G be an admissible domain such that G ⊂ {s ∈ C :
1/2 < σ < 1}, and {F1, . . . , Fn} ⊂ E be any acceptable set. Moreover,
let (αi)1≤i≤m be real numbers linearly independent over Q, (θi)1≤i≤m any
real numbers, and f1, . . . , fn functions which are analytic and non-vanishing
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on G. Then, for every ε > 0 and any set G0 ⊂ G0 ⊂ G, there exist a finite
set B = B(α1, . . . , αm) of primes and a sequence (θ∗p)p∈B of real numbers
such that the set of positive real numbers τ satisfying the inequalities

max
1≤j≤n

max
s∈G0

∣∣∣Fj(s+ iτ)|B − fj(s)
∏
p∈B

R−1
p (p−se(−θ∗p))

∣∣∣ < ε,

max
p∈B

∥∥∥∥τ log p
2π
− θ∗p

∥∥∥∥ < ε, max
1≤i≤m

‖ταi − θi‖ < ε

has a positive lower density.

Proof. We closely follow the proof of Lemma 1, Chapter 7 in [4], and
hence we shall be very brief.

First, using Lemma 2.2 we choose a set B = B(α1, . . . , αm) and real
numbers θ∗p, p ∈ B. Moreover, let J ⊂ {1, . . . ,m} be a maximal set of
indices such that the elements of the set

{αi}i∈J ∪
{

log p
2π

}
p∈P

are linearly independent over Q. Hence, as in the proof of Lemma 2.2, it is
clear that the elements αi, i ∈ J , complete a basis of V ∩ spanQ

{ log p
2π

}
p∈P

to a basis of V .
Let

f̃j(s) = fj(s)
∏
p∈B

R−1
p (p−se(−θ∗p)).

Fix ε > 0. Then from the definition of acceptability we see that there
exist a sequence Θk = (θ(k)

p ) ∈ Ω and a large integer k0 such that for each
k ≥ k0,

max
1≤j≤n

max
s∈G

|Fj,Mk
(s,Θk)− f̃j(s)| < ε,

where Mk is a finite set of primes p /∈ B.
Let k denote a generic integer greater than or equal to k0 and let N

have the same meaning as in the proof of Lemma 2.2. By continuity, if
maxp∈Mk

∥∥τ N log p
2π − θ(k)

p

∥∥ < δ for sufficiently small δ > 0, then

(8) max
1≤j≤n

max
s∈G

|Fj,Mk
(s+ iNτ, 0)− f̃j(s)| < ε.

Let Q = {p : p < y} \ B, where y is so large that Mk ⊂ Q. Now, using
the last lemma (see (4)–(6)) and the fact that Mk ∩ B = ∅ we see that the
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set A of positive numbers τ satisfying the inequalities

max
i∈J

∥∥∥∥ταi − θi
N

∥∥∥∥ < ε

N
,

max
p∈Mk

∥∥∥∥Nτ log p
2π
− θ(k)

p

∥∥∥∥ < δ,

max
p∈B

∥∥∥∥τ log p
2π
−
θ∗p
N

∥∥∥∥ < ε

N
(9)

has a positive density, which is equal to µ(D), where

D =
{
ω = (ω(1)

i )i∈J _ (ω(2)
p )p∈B∪Q ⊂ [0, 1]|J |+y : max

i∈J

∥∥∥∥ω(1)
i −

θi
N

∥∥∥∥ < ε

N
,

max
p∈Mk

‖ω(2)
p − θ(k)

p ‖ < δ, max
p∈B

∥∥∥∥ω(2)
p −

θ∗p
N

∥∥∥∥ < ε

N

}
.

Here _ denotes concatenation of sequences and µ denotes the (]J + y)-
dimensional Lebesgue measure.

Consider now I =
∑n

j=1 Ij , where

Ij =
1
T

�

AT

( � �
G

|Fj(s+ iNτ)|B − Fj,Mk
(s+ iNτ, 0)|2 db

)
dτ,

with db = dσ dt and AT = A ∩ [T0, T ]. We choose T0 so large that Fj are
analytic on σ > 1/2, |t| > T0.

Obviously
I ≤ 2S1 + 2S2,

where

S1 =
1
T

�

AT

( � �
G

n∑
j=1

|Fj,Q(s+ iNτ, 0)− Fj,Mk
(s+ iNτ, 0)|2 db

)
dτ,

S2 =
1
T

�

AT

( � �
G

n∑
j=1

|Fj(s+ iNτ)|B − Fj,Q(s+ iNτ, 0)|2 db
)
dτ.

We intend to show that I � ε2.
First we handle S1, which can be written as

S1 =
n∑
j=1

� �

G

(
1
T

�

AT

∣∣∣∣Fj,Q(s,(τ N log p
2π

))
−Fj,Mk

(
s,

(
τ
N log p

2π

))∣∣∣∣2 dτ) db.
By the Kronecker–Weyl theorem and the definition of the set J , the curve

γ(τ) = (ταi)i∈J _
(
τ

log p
2π

)
p∈B

_

(
τ
N log p

2π

)
p∈Q

is uniformly distributed mod 1.
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Then, by Theorem A.8.3 in [4], we have

lim
T→∞

1
T

�

AT

∣∣∣∣Fj,Q(s,(τ N log p
2π

))
− Fj,Mk

(
s,

(
τ
N log p

2π

))∣∣∣∣2 dτ
≤ (max

s∈G
|f̃j(s)|+ 2ε)2

�
· · ·

�

D
|Fj,Q\Mk

(s, ω)− 1|2 dµ,

where µ denotes the Lebesgue measure on R|J |+y.
Observe now that from the definition of D we have
�
· · ·

�

D
|Fj,Q\Mk

(s, ω)− 1|2 dµ = µ(D)
1�

0

· · ·
1�

0

|Fj,Q\Mk
(s, ω)− 1|2 dµ.

Finally, if we write Fj,Q\Mk
(s, ω) − 1 as a Dirichlet series and assume that

Mk contains all primes less than yk, then after some easy calculations we
obtain

1�

0

· · ·
1�

0

|Fj,Q\Mk
(s, ω)− 1|2 dµ ≤

∑
m>yk

1
m1+ε1

,

where ε1 < 2
3 dist(G, 1/2). Hence for sufficiently large T and k we have

S1 <
1
4
µ(D)ε2.

Arguing analogously to [4] we prove a similar estimate to S2. The modi-
fications needed are easy and can be left to the reader. As a result we obtain

I ≤ µ(D)ε2 as T →∞.
On the other hand, we know that

lim
1
T

�

AT

dτ = µ(D).

Finally, by Theorem A.2.7 from [4], there exists a set Y ⊂ AT such that
µ(Y )� T and for all τ ∈ Y ,

max
1≤j≤n

max
s∈G0

|Fj(s+ iNτ)|B − Fj,Mk
(s+ iNτ, 0)|2 < 2ε2.

Hence, recalling (7), (8), and multiplying (9) by N completes the proof.

4. The main theorem. In the proof of Theorem 4.2, which we regard as
the main result of this paper, we make use of the following famous Mergelyan
theorem [2].

Lemma 4.1. Let K ⊂ C be a compact set with connected complement
and f : K → C any function continuous on K and analytic in the interior
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of K. Then, for every ε > 0, there exists a polynomial P such that

max
s∈K

|f(s)− P (s)| < ε.

Theorem 1.1 is an immediate consequence of the following result and
Remark 2.1.

Theorem 4.2 (hybrid joint universality theorem). Let K ⊂ {s ∈ C :
1/2 < σ < 1} be a compact set with connected complement, {F1, . . . , Fn} ⊂ E
an acceptable set and f1, . . . , fn any functions continuous and non-vanishing
on K which are analytic in the interior of K. Moreover, let (αi)1≤i≤m be any
fixed sequence of real numbers linearly independent over Q. Then, for every
ε > 0 and any real numbers (θi)1≤i≤m, there exists a set A with a positive
lower density such that for all τ ∈ A,

max
1≤j≤n

max
s∈K

|Fj(s+ iτ)− fj(s)| < ε,(10)

max
1≤i≤m

‖ταi − θi‖ < ε.

Proof. As in the proof of Theorem 3 in [3], by the Mergelyan theorem,
we can assume that K = G for some admissible set G and fj are analytic
and non-vanishing on some simply connected set G1 such that G ⊂ G1 ⊂
G1 ⊂ {s : 1/2 < σ < 1}.

Let B have the same meaning as in Lemma 3.1 and let n1 denote the
number of its elements. Moreover, let

m0 = max
1≤j≤N

max
s∈G1

|fj(s)|, m1 = 1 + n1C
n1−1m0,

P =
∏
p∈B

(
1 +

∞∑
m=1

|a(pm)|p−1/2
)
,

where
0 < C−1 < min

p∈B
min

|z|≤1/
√

2
|Rp(z)|.

By continuity, for any ε > 0, we find δ = δ(ε) such that

max
p∈B

max
s∈G

|R−1
p (p−se(−Θ1))−R−1

p (p−se(−Θ2))| <
ε

m1P
,

whenever ‖θ(1)
p − θ(2)

p ‖ ≤ δ for p ∈ B.
Now, using Lemma 3.1, we see that the set of τ satisfying

max
1≤j≤n

max
s∈G

∣∣∣Fj(s+ iτ)|B − fj(s)
∏
p∈B

R−1
p (p−se(−θ∗p))

∣∣∣ < ε

m1P
,(11)
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max
1≤i≤m

‖ταi − θi‖ < ε,(12)

max
p∈B

∥∥∥∥τ log p
2π
− θ∗p

∥∥∥∥ < δ(13)

has a positive lower density.
Using (13) and the inequality

(14)
∣∣∣ n∏
j=1

aj −
n∏
j=1

bj

∣∣∣ ≤ Rn−1
n∑
j=1

|aj − bj |,

which holds for any complex numbers aj , bj , j = 1, . . . , n, such that |aj |, |bk|
≤ R, we deduce for s ∈ G that∣∣∣fj(s) ∏

p∈B
R−1
p (p−se(−θ∗p))− fj(s)

∏
p∈B

R−1
p (p−s−iτ )

∣∣∣
≤ m0

∣∣∣ ∏
p∈B

R−1
p (p−se(−θ∗p))−

∏
p∈B

R−1
p (p−s−iτ )

∣∣∣
≤ m0n1C

n1−1 max
p∈B
|R−1

p (p−se(−θ∗p))−R−1
p (p−s−iτ )|

≤
(

1− 1
m1

)
ε

P
.

Consequently, using (11) we have

max
1≤j≤n

max
s∈G

∣∣∣Fj(s+ iτ)|B − fj(s)
∏
p∈B

R−1
p (p−s−iτ )

∣∣∣ < ε

P
.

Multiplying the last inequality by |
∏
p∈B Rp(p

−s−iτ )| and noticing that this
factor is ≤ P , we obtain (10), and the result follows.

5. Some applications. We first briefly present two evident consequences
of the main theorem. We omit details of the proofs because they are almost
the same as in [4, Chapter VII, Section 3.4].

Corollary 5.1. Let {F1, . . . , Fn}∈E be an acceptable set, and α1, . . . , αm
real numbers linearly independent over Q. Then the image of the function
γ : R→ Cnk × Tm given by

γ(τ) = (F1(σ + iτ), . . . , F (k−1)
n (σ + iτ), eα1iτ , . . . , eαmiτ )

is everywhere dense in Cnk × Tm, where T = {s ∈ C : |s| = 1}.
Corollary 5.2. Let F1, . . . , Fn, α1, . . . , αm and T be as in Corollary 5.1.

Suppose Gj (1 ≤ j ≤ N) are continuous functions on Cnk × Tm such that
N∑
j=1

sj−1Gj(F1(σ + iτ), . . . , F (k−1)
n (σ + iτ), eα1iτ , . . . , eαmiτ ) = 0

for all s ∈ C. Then the functions Gj, j = 1, . . . , N , vanish identically.
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Proof. Proceeding by contradiction it suffices to choose an open set U ⊂
Cnk × Tm consisting of vectors z for which

|Gj(z)| > δ > 0 for some 1 ≤ j ≤ N.
Then, by Corollary 5.1, there exists a complex number s = σ+ iτ such that

(F1(σ + iτ), . . . , F (k−1)
n (σ + iτ), eα1iτ , . . . , eαmiτ ) ∈ U,

and the result follows.

Finally, we generalize Theorem 2 from [3]. By a general Dirichlet polyno-
mial we understand a function of the form

P (s) =
n∑
i=1

aie
−λis, where ai ∈ C, λi ∈ R.

Corollary 5.3. Let {F1, . . . , Fn} ⊂ E be an acceptable set and let
P1, . . . , Pn be non-zero general Dirichlet polynomials. Then for n ≥ 2 the
function

F (s) =
n∑
j=1

Pj(s)Fj(s)

has infinitely many zeros off the critical line σ = 1/2. Moreover, for every
1/2 < σ1 < σ2 < 1 the number of zeros of F (s) in the rectangle σ1 ≤ σ ≤ σ2,
0 < t < T is � T as T →∞.

Proof. Assume that

Pj(s) =
kj∑
l=1

a
(j)
l e−λ

(j)
l s.

Let {αi}1≤i≤m be a basis of the vector space over Q generated by all λ(j)
l ,

1 ≤ j ≤ n, 1 ≤ l ≤ kj . Choose an integer N such that for each 1 ≤ j ≤ n
and 1 ≤ l ≤ kj ,

λ
(j)
l =

∑
1≤i≤m

n
(l,j)
i

αi
N
, n

(l,j)
i ∈ Z.

We now follow closely the proof of Theorem 2 in [3]. Let σ0 be such that
1/2 < σ0 < 1. It is sufficient to show that for every δ0 > 0 the function F (s)
has � T zeros in |σ − σ0| < δ0, |t| ≤ T .

Since
∏n
j=1 Pj(s) does not vanish identically, there exist t0 > 0 and 0 <

δ < 1/2 such that Pj(s) 6= 0 in the disk |s − s0| ≤ δ, where s0 = σ0 + it0.
Let m0 = min1≤j≤n min|s−s0|≤δ |Pj(s)|, and let Aj be such that

n−1∑
j=0

Ajs
j = (s− s0)n−1.
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We define some constants:

H0 = max
j
|Aj |, m1 = max

j
max

1/2≤σ≤1

kj∑
i=1

|a(j)
i |e

−λ(j)
i σ, m2 = 2πmax

i,j,l
n

(l,j)
i ,

V = (2 + |t0|)n, M1 = max
(

2m1m2

m0
, N

(
m1 +

2H0V m
2
1m2

m2
0

))
.

Using Theorem 4.2 we obtain a set of real numbers τ satisfying

max
1≤j≤n

max
|s−s0|≤δ

∣∣∣∣Fj(s+ iτ)− Aj−1s
j−1

Pj(s)

∣∣∣∣ ≤ δn−1

M1
,

max
1≤i≤m

∥∥∥∥ ταi2Nπ

∥∥∥∥ ≤ δn−1

M1
.

For these τ and for |s− s0| ≤ δ we have

|Pj(s+ iτ)− Pj(s)| ≤ max
1/2≤σ≤1

kj∑
i=1

|a(j)
i | · e

−λ(j)
i σ · |e−iτλ

(j)
i − 1|.

From the choice of N and inequality (14) for R = 1 we have

|e−iτλ
(j)
i − 1| ≤ m2δ

n−1

M1
,

hence

|Pj(s+ iτ)− Pj(s)| ≤
m1m2δ

n−1

M1
.

Further, omitting some technical details (cf. [3]), we obtain

|Pj(s+ iτ)Fj(s+ iτ)−Aj−1s
j−1| < δn−1

n
.

Finally, we see that the set of real numbers τ satisfying
max
|s−s0|=δ

|F (s+ iτ)− (s− s0)n−1| < δn−1

has a positive lower density, and the result follows from the classical Rouché
theorem.
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