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Integer points close to convex hypersurfaces
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1. Introduction. Let C be the boundary surface of a strictly convex
bounded d-dimensional body. Strictly convex means that if P and Q are
points on C, then points on the line segment PQ between P and Q lie in
the convex body, but not on its boundary C. Let MC denote the dilation
of C by a factor M . Andrews [1], [2], proved that the number of points of
the integer lattice on MC is

(1) O(Md(d−1)/(d+1)),

as M tends to infinity. Strict convexity is necessary because a part of a
(d − 1)-dimensional hyperplane in the boundary C can give as many as a
constant times Md−1 integer points for infinitely many values of M .

We consider the integer points within a distance δ of the hypersurface
MC. The two-dimensional case has been well studied ([12], [5], [9], [6], [10]
and [11]). More recently the author [15] has examined the three-dimensional
case. Introducing δ requires some uniform approximability condition on the
surface C, usually expressed in terms of upper and lower bounds for deriva-
tives and determinants of derivatives. Let A be the (d − 1)-dimensional
volume of C. The search region has d-dimensional volume

(2) (2Aδ +O(δ2))Md−1,

and this is known to be the number of integer points on average over trans-
lations of the surface MC. To obtain an asymptotic formula one considers
the Fourier transform of the convex body, with conditions at least as far as
the 6dth derivatives in order to estimate the multiple exponential integrals.
Hlawka [8] obtained an asymptotic formula with error of size (1); see also
Krätzel [13]. Under the C∞ hypothesis of a convergent Taylor series, the
error term in the asymptotic formula has been improved, most recently by
Müller [18].
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We derive an upper bound for the number of integer points within a
distance δ of the hypersurface. We require only that C has a tangent hyper-
plane at every point, and that any two-dimensional cross-section through the
normal at some point P consists (in a neighbourhood of P ) of a plane curve
C ′ with continuous radius of curvature bounded away from zero and infinity.

Curvature Condition (with size parameter M). For any point P on
C and any two-plane Π through the normal to C at P , let C(Π,P ) be the
closed plane curve C∩Π. Then C(Π,P ) is a twice differentiable plane curve
with radius of curvature % lying in the range

(3) c0M + 1/2 ≤ % ≤ c1M − 1/2,

where the constants c0, c1 and δ satisfy

(4) 1/M < c0 ≤ 1 ≤ c1 and δ < 1/4.

Local Curvature Condition. There is a constant κ such that for
C(Π,P ) defined as above, the points Q of C(Π,P ) with PQ ≤ κM form a
twice differentiable plane curve with radius of curvature satisfying (3).

In order to state our results, we set up some notation. Let C0 be the
locus of points at distance δ from C measured along the interior normals
to C, and let C1 be the locus of points at distance δ measured along the
exterior normals. Let E be the d-dimensional shell bounded by C0 and C1

so that E has thickness 2δ. Let S be the set of integer points in E, and let H
be the convex hull of S, so that H is a d-dimensional convex polytope ([3],
[4], [14], [17] and [16]). All points of S lie in H, but not all integer points on
the boundary of H lie in S.

By Lemma 2.1 of [15], the boundary surfaces C0 and C1 of the shell E
have a tangent hyperplane at each point Q, and their two-dimensional cross-
sections C(Π,Q) in planes normal to the tangent hyperplanes are twice
differentiable, with radius of curvatures in the range

(5) c0M ≤ % ≤ c1M.

Under the Curvature Condition, the shell E containing S, the set of integer
points, lies in a d-hypersphere of radius R = c1M . The volume Vd and
surface content Sd of this sphere is given by the formulae (see [19])
(6) Vd = αdR

d, Sd = dαdR
d−1,

where

(7) α2k =
πk

k!
, α2k+1 =

22k+1πkk!
(2k + 1)!

, αd ≤ 6,
αd
αd−1

≤ π,

and for d ≥ 2,
(8) dαd ≤ (2π)d−1.

We can now state our results.
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Theorem 1.1. Suppose that C is a convex hypersurface in d-dimensional
Euclidean space Ed (d ≥ 3), satisfying the Curvature Condition at size M
(so that C is contained in a hypersphere of radius c1M). Then the total
number, N , of integer points lying either on C, or within a distance δ of C,
is bounded by

(9) N ≤ 23d2+5d−7d!
αd−1

(
c1
c0

)d−1

((c1M)d(d−1)/(d+1) + 29δ(c1M)d−1).

Theorem 1.2. Suppose that C is a convex hypersurface in d-dimensional
Euclidean space Ed (d ≥ 3), satisfying the Local Curvature Condition at
size M (so that C is contained in a hypersphere of radius c1M), with

(10) M ≥ 100δc1/κ2.

Then N , the total number of integer points lying either on C, or within a
distance δ of C, satisfies the same bound (9) as in Theorem 1.1.

2. Major arcs

Definition. It is helpful in many problems to separate “major arcs”,
regions where there is good Diophantine approximation, from “minor arcs”,
regions where there is not. In this paper a major arc can be described in-
formally as a region U of the shell E such that the convex hull of all the
integer points in U is contained in the intersection of E with some hyper-
plane. Hence U can be of dimension j, with j = 1, . . . , d− 1.

For each major arc we are interested in the integer points which lie
within a distance δ from the hypersurface C. In the preceding paper [15]
we showed that the integer points lie in clusters around the vertices of the
convex hull H, which we call components of a major arc. We also observed
that at most two one-dimensional components can lie on the same straight
line. Higher dimensional components are, however, not as simple and for
d− 1 ≥ j ≥ 2, there can exist many j-dimensional components on the same
j-dimensional plane.

Each j-dimensional component of a major arc has maximum diameter
equal to the maximum length of a component of a one-dimensional major
arc. By Lemma 4.1 of [15] this is

(11) ≤ 4
√
δc1M.

Hence a j-dimensional component is contained within a j-dimensional hy-
percube of volume

(12) ≤ (4
√
δc1M)j .

Lemma 2.1. Let Π be a hyperplane with equation

n · x = D,
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where n is a primitive integer vector, and D is an integer. Then the integer
points of Π form a lattice with determinant |n|.

Proof. This is Lemma 4.4 of [15].

Lemma 2.2. Let Λ be a j-dimensional lattice of determinant n, 1 ≤ j
≤ d. Let U be a convex set in the j-plane of Λ, with j-dimensional volume V ,
containing K points of the lattice Λ. Then one of the following two cases
holds:

(1) Major arc case: All the points of Λ in the set U lie on a (j − 1)-
dimensional plane.

(2) Minor arc case:

K ≤ j! V
n

+ j ≤ (j + 1)!
V

n
.

Proof. This is Lemma 4.5 of [15].

3. Vertex components. For each point P in our shell E, there exists
a normal to the hypersurface C, meeting the outer boundary surface C1

normally at a point R1 and the inner boundary surface C0 normally at a
point R0. We call R0 and R1 the normal projections of P onto C0 and C1 re-
spectively. The vertices of our convex polytopeH must, by definition, lie in E
and for every other non-vertex integer point in E there must exist a nearest
vertex. This argument follows the account in [15] of the 3-dimensional case.

Definition. Let P be a point of S in the shell E and R1 the normal
projection of P onto C1. Let V be a vertex of the convex hull H and E′ the
plane sectional strip of E containing V , P and R1. If the line segment R1V
lies entirely within the closed strip E′, then we say that P lies in the vertex
component S(V ) of S.

Lemma 3.1. Every point P of S belongs to some vertex component S(V ).

Proof. The line segment PR1 cuts the boundary of the convex hull H at
some point Q between P and R1 inside E, so that Q lies in some hyperplane
face F of H. If Q is a vertex of H then P belongs to S(Q) as QR1 will lie
on the line segment R0R1 inside E.

We now assume that the point Q is not a vertex of H and triangulate the
facet F of H containing Q so that Q lies in some simplex W = V1 . . . Vd. If
the line segment QVi does not enter the interior of the convex set bounded
by C0 then neither does R1Vi, implying that P lies in S(Vi).

If P lies in no S(Vi) then each line segment QVi on F cuts the interior
of C0 in some point Qi also on F but not in E. The whole convex simplex
Q1 . . . Qd therefore lies strictly inside C0 and contains Q. Hence, Q is not
in E, which is impossible, since Q lies on the line segment R0R1, which is
strictly inside E. This contradiction shows that for some i, the line segment



Integer points close to convex hypersurfaces 77

ViQ lies in E and so ViR1 lies in E and P is in the component corresponding
to Vi.

Lemma 3.2 (Spacing lemma). Let V be a vertex of the convex hull H.
Let P be a point of S not in the component S(V ) of V . Let R1 and R2 be
the respective normal projections of P and V onto C1. Then

(13) R1R2 >
√
c0δM

and the angle between the normals to C1 at R1 and R2 is

(14) >
1
c1

√
c0δ

M
.

Proof. This is Lemma 5.2 of [15]. The number of dimensions does not
affect the geometry of the two-dimensional section.

As each integer point P in S belongs to at least one component S(V )
labelled by some vertex V of the convex hull H, components labelled by
different vertices may well overlap and different vertices of the convex hull
may be close together. We pick a well-spaced set of vertices of H as follows.
Pick a vertex V1, and let the enlarged component S′(V1) be the union of all
components S(V ) with V in S(V1).

Now pick a vertex V2 not in S′(V1), and form the enlarged component
S′(V2). We pick Vi+1 not in S′(V1), . . . , S′(Vi), and so on until all of the
vertices V of the convex hull H lie in some enlarged component.

Lemma 3.3 (Thickness lemma). Let S′(V ) be an enlarged component
and let R2 be the normal projection of V onto C1. Let P be a point in
S′(V ) and let R1 be the normal projection of P onto C1. Then the distance
h of P from the tangent plane at R2 satisfies

(15) h ≤ 52δc1/c0,

and

(16) R1R2 ≤ 10
√
δc1M.

Proof. This is Lemma 5.3 of [15]. The number of dimensions does not
affect the geometry of the two-dimensional section.

Remark. As with the three-dimensional case in [15], we are ultimately
working towards a shelling argument. This uses the property that if we can
obtain a bound valid for δ sufficiently small, then we can deduce a possible
weaker bound for large δ by dividing the shell E into concentric shells Er,
1 ≤ r ≤ R, of thickness δ0, bounded by shrunken copies of the exterior
hypersurface C1 of E. By inequality (5), we have a uniform upper bound
of c1M for the sectional radius of curvature at any point on each shell Er.
Hence, when regarding maximum sectional radius of curvatures, we can work
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within the general shell boundary C1, whose sectional radius of curvature is
also ≤ c1M .

Lemma 3.4 (Flatness lemma). Let S′(V ) be an enlarged vertex compo-
nent of our convex hull H. If

(17) δ < δ0 =
(

c0
22d5d−113d!c1

)2/(d+1)

(c1M)−(d−1)/(d+1),

then all the points of S′(V ) lie on a hyperplane through the vertex V .

Proof. Let P be a point of S′(V ) and let R1 and R2 be the normal
projections of P and V onto C1. All points P of S′(V ) lie within a distance
52δc1/c0 from the tangent hyperplane at R2, and by (16),

PV ≤ R1R2 ≤ 10
√
δc1M.

Hence, the set of integer points S′(V ) all lie within a rectangular box L, of
d-dimensional volume Vol(L), with

(18) Vol(L) ≤ 52δc1
c0

(20
√
δc1M)d−1 <

1
d!
,

where we have used the assumption (17). Therefore, by Lemma 2.2, the
major arc case holds, and all points of the enlarged vertex component S′(V ),
including V itself, lie on a hyperplane.

Lemma 3.5 (Approximate tangency). Let S′(V ) be an enlarged compo-
nent. Let T be the point of C1 closest to V . Let P be another point of S′(V ),
and let g be the integer vector V P . Then the angle α between V P and the
normal to C1 at T satisfies

(19) |cosα| ≤ 52δc1
c0|g|

.

Proof. This is Lemma 5.5 of [15]. The number of dimensions does not
affect the geometry of the two-dimensional section.

Lemma 3.6 (Sums of reciprocal vector lengths). For j = 1, . . . , d− 1 we
have

(20)
∑

1≤|e|≤E

1
|e|j
≤ 22d+jEd−j .

Proof. Applying the Cauchy condensation method, we divide the normal
vectors into ranges

F/2 < |e| ≤ F, F = 1, 2, 4, . . . , 2K ,

where 2K is the largest power of 2 less than or equal to E. The number of
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integer vectors in this range is

≤ (2F + 1)d − (F + 1)d ≤
d∑
j=0

(
d

j

)
(2d−j − 1)F d−j

≤ F d(3d − 2d) ≤ 22d−1F d,

so that ∑
F/2<|e|≤F

1
|e|j
≤ 22d−1F d

(
2
F

)j
= 22d+j−1F d−j .

Summing over the ranges for F , we have∑
1≤|e|≤F

1
|e|j
≤ 22d+j−1(1 + (21)d−j + (22)d−j + · · ·+ (2K)d−j)

= 22d+j−1 (2d−j)K+1 − 1
2d−j − 1

≤ 22d+j2(d−j)K ≤ 22d+jEd−j .

Definition. Let R be the normal projection of V onto the outer sur-
face C1. We define the reach, U(V ), of the enlarged vertex component S′(V )
to be the set of points on C1 such that for all points P ∈ U(V ) we have

(21) PR ≤ 10
√
δc1M.

By (16), if Q is an integer point in S′(V ), the normal projection R1 of Q
onto the surface C1 lies in U(V ).

Lemma 3.7 (Enlarged vertex components and the Local Curvature Con-
dition). If

(22) M ≥ 100δc1/κ2,

then the Local Curvature Condition with respect to R holds at all points R1

in the reach of S′(V ).

Proof. Let P be a point of C1 in U(V ). By (21) and (22),

PR ≤ 10
√
δc1M ≤ κM,

which is the threshold for the Local Curvature Condition.

Lemma 3.8. In d-dimensional space, the number of integer points of S
in E that lie strictly inside the convex hull H of S is

(23) ≤ 2δd!αdd(c1M)d−1.

Proof. This is Lemma 4.3 of [15].

Let S(H) be the set of integer points in S that lie on the boundary of
the convex hull H. The rest of this paper is devoted to the study of S(H).
The points of S(H) fall into enlarged vertex components, where an en-
larged vertex component, S′(V ), of S(H) is either full d-dimensional or it
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lies strictly on some j-dimensional hyperplane that contains the vertex V
with 0 ≤ j ≤ d− 1.

Lemma 3.9. Let fd−1 be the number of (d − 1)-dimensional hyperplane
faces of the convex hull H. Then

(24) fd−1 ≤ 2(3αdd!)d/(d+1)(c1M)d(d−1)/(d+1) ≤ 36d!(c1M)d(d−1)/(d+1).

Proof. This is Theorem 3.4 of [15], where we have used (7) to obtain the
second inequality.

Lemma 3.10. For 0 ≤ j ≤ d− 2, let fj be the number of j-faces (that is,
j-dimensional faces) of the convex hull H. Then

fj ≤ 2(3αdd!)d/(d+1)(2(j + 1)c1M)d(d−1)/(d+1)(25)

≤ 36d!(2(j + 1)c1M)d(d−1)/(d+1).

Proof. This is Theorem 3.6 of [15].

Lemma 3.11. Let R = c1M and let F be a facet or hyperplane face of
H that lies in a hyperplane Ψ with outward normal n. Let X be the point of
C1 at which n is the outward normal. Let h be the distance from X along
the inward normal to the nearest point Y on the hyperplane Ψ . Let E′ be
the (d − 1)-dimensional section of E contained in Ψ , so that E′ contains
all parts of the face F that lie in the shell E. Then the (d− 1)-dimensional
volume V of E′ is bounded above by

(26) V ≤ 2(d+9)/2dδ(c1M)(d−1)/2h(d−3)/2.

Proof. This is Lemma 4.2 of [15].

4. Boundary components. Let S?(Vi) be the subset of S′(Vi) con-
sisting of integer points on the boundary of H. We will call this a boundary
component. We have shown that for each enlarged vertex component S′(Vi),
if δ is sufficiently small then S′(Vi) lies in a hyperplane and so S?(Vi) lies in
the same hyperplane.

The dimension of the integer point set S?(Vi) is defined to be the least e
for which S?(Vi) lies in an e-dimensional hyperplane, and |S?(Vi)| to be the
number of elements of S?(Vi) in S. When e = 0 we merely have to count the
vertices of H. When e = d, the points of the enlarged vertex component lie
on two or more hyperfaces of H, and we use a volume argument (Lemma
4.3 below). When e = d − 1 we have a straightforward but complicated
estimation (Lemma 4.2 below). For intermediate dimensions 1 ≤ e ≤ d−2 we
consider “girdles” of parallel planes and use a solid angle spacing argument.
This takes its simplest form when e = 1 (Lemma 4.1 below). The cases
2 ≤ e ≤ d − 2 require more combinatorial geometry and will be considered
in the next section.
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We define a one-dimensional girdle to be the set of all the boundary
components S?(V ) of H which are one-dimensional and which lie paral-
lel to some primitive integer vector e. When considering the j-dimensional
boundary components with j ≤ d − 2, we must also take into account the
possibility that many of these components may be parallel. To clarify the
parallel condition in higher dimensions, we introduce the idea of degrees of
parallelism as described in [19].

Definition. Let Π1 and Π2 be two planes of dimension p and q (p ≥ q)
respectively in Ed that have no point in common. Let Ψ be the plane of least
dimension d that contains both Π1 and Π2. Let r = p + q − d. Then Π1

and Π2 intersect in an r-plane at infinity and we say that Π1 and Π2 are
(r + 1)/q-parallel.

If p = q and r = p− 1, then d = p+ 1, and Π1 and Π2 are contained in
the (p+ 1)-plane Ψ . We say that Π1 and Π2 are completely parallel. When
this occurs, then through each point O in Ψ there is a unique line in Ψ that is
normal to both Π1 and Π2. If two normals are drawn through two points O,
O′, cutting Π1 and Π2 in A, B and A′, B′ then ABB′A′ is a rectangle and
AB = A′B′. The distance AB is called the distance between the completely
parallel p-planes.

We deduce that if two completely parallel p-planes share a common point,
then they are in fact the same p-plane.

In contrast to complete parallelism, we again refer to [19] in order that
we may clarify complete orthogonality in higher dimensions.

Definition. Through any point O in Ed we can find d lines that are
all mutually perpendicular. We begin with a line l1. All lines perpendicular
to l1 through O form a (d − 1)-plane Π1 whose normal vector at O is l1.
Let l2 be one of these lines and let Π2 be the (d − 1)-plane whose normal
vector at O is l2. Then all lines perpendicular to both l1 and l2 at O lie in the
(d−2)-plane that is the intersection ofΠ1 andΠ2. Let l3 be one of these lines.
Continuing in this manner we create a system of d lines l1, . . . , ld that are
all mutually perpendicular. Any p of these lines determine a p-plane Ψp, and
the remaining d− p lines determine a (d− p)-plane Ψd−p. These two planes
only intersect at O and have the property that every line of Ψp through O is
perpendicular to every line of Ψd−p through O. The two planes Ψp and Ψd−p
are said to be completely orthogonal.

We deduce that for Ψp, defined as above and containing the point O,
there exists a unique (d− p)-plane Ψd−p that is completely orthogonal to Ψp
through O. Hence for a given system of d mutually orthogonal lines in Ed
and any point O, for each partition of the lines into two sets containing p
and d − p lines there exists a unique pair of completely orthogonal planes,
Ψp and Ψd−p, that intersect only at O.
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Lemma 4.1. The number of integer points on one-dimensional boundary
components is estimated by

(27)
∑

dimS?(Vi)=1

|S?(Vi)| ≤
26d−133c

(d−1)/2
1 πd−1

αd−1c
(d+1)/2
0

δ(c1M)d−1.

Proof. In the proof of Lemma 6.1 of [15] we noted that at most two
one-dimensional boundary components can lie on the same straight line.

We consider all the boundary components S?(Vi) which are one-dimen-
sional lying parallel to some primitive integer vector e. Suppose that the
component contains l points of S(H), where

(28) L+ 1 ≤ l ≤ 2L

for some L equal to a power of two. We can take g = (l−1)e in Lemma 3.5,
with

|g| ≥ (l − 1)|e| ≥ L|e|.
In Lemma 3.5 the angle α between the vector e and the normal to C1 at T ,
the point of C1 nearest to V , satisfies

|cosα| ≤ 52δc1
c0L|e|

.

Hence

(29)
∣∣∣∣π2 − α

∣∣∣∣ ≤ 26c1πδ
c0L|e|

.

We want to discuss the spacing of the vertices Vi that label the enlarged
components S′(Vi) and so the boundary components S?(Vi). Each Vi has a
normal projection Ti on C1. Consider a d-dimensional sphere B of radius
c1M . We map Ti on C1 to the point Wi on B where the outward normal n
to B is parallel to the outward normal to C1 at Ti.

Let Vi and Vj be distinct vertices labelling enlarged vertex components.
Since Vj /∈ S(Vi), we have

TiTj >
√
c0δM,

by (13) of Lemma 3.2. Since C1 has sectional radii of curvature at most
c1M ,

WiWj ≥ TiTj >
√
c0δM.

Hence d-dimensional balls Bi of radii 1
2

√
c0δM , centred at the points Wi

on B, are disjoint.
The d-ball Bi meets the surface of the d-sphere B in a (d−1)-dimensional

set Ai which contains the centre Wi of Bi and is a (d− 1)-ball in spherical
geometry. As the Bi are disjoint, the (d − 1)-dimensional volumes of the
sets Ai, on the boundary surface of the d-sphere Bi, are also disjoint and do
not overlap. Hence different sets S′(Vi) correspond to disjoint sets Ai, with
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centre Wi, on the surface of the d-sphere B. The (d − 1)-volume of Ai is
greater than the (d− 1)-volume of the intersection of a hyperplane through
Wi with Bi, which is

(30) αd−1(
√
c0δM/4)d−1.

As Vi ∈ S?(Vi) and S?(Vi) ⊆ S′(Vi), different sets S?(Vi) also correspond to
disjoint sets Ai, with centre Wi, on the surface of the sphere B.

For each vector e, there is an equatorial hyperplane of the d-sphere B
at right angles to e. By (29) the point W on the surface of B, where the
normal is parallel to the normal n to C1 at T , lies

≤ 26πδc1M
c0L|e|

from the equatorial hyperplane measured along the surface of B. As stated,
the set Ai is the intersection of the surface of B with a d-ball of radius
1
2

√
c0δM , so it forms a (d− 1)-ball in the spherical geometry of the surface

of B, whose radius in spherical geometry is

≤ π

2

√
c0δM

4
≤ π

√
c0δM

16
4
√
δc1M

L|e|
=
πδc1M

L|e|

(
c0
c1

)1/2

≤ πδc1M

c0L|e|
,

by (4) and (11).
Hence, each point of Ai lies within a distance

≤ 26πδc1M
c0L|e|

+
πδc1M

c0L|e|
=

27πδc1M
c0L|e|

from the equatorial hyperplane, measured along the surface of the d-sphereB.
We consider the “girdle” of one-dimensional boundary components S?(Vi)

which are parallel to the fixed vector e. The components in the girdle sat-
isfying (28) correspond to points Wi and sets Ai on the surface of B, such
that every point of Ai lies close to the equatorial hyperplane perpendicular
to e. The sets Ai lie in a (d−1)-annulus whose volume in spherical geometry
is at most

(2πc1M)d−2

(
54πδc1M
c0L|e|

)
=

27(2π)d−1δ(c1M)d−1

c0L|e|
.

By (30) the number of disjoint sets Ai in the girdle is at most

(31)
2d−1

αd−1(c0δM)(d−1)/2

27(2π)d−1δ(c1M)d−1

c0L|e|

=
27(4πc1)d−1Md−1/2

αd−1c
(d+1)/2
0 δ(d−3)/2L|e|

so the boundary components S?(Vi) in the girdle for which the number l of
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points is in the range (28) contribute at most

(32)
54(4πc1)d−1M (d−1)/2

αd−1c
(d+1)/2
0 δ(d−3)/2|e|

integer points. The estimate (32) refers only to components in the girdle for
which l lies in the range (28). We keep the condition (28), and sum over
primitive integer vectors e. Since the component is a straight line segment
lying within the strip E, by (11) we have

L|e| ≤ (l − 1)|e| ≤ 4
√
δc1M.

We note that if two boundary components lie on the same line, then the
vertices Vi which label the boundary components S?(Vi) must be differ-
ent, so they are counted separately in this argument. We use the bound
of Lemma 3.6 with j = 1 to sum over e, so that the number of points on
one-dimensional boundary components with l in the range (28) is at most

(33)
54(4πc1)d−1M (d−1)/2

αd−1c
(d+1)/2
0 δ(d−3)/2

· 22d+1

(
4
√
δc1M

L

)d−1

=
26d−233c

(d−1)/2
1 πd−1δ(c1M)d−1

αd−1c
(d+1)/2
0 Ld−1

.

Finally, we remove the condition (28) by summing L through powers of 2,
noting that

1 +
1
2k

+
1
4k

+
1
8k

+ · · · ≤ 2k

2k − 1
≤ 2.

Hence the total number of integer points of S(H) which lie on one-dimension-
al boundary components is at most

26d−133c
(d−1)/2
1 πd−1

αd−1c
(d+1)/2
0

δ(c1M)d−1.

Lemma 4.2. The number of integer points on (d−1)-dimensional bound-
ary components, when δ ≤ δ0, is estimated by

(34)
∑

dimS?(Vi)=d−1

|S?(Vi)|

≤ d!(d+ 1)!2
9d+17

2

(
c1
c0

)(d−1)/2(
(c1M)

d(d−1)
d+1 + 2

(
c1
c0

)(d−1)/2

δ0(c1M)d−1

)
.

Proof. Each (d− 1)-dimensional boundary component S?(Vi) is part of
a hyperplane. The intersection of all such hyperplanes forms a convex poly-
tope, H?, that is contained within the convex hull H, and the vertices of
H? are points of S(H). Let Ψ be a hyperplane face of H?, with outward
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normal vector n with respect to H? (a primitive integer vector). Let Z be
the point of C at which the normal m to C is parallel to n. Let m cut
Ψ in Y and the boundary surfaces C0 and C1 in W and X respectively
(Figure 1). Then m is also the outward normal to C0 at W , to C1 at X,
and the boundary hyperplane Ψ of the convex hull H? at Y . Let h = XY ,
h′ = WY be the heights of X above Ψ and of W above or below Ψ as de-
picted in Figure 1. Each component in the annulus E∩Π is convex. We apply

Fig. 1. Heights along the common normal m

Lemma 2.2 with j = d− 1. The set of points is strictly (d− 1)-dimensional
so we use the minor arc case of Lemma 2.2 with j = d − 1, and lattice
determinant n = |n| by Lemma 2.1. The volume V is estimated in Lemma
3.11, so we have an estimate for the number N(Ψ) of integer points that lie
in E ∩ Ψ :

N(Ψ) ≤ (d− 1)!V
|n|

+ d− 1 ≤ d!V
|n|

(35)

≤ d!2(d+9)/2dδ(c1M)(d−1)/2h(d−3)/2

|n|
.

We sum over all the outward normal vectors of the hyperplanes Ψ . We get
the total number, N , of integer points on the (d− 1)-boundary components
to be

(36) N ≤
∑

N(Ψ) ≤ d!2(d+9)/2dδ(c1M)(d−1)/2h(d−3)/2
∑ 1
|n|

.

We distinguish various cases according to the order of the points W,X, Y
and Z on the normal m. If h > 2δ then the point W lies between X and Y
and h′ > 0, as shown in Figure 1. By the Curvature Condition, a d-ball B0

of radius c0M , touching C0 at W , fits completely inside C0. Since h′ > 0,
the hyperplane Ψ cuts both C0 and B0. A “cap” of the hypersurface C0 lies
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above the hyperplane Ψ . The (d − 1)-dimensional surface content A of the
cap cut from C0 is greater than the content A′ of its projection onto the
plane Ψ . If h ≤ c0M + 2δ, then the equator of the d-ball B0 lies below Ψ ,
and A′ ≥ A′′, the (d−1)-dimensional content of B0∩Ψ . This was calculated
in the proof in [15] of our Lemma 3.11, so we have

(37) A ≥ A′ ≥ A′′ = αd−1((2c0M − h′)h′)(d−1)/2.

For given h0 ≥ 4δ, let Q(h0) be the number of hyperplane faces of H with
height in the range h ≥ h0. Let h′0 = h0 − 2δ (≥ 2δ).

First we consider the extreme case

(38) h ≥ c0M + 2δ.

The equatorial plane Ψ? parallel to Ψ through the centre of B0, cuts off a
cap from C0 of smaller (d− 1)-dimensional content A?. Then A? is greater
than or equal to half the surface content of the ball B0, which is greater
than B0 ∩ Ψ?, so that

(39) A ≥ A? ≥ 1
2
dαd(c0M)d−1 ≥ B0 ∩ Ψ? = αd−1(c0M)d−1.

The boundary content of C0 is less than or equal to that of a d-sphere of
radius c1M ,

(40) ≤ dαd(c1M)d−1.

Let QE be the number of “extreme faces” satisfying (38). Dividing the upper
bound (40) by the lower bound (39) gives

(41) QE ≤
dαd(c1M)d−1

αd−1(c0M)d−1
=

dαd
αd−1

(
c1
c0

)d−1

= λE ,

say.
Secondly we consider the usual case

(42) h ≤ c0M + 2δ,

so that h′0 = h0 − 2δ ≤ h− 2δ ≤ c0M . Then from (37),

(43) A ≥ αd−1((2c0M − h′)h′)(d−1)/2 ≥ αd−1((2c0M − h′0)h′0)(d−1)/2.

Let QU (h0) be the number of “usual” faces with height h ≥ h0 satisfy-
ing (42). Dividing the upper bound, (40), by the lower bound, (43), for this
case gives

(44) QU (h0) ≤ dαd(c1M)d−1

αd−1((2c0M − h′0)h′0)(d−1)/2
.

We simplify the upper bound (44). When 4δ ≤ h0 ≤ c0M + 2δ, then 2δ ≤
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h′0 ≤ c0M . This implies that
1

2c0M − h′0
=

1
2c0M − h0 + 2δ

≤ 1
c0M

and 1/h′0 ≤ 2/h0. Hence we can write

QU (h0) ≤ 2(d−1)/2dαd(c1M)d−1

αd−1(c0Mh0)(d−1)/2
(45)

≤ dαd
αd−1

(
c1
c0

)(d−1)/2(2c1M
h0

)(d−1)/2

= λU

(
2c1M
h0

)(d−1)/2

,

say.
Each face Ψ is contained within the outer shell boundary C1, which itself

is contained within a d-hypersphere of radius c1M . Therefore all heights are
at most 2c1M , and we have

(46) Q(h0) ≤ QU (h0) +QE

≤ (λE + λU )
(

2c1M
h0

)(d−1)/2

≤ 2dαd
αd−1

(√
2 c1
c0

)d−1(c1M
h0

)(d−1)/2

≤ 2(d+5)/2d

(
c1
c0

)d−1(c1M
h0

)(d−1)/2

= λ1

(
c1M

h0

)(d−1)/2

,

say, where we have used (7). This result is valid for all faces with height
h ≥ h0 ≥ 4δ.

For a fixed height h0, the sum in (36) is maximal when as many short
vectors as possible are counted, up to the upper bound in (46). In the proof
of Lemma 3.6 we saw that there are at most 22d−1F d vectors in each of the
partitions and the inequality (20) is calculated assuming this maximum.

The total number of faces counted is

22d−1((20)d + (21)d + (22)d + · · ·+ (2k)d) = 22d−1 (2d)k+1 − 1
2d − 1

≥ 2d(k+1)+d−1 ≥ 2d(k+1).

Therefore, to ensure that all possible faces are counted, we require

2d(k+1) ≥ λ1

(
c1M

h0

)(d−1)/2

,

which implies that

2dk ≥ λ1

2d

(
c1M

h0

)(d−1)/2

.

Hence if

(47) E = λ
1/d
1

(
c1M

h0

)(d−1)/2d

≥ 2k ≥
(
λ1

2d

)1/d(c1M
h0

)(d−1)/2d
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in Lemma 3.6 with j = 1, then (36) is maximal. We have

(48)
∑

1≤|e|≤2k

1
|e|
≤ 22d+1

(
λ

1/d
1

(
c1M

h0

)(d−1)/2d)d−1

.

We now consider three cases.

Case 1:

(49) h ≥ 1
(c1M)(d−1)/(d+1)

≥ 4δ.

Let L be the total number of (d − 1)-faces satisfying (49). We partition
these (d−1)-faces into sets G1, . . . , Gn, according to their respective heights
hi, 1 ≤ i ≤ n, where hn > · · · > h1 ≥ 4δ. Let Li = |Gi|, the number of
hyperplane faces whose height is hi; let ni,1, . . . ,ni,Li be the normal vectors
of the faces in Gi and let

(50) σi =
Li∑
j=1

1
|ni,j |

.

By (47) we have
n∑
i=1

σi ≤
∑

1≤|e|≤2k

1
|e|
≤ 22d+1

(
λ

1/d
1

(
c1M

hi

)(d−1)/2d)d−1

.

Hence for each hi, there exists a real number τi, 0 < τi ≤ 1, with

(51) σi = τi22d+1

(
λ

1/d
1

(
c1M

hi

)(d−1)/2d)d−1

,

and

(52) 0 <
n∑
i=1

τi ≤ 1.

Let N(hi) be the number of integer points lying in Gi ∩ E. Then by (35)
and (51), we have

N(hi) ≤ d!2(d+9)/2dδ(c1M)(d−1)/2h
(d−3)/2
i

Li∑
j=1

1
|ni,j |

≤ d!2(d+9)/2dδ(c1M)(d−1)/2h
(d−3)/2
i τi22d+1

(
λ

1/d
1

(
c1M

hi

)(d−1)/2d)d−1

= λ2τiδ(c1M)(d−1)/2+(d−1)2/2dh
(d−3)/2−(d−1)2/2d
i ,

say. Summing over all heights hi gives N1, the total number of integer points
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contributed in this case, to be

(53) ≤ λ2δ(c1M)(d−1)(2d−1)/2d
n∑
i=1

τih
−(d+1)/2d
i .

The exponent of hi in (53) is negative, and as the hi are positive, the sum
is maximal when the hi are as small as possible and the τi are as large as
possible for the smallest hi. Hence we take

∑n
i=1 τi = 1 in (53), and

hi =
1

(c1M)(d−1)/(d+1)

for all i. Substituting for hi in (53) gives the total number of integer points
N1 contributed to be

(54) N1 ≤ λ2δ(c1M)
(d−1)(2d−1)

2d
+ d−1

2d

n∑
i=1

τi = λ2δ(c1M)d−1.

Case 2:

(55) 4δ ≤ h ≤ 1
(c1M)(d−1)/(d+1)

.

By Lemma 3.9, the maximum possible number of faces is

≤ 2(3αdd!)d/(d+1)(c1M)d(d−1)/(d+1).

Hence if

E = 4(3αdd!)1/(d+1)(c1M)(d−1)/(d+1)

≥ 2k ≥ 2(3αdd!)1/(d+1)(c1M)(d−1)/(d+1)

in Lemma 3.6 with j = 1, then (36) is maximal. We have

(56)
∑

1≤|e|≤2k

1
|e|
≤ 22d+1(4(3αdd!)1/(d+1)(c1M)(d−1)/(d+1))d−1.

Let N2 be the total number of integer points in this case. Then substituting
(56) into (36) yields

N2 ≤ d!2(d+9)/2dδ(c1M)(d−1)/2h(d−3)/2(57)

× 22d+14d−1(3αdd!)(d−1)/(d+1)(c1M)(d−1)2/(d+1).

Taking

h =
1

(c1M)(d−1)/(d+1)

to maximise (57) we have

(58) N2 ≤ λ3δ(c1M)
(d−1)2

d+1
− (d−3)(d−1)

2(d+1)
+ d−1

2 = λ3δ(c1M)d−1.

Case 3: 0 ≤ h ≤ 4δ. As in the previous case, we assume the maximum
number of short vector faces and we take h = 4δ to maximise (57). Let N3
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be the total number of integer points in this case. Then

N3 ≤ λ3δ(4δ)(d−3)/2(c1M)
(d−1)2

d+1
+ d−1

2

= λ34(d−3)/2(δc1M)(d−1)/2(c1M)(d−1)2/(d+1).

When

δ ≤ δ0 =
(

c0
22d5d−113d!c1

)2/(d+1)

(c1M)−(d−1)/(d+1)

= µ(c1M)−(d−1)/(d+1),

we have the bound

N3 ≤ λ3µ
(d−1)/22d−3((c1M)2/(d+1))(d−1)/2(c1M)(d−1)2/(d+1)(59)

= λ3µ
(d−1)/22d−3(c1M)d(d−1)/(d+1).

Finally, we add together the upper bounds for N1, N2 and N3 in (54),
(58) and (59) respectively. When δ = δ0 this gives the total number, N , of
integer points lying on the (d− 1)-dimensional boundary components to be

N ≤ (λ2 + λ3)δ0(c1M)d−1 + λ3µ
(d−1)/22d−3(c1M)d(d−1)/(d+1).

After simplification we find that

λ2 ≤ d(d+ 1)!23d+8

(
c1
c0

)d−1

, λ3 ≤ d!(d+ 1)!2(9d+17)/2,

and
2d−3µ(d−1)/2 ≤ 1,

where we have used (6). Hence, if δ ≤ δ0 then N does not exceed

d!(d+ 1)!2
9d+17

2

(
c1
c0

)(d−1)/2(
(c1M)

d(d−1)
d+1 + 2

(
c1
c0

)(d−1)/2

δ0(c1M)d−1

)
.

Lemma 4.3. The number of integer points on d-dimensional boundary
components, when δ = δ0, is estimated by∑

dimS?(Vi)=d

|S?(Vi)| ≤ 2(d+ 1)(3αdd!)d/(d+1)(2c1M)d(d−1)/(d+1)(60)

≤ 36(d+ 1)!(2c1M)d(d−1)/(d+1).

Proof. From (18), the d-dimensional boundary component S?(Vi) will
have a d-dimensional volume Vol(Hi), with

Vol(Hi) ≤
52δc1
c0

(20
√
δc1M)d−1.

Since δ = δ0 this gives a d-volume of at most 1/d!. Applying the minor arc
case of Lemma 2.2 gives

Ki ≤ (d+ 1)!Vol(Hi),
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where Ki is the number of integer points contained in S?(Vi). However, the
existence of a d-dimensional S?(Vi) in S′(V ) requires that Ki ≥ d+1, and so
if we consider δ = δ0, then Ki, the number of integer points in the boundary
component, is exactly d+ 1. The number of vertices of the convex hull is

≤ 2(3αdd!)d/(d+1)(2c1M)d(d−1)/(d+1),

by (25) in Lemma 3.10 with j = 1. Hence, when δ = δ0, the total number of
integer points in the d-dimensional boundary components is estimated by

(61) 2(d+ 1)(3αdd!)d/(d+1)(2c1M)d(d−1)/(d+1).

5. Girdles and lattice determinants. We now recall Minkowski’s
Second Theorem [7].

Lemma 5.1 (Minkowski’s Second Theorem). Let K be a convex body
symmetrical in the origin. Let Λ be a lattice. Let the successive minima of
K with respect to Λ be λ1, . . . , λd, defined by

λi = inf{λ > 0 : λKcontains at least i linearly independent vectors of Λ},
where

0 < λ1 ≤ · · · ≤ λd < +∞.
Then they obey the inequality

(62)
2dD(Λ)
d!

≤ λ1 . . . λdV (K) ≤ 2dD(Λ)

where V (K) is the volume of K and D(Λ) is the determinant of the lattice.

Corollary. Let Λ and D(Λ) be defined as above, with λ1, . . . , λd the
ordinary Euclidean lengths of the lattice vectors. Let K be the open unit
d-ball. Then the determinant or fundamental volume of the lattice satisfies

(63)
λ1 . . . λdαd

2d
≤ D(Λ) ≤ λ1 . . . λd.

Proof of Corollary. By construction, if e1, . . . , ed are the linearly in-
dependent vectors of Λ with respective Euclidean lengths λ1, . . . , λd, then
the ei are ordered by length. Let θi be the angle between ei+1 and the
i-dimensional plane lattice defined by e1, . . . , ei with determinant D(Λi).
Then

D(Λ) = λd sin θd−1D(Λd−1) = λdλd−1 sin θd−1 sin θd−2D(Λd−2)

= · · · = λ1 . . . λd

d∏
i=1

sin θi ≤ λ1 . . . λd.

The upper bound of (62) gives
λ1 . . . λdV (K)

2n
≤ D(Λ),

and taking V (K) = αd gives the required result.
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Here we introduce the idea of a j-dimensional girdle, 2 ≤ j ≤ d − 2,
with fixed basis vectors e1, . . . , ej . The vectors e1, . . . , ej through the origin
generate a j-dimensional lattice Λ in a j-plane Π0. Each j-girdle is therefore
defined to be a set of j-dimensional boundary components whose j-planes
Π are all completely parallel to Π0. The sets of integer points on each
j-plane Π are cosets of Λ, congruent to Λ by translation, and the number of
integer points lying on each j-girdle is related to the fundamental j-volume
or determinant of the lattice Λ. Conversely, the lattice Λ determines the
linearly independent vectors e1, . . . , ej in the Corollary to Lemma 5.1. We
write l(Λ) for the length λj of the longest basis vector ej and introduce the
following lemma to assist with our counting argument.

Lemma 5.2 (Sums of reciprocal lattice determinants). For k=1, . . . , d−1
we have

(64)
∑

l(Λ)≤E

1
(D(Λ))k

≤ (22d+2kEd−k)j

αkj
,

where the sum ranges over all possible j-dimensional lattice determinants,
j ≤ d − 1, whose basis vectors have length ≤ E. When we take E to be
the maximum possible length of a boundary component basis vector, then by
(16), E = 10

√
δc1M and

(65)
∑

l(Λ)≤E

1
(D(Λ))k

≤ (23d+k(5
√
δc1M)d−k)j

αkj
.

Proof. By the Corollary to Lemma 5.1, there are linearly independent
vectors ei, 1 ≤ i ≤ j, of the lattice Λ with

|e1| . . . |ej |αj
2j

≤ D(Λ) ≤ |e1| . . . |ej |.

Hence by Lemmas 5.1 and 3.6,∑
l(Λ)≤E

1
(D(Λ))k

≤
(

2j

αj

)k ∑
|e1|≤E

. . .
∑
|ej |≤E

1
|e1|k . . . |ej |k

≤
(

2j

αj

)k
(22d+kEd−k)j =

(22d+2kEd−k)j

αkj
.

By (16) the vectors |ei| are non-zero integer vectors with

(66) |ei| ≤ l(Λ) ≤ E = 10
√
δc1M,

so that∑
l(Λ)≤E

1
(D(Λ))k

≤ (22d+2k(10
√
δc1M)d−k)j

αkj
=

(23d+k(5
√
δc1M)d−k)j

αkj
,

which establishes the result.
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6. Summing the boundary components. When we consider a j-
dimensional boundary component S?(V ), 2 ≤ j ≤ d − 2, there are ge-
ometrical considerations. The points of S?(V ) lie on some j-dimensional
plane Π containing the vertex V . The lattice of integer points meets Π
is some j-dimensional lattice Λ with a basis consisting of j integer vectors
e1, . . . , ej . The points of S?(V ) lie in the set E, the shell bounded by the
surfaces C1 and C0. By the calculations of Lemma 3.3 the points of S?(V )
lie in a d-dimensional cylindrical slab G whose axis is the normal n to C1

at R, the point of C1 closest to the vertex V . The upper and lower faces of
the d-cylinder G lie in the tangent hyperplane F at R and in a completely
parallel hyperplane F ′, separated by a small distance

η = 52δc1/c0.

The upper and lower faces of the d-cylinder are (d − 1)-spheres of radius
10
√
δc1M by (16) of Lemma 3.3.

As defined at the beginning of Section 4, in d-dimensional space, through
a given point V on a j-plane Π, there exists a unique (d− j)-plane Ψ that
is completely orthogonal to Π.

Let W1 be a point of F ′ not in Π or Ψ and lying at a distance 10
√
δc1M

from the axis of the d-cylinder. As 2 ≤ j, d−j ≤ d−2, we can choose W1 such
that Y , the (two-dimensional) affine plane defined by n and W1, contains
at least one other point P of the j-plane Π in addition to the vertex V .
Then Y ∩ G is a rectangle containing P , R and V , and W1 is a corner of
the rectangle. Hence the line segment V P is also contained in Y ∩ Π. Let
k be the line V P produced in Y ∩Π, cutting the hyperplanes of the upper
and lower faces of the cylinder in W3 and W4. Let W2 be the corner of the
rectangle on F that is diametrically opposite W1 as depicted in Figure 2.

Fig. 2

We can construct in Y a line m, through V , that is orthogonal to the
line k. By the definition of completely orthogonal planes, all lines perpen-
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dicular to k and not in Π must lie in Ψ . Therefore the line m lies in Y ∩ Ψ
making an angle θ with n, the normal to the tangent hyperplane to C1 at R.

By construction, any vector lying wholly within the d-cylinder G has
length ≤W1W2, so that

W3W4 = η cosec θ ≤W1W2 = η cosecα.

By equation (16), the distance of points of S?(V ) from V is at most

r = 10
√
δc1M,

so that S?(V ) lies within a distance r of the line k in a j-dimensional
plane Π. Hence S?(V ) must be contained in a j-cylinder, G′, with axis k,
whose upper and lower faces are (j − 1)-spheres of radius r. The j-dimen-
sional volume of G′ is therefore

(67) αj−1r
j−1W3W4 = αj−1r

j−1η cosec θ.

Suppose that the j-dimensional boundary component S?(Vi) contains l points
of S, where

(68) L+ 1 ≤ l ≤ 2L

for some L equal to a power of two. By Lemma 2.2 in dimension j, the
convex hull of S?(V ) has j-dimensional volume

(69) Vol(S?(V )) ≥ l − j
j!

D(Λ) ≥ L− j + 1
j!

D(Λ) ≥ L

(j + 1)!
D(Λ),

where |S?(V )| lies in the range of (68).
Comparing (67) and (69), we see that

(70) sin θ ≤ (j + 1)!ηαj−1r
j−1

D(Λ)L
,

and for acute angles we can write

(71) θ ≤ π

2
sin θ ≤ π(j + 1)!ηαj−1r

j−1

2D(Λ)L
.

As stated before, a j-girdle is a set of j-dimensional boundary components
whose j-planes Π are all completely parallel. We want to count the number
of components in the girdle for which (68) holds for each L equal to a power
of two. Each boundary component S?(Vi) gives rise to a set Ai along the
surface of the sphere B, of radius c1M , introduced in the proof of Lemma 4.1.
The set Ai has a centre, the point Wi where the outward normal is parallel
to the line V R normal to C1. Corresponding to the unique pair of completely
orthogonal j- and (d − j)-planes Π and Ψ through V , there are diametric
planes of the sphere B, Π ′ parallel to Π, Ψ ′ parallel to Ψ , that form a unique
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completely orthogonal pair of planes through the centre of B. The distance
of Wi from Ψ ′, measured along the surface of B, is θc1M . The distance of
each point of Ai from Wi is

≤
√
c0δM/4,

so that the distance of each point of Ai from the (d− j)-plane Ψ ′ is

(72) ≤ θc1M +
√
c0δM/4 ≤ 2 max(θc1M, θ0c1M),

where

θ0 =
1
c1

√
c0δ

4M
.

There are two cases according to which term gives the maximum in (72).
In both cases we consider the maximum (d− 1)-dimensional surface region
available on the surface of the d-sphere B and relate this to the minimum
surface requirement for each set Ai on the surface of B. We note that if
more than one j-dimensional boundary component in a j-girdle of the convex
hullH lies on the same j-plane, then the vertices Vi which label the boundary
components S?(Vi) must be different, so they are counted separately in this
argument.

First we consider L so small that

(73)
π(j + 1)!ηαj−1r

j−1

2D(Λ)L
≥ π

2
sin θ ≥ θ ≥ θ0 =

1
c1

√
c0δ

4M
.

Then
π(j + 1)!ηαj−1r

j−1c1M

D(Λ)L
≥ 2 max(θc1M, θ0c1M).

The intersection of Ψ ′ with B is a (d − j)-dimensional sphere, B1, with
diameter 2c1M . The (d − j − 1)-dimensional surface of B1 is contained
within the (d− 1)-dimensional surface of B, and by (6) this is given by

(74) (d− j)αd−j(c1M)d−j−1.

The set Ai has distance at most 2θc1M from the (d − j)-plane Ψ ′ on the
surface of B in j further perpendicular directions, and so has cross-section
at most 4θc1M in these j dimensions. Hence the search region on the surface
of B has (d− 1)-dimensional volume at most

(d− j)αd−j(c1M)d−j−1(4θc1M)j ≤ (2πc1M)d−j−1(4θc1M)j

≤ (2πc1M)d−j−1

(
2π(j + 1)!ηαj−1r

j−1c1M

D(Λ)L

)j
,
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where we have used (8). By (30), the number of such sets A is at most

1
αd−1

(√
4

c0δM

)d−1

(2πc1M)d−j−1

(
2π(j + 1)!ηαj−1r

j−1c1M

D(Λ)L

)j

=
22(d−1)+j25j(j−1)13jαjj−1π

d−1((j + 1)!)jc
2d+j2+j−2

2
1

αd−1c
d+2j−1

2
0 (D(Λ)L)j

δ
j2+j−d+1

2 M
d+j2−j−1

2 .

The corresponding boundary components S?(V ) have at most 2L points.
We then sum over L = 2, 4, 8, . . . to get a contribution of at most

(75)
22d+j25j(j−1)13jαjj−1π

d−1((j + 1)!)jc
2d+j2+j−2

2
1

αd−1c
d+2j−1

2
0 (D(Λ))j

δ
j2+j−d+1

2 M
d+j2−j−1

2

points to S from all the boundary components in the girdle in the cases (73).
For ranges of L for which (73) is false we have

sin θ ≤ (j + 1)!ηαj−1r
j−1

D(Λ)L
<

2θ0
π

=
1
πc1

√
c0δ

M
,

θ ≤ π

2
sin θ < θ0 =

1
2c1

√
c0δ

M
,

2 max(θc1M, θ0c1M) < 2θ0c1M =
√
c0δM.

The sets Ai corresponding to the extended components with all L for which
(73) is false are disjoint, and they lie within a region of (d − 1)-volume at
most

(2πc1M)d−j−1(4θ0c1M)j ≤ (2πc1M)d−j−1(2
√
c0δM)j

= 2d−1(πc1)d−j−1(c0δ)j/2M (2d−j−2)/2,

using the same reasoning as that of the previous case.
By (30), the number of such sets Ai is at most

1
αd−1

(√
4

c0δM

)d−1

2d−1(πc1)d−j−1c
j/2
0 δj/2M (2d−j−2)/2

=
(

22d−2(πc1)d−j−1c
(j+1−d)/2
0

αd−1

)
δ(j+1−d)/2M (d−j−1)/2.

However small θ is, the integer points of S?(V ) lie in a j-dimensional cube
of j-volume

(20
√
δc1M)j ,

so if there are l ≥ j+ 1 integer points in S?(V ), by the minor arc case d = j



Integer points close to convex hypersurfaces 97

in Lemma 2.2,
l

(j + 1)!
D(Λ) ≤ l − j + 1

j!
D(Λ) ≤ (20

√
δc1M)j ,

so that

l ≤ (j + 1)!
D(Λ)

(20
√
δc1M)j

and the boundary components S?(V ) in the girdle for which (73) is false
contribute

≤ (j + 1)!
D(Λ)

(20
√
δc1M)j

22d−2(πc1)d−j−1c
j+1−d

2
0

αd−1
δ

j+1−d
2 M

d−j−1
2(76)

=
(j + 1)!22d+2j−25jπd−j−1c

j+1−d
2

0 c
2d−j−2

2
1

αd−1D(Λ)
δ

2j+1−d
2 M

d−1
2

integer points to S(H).
We use Lemma 5.2 with j = k to estimate the contribution of all bound-

ary components with L small in all j-girdles given by (75) as

(77)
23jd+2d+2j25j(d−1)13jαjj−1π

d−1((j + 1)!)jc(2d+jd+j−2)/2
1

αd−1α
j
jc

(d+2j−1)/2
0

× δ(d+1)(j−1)/2+1M (d−1)(j+1)/2

integer points, and the contribution of all boundary components with L
large from all j-girdles given by (76) as

(78)
(j + 1)!23jd+3j+2d−25jdπd−j−1c

(j+1−d)/2
0 c

(jd+2d−2j−2)/2
1

αd−1αj

× δ(d+1)(j−1)/2+1M (d−1)(j+1)/2.

After some calculation we find that

c
(2d+jd+j−2)/2
1

c
(d+2j−1)/2
0

≥ c(j+1−d)/2
0 c

(jd+2d−2j−2)/2
1 ,

αj−1

αj
≤ j, (j(j + 1)!)j ≥ (j + 1)!

αj
,

for all j ≥ 0, d ≥ 1, where we have used (4), (6) and (7) to obtain the above
inequalities. Hence we can write the sum of the two terms from (77) and
(78) as

(79) ≤ λj
(
c21
c20
δd+1(c1M)d−1

)(j−1)/2(c1
c0

)(d+1)/2

δ(c1M)d−1
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where we have written

λj =
23jd+2d+2j2+2j(5jπ)d−1(9j(j + 1)!)j

αd−1
.

We now consider the total number of integer points contributed by the
j-girdles in all boundary components with δ ≤ δ0, defined in (17). Hence

δd+1 < δd+1
0 =

(
c0

22d5d−113d!c1

)2

(c1M)−(d−1),

and (
c21
c20
δd+1(c1M)d−1

)(j−1)/2

≤
(

1
22d5d−113d!

)j−1

= µj ,

say, where µj is a constant depending only on d and j.
In this notation, the upper bound in (79) for the components with δ ≤ δ0

is

(80) λjµj

(
c1
c0

)(d+1)/2

δ(c1M)d−1.

Using the inequalities

9j

13j−1
≤ 9, j ≥ 1,

jj(j + 1)!j

d!j−1
≤ d!, j ≤ d− 2,

we can write

λjµj ≤
28d+3jd+2jd!

αd−1
.

Now
d−2∑
j=2

22j =
(2d − 8)(2d + 8)

12
≤ 22d−3,

and
d−2∑
j=2

23jd =
23d2 − 26d

26d − 23d
≤ 23d2−5d.

Hence we estimate the contribution of integer points from all j-dimensional
girdles, with 2 ≤ j ≤ d− 2, and δ ≤ δ0 as

(81) Ng ≤
23d2+5d−3d!

αd−1

(
c1
c0

)(d+1)/2

δ0(c1M)d−1.

Next, for δ ≤ δ0, we consider the integer points contributed by the boundary
components of dimension 0, 1, d−1 and d, along with the points lying strictly
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inside the convex hull H. These individual upper bounds correspond to (25),
(27), (34), (60) and (23) respectively, and adding them we have

(82) ≤ 2
d2+10d+18

2 d!
(
c1
c0

) d−1
2
(

(c1M)
d(d−1)

d+1 +
24

αd−1

(
c1
c0

) d−1
2

δ0(c1M)d−1

)
integer points. Combining (81) with (82) then gives the total number of
integer points lying within a distance δ0 from the convex hull H as at most

(83) 2
d2+10d+18

2 d!
(
c1
c0

) d−1
2
(

(c1M)
d(d−1)

d+1 +
2

5d2−22
2

αd−1

(
c1
c0

) d−1
2

δ0(c1M)d−1

)
.

This result is valid for a shell of thickness δ = δ0 and consists of terms
independent of δ (degree zero), and those with a factor of δ (degree one).

We cover the shell E of all extended vertex components, bounded inter-
nally by C0 and externally by C1, by R thinner concentric shells E1, . . . , ER
of thickness δ0. The distance between C1 and C0 along any inward normal
vector to these two surfaces is 2δ. Hence we choose R to be the smallest
such integer with

Rδ0 ≥ 2δ, (R− 1)δ0 < 2δ,

so that

(84) R < 2δ/δ0 + 1.

The shell Er consists of the points on some inward normal whose distance l
from the hypersurface C1 lies in the range

(r − 1)δ0 ≤ l ≤ rδ0.
Replacing δ with rδ0 in Lemma 2.1 implies that each shell Er will satisfy
the Curvature Condition, so that any two-dimensional plane sectional curve
of Er will lie in the range

c0M ≤ % ≤ c1M.

Therefore, (83) gives a uniform upper bound for the number of integer points
contributed by any shell Er. Now let

(85) η = δ0(c1M)(d−1)/(d+1) =
(

c0
22d5d−113d!c1

)2/(d+1)

≤ 1
26
.

Then

(86)
1
η

=
(

22d5d−113d!c1
c0

)2/(d+1)

≤ 2d+8 c1
c0

and

(87) δ0 =
η

(c1M)(d−1)/(d+1)
≤ 1

26(c1M)(d−1)/(d+1)
.

We are now ready to prove Theorems 1.1 and 1.2.
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Proof of Theorem 1.1. We multiply the upper bound (83) by the maxi-
mum number of shells allowed by (84). For the degree zero terms this yields

(88) ≤
(

2δ
δ0

+ 1
)

2
d2+10d+18

2 d!
(
c1
c0

) d−1
2

(c1M)
d(d−1)

d+1

≤ 2
d2+10d+20

2 d!
η

(
c1
c0

) d−1
2

δ(c1M)d−1 + 2
d2+10d+18

2 d!
(
c1
c0

) d−1
2

(c1M)
d(d−1)

d+1

≤ 2
d2+12d+36

2 d!
(
c1
c0

) d+1
2

δ(c1M)d−1 + 2
d2+10d+18

2 d!
(
c1
c0

) d−1
2

(c1M)
d(d−1)

d+1 .

For the degree one terms we have

(89) ≤
(

2δ
δ0

+ 1
)

23d2+5d−2d!
αd−1

(
c1
c0

)d−1

δ0(c1M)d−1

≤ 23d2+5d−1d!
αd−1

(
c1
c0

)d−1

δ(c1M)d−1 +
23d2+5d−2d!

αd−1

(
c1
c0

)d−1

η(c1M)
d(d−1)

d+1

≤ 23d2+5d−1d!
αd−1

(
c1
c0

)d−1

δ(c1M)d−1 +
23d2+5d−8d!

αd−1

(
c1
c0

)d−1

(c1M)
d(d−1)

d+1 .

Finally, we combine the terms from (88) and (89) to estimate the total
number of integer points by

≤ 23d2+5d−7d!
αd−1

(
c1
c0

)d−1

((c1M)d(d−1)/(d+1) + 29δ(c1M)d−1),

as required.

Proof of Theorem 1.2. In the proof of Theorem 1.1, we consider an en-
larged component S′(V ), where all the calculations for distances between
points on the outer surface C1 take place within the reach U(V ) of S′(V ),
with respect to V .

By Lemma 3.7, the Local Curvature Condition holds at all points in
U(V ), so the calculations which establish Theorem 1.1 are valid under the
weaker hypothesis of the Local Curvature Condition.
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