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Mahler measure of the Horie unit and Weber’s class number
problem in the cyclotomic Z3-extension of Q
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Takayuki Morisawa (Tokyo)

1. Introduction. Let p be a prime number and Q(µp∞) the cyclotomic
field of all p-power roots of unity. Let Bp,n be the unique real subfield of
Q(µp∞) which is cyclic of degree pn over Q. Then we call Bp,∞ =

⋃
n≥1 Bp,n

the cyclotomic Zp-extension of Q, and Bp,n the nth layer of this extension.
We denote the class number of Bp,n by hp,n. We consider the following
problem:

Weber’s Class Number Problem. Is hp,n equal to one for every
positive integer n?

Direct calculation only gives information on hp,n with small n. To obtain
information for large n, we study the `-part of hp,n for each prime number `.

Problem. Does a prime number ` divide hp,n for some positive integer n?

In the case ` = p, Iwasawa [I] proved that p does not divide hp,n. In the
case ` 6= p, Washington [Was] proved that the `-part of hp,n is bounded as
n tends to ∞. Recently Horie [H1]–[H3] developed an ingenious method to
attack hp,n by studying the Galois action on the Horie unit (cf. (2.1)).

In the case p = 2, Fukuda–Komatsu [FK1], [FK2] proved several results
by applying Washington’s method and Horie’s method. Moreover, Okazaki
[O] developed a theory for this problem making use of lower bounds for the
trace of the square of relative units and the Mahler measure of relative units,
where a relative unit is a unit ε of B2,n which satisfies NrB2,n/B2,n−1

(ε) = ±1.
In this paper, we investigate the case of p = 3. We will employ one new

idea which enables us to parallel the above works.
To ease notation, put ζn = exp(2π

√
−1/3n), Bn = B3,n and hn = h3,n.

Then Bn = Q(2 cos(2π/3n+1)). Masley [Ma] and van der Linden [Li] proved
the following:
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Theorem 1.1 (Masley). We have h1 = h2 = h3 = 1.

Theorem 1.2 (van der Linden). If the Generalized Riemann Hypothesis
is valid, then h4 = 1.

Horie [H2] proved the following:

Theorem 1.3 (Horie). Let ` ≥ 5 be a prime number and 3s the exact
power of 3 dividing `2 − 1. Put c = 2 · 3s−1 and

H(s) =
(

(3s−1 log(3/2) + (6s+ 4) log 3)c3(c− 1)(c−1)/2

(log 2) · 3(2s−1)(c−1)/4

)c
.

If ` does not divide h2s−2 and ` ≥ H(s), then ` does not divide hn for any
positive integer n.

Horie then treated small prime numbers ` to obtain the following:

Theorem 1.4 (Horie). Let ` be a prime number. If ` 6≡ ±1 (mod 9),
then ` does not divide hn for any positive integer n.

In this paper, we prove the following results by using the methods of
Fukuda–Komatsu, Horie and Okazaki:

Theorem A. Let ` ≥ 5 be a prime number and 3s the exact power of 3
dividing `2 − 1. Put

m` = 2s− 1 + [log3 `],

where [x] denotes the greatest integer not exceeding x. Then ` does not divide
hn/hm` for any n ≥ m`. Therefore, if ` does not divide hm`, then ` does not
divide hn for any positive integer n.

Remark 1.5. Friedman–Sands [FSW] give an explicit bound of the sta-
bilization on the `-part of the minus part of class groups in the cyclotomic
Z3-extension over imaginary abelian fields.

Theorem B. Let ` ≥ 5 be a prime number, n a positive integer and 3s

the exact power of 3 dividing `2−1. Put r = min{n, s} and c = 2 ·3r−1, and
denote by f the inertia degree of ` in Q(ζr)/Q. If `f > 2c/2 · c!, then ` does
not divide hn/hn−1.

This is analogous to a result of [O], which states that no prime number
` with `g > (2t−1)! divides h2,n for any n, where g = 1 or 2 according as
` ≡ 1 or −1 (mod 4) and 2t is the exact power of 2 dividing `g − 1.

In our case p = 3, we put L(s) = 23s−1 · (2 · 3s−1)!. Then Theorem B
implies that ` does not divide hn for any n if ` ≥ L(s). This lower bound
L(s) is smaller than Horie’s lower bound H(s) in Theorem 1.3. For example,
if ` ≡ 8, 10, 17, 19 (mod 27), that is, s = 2, then

H(2) = 22658623447201138884681.21742 . . .
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and

(1.1) L(2) = 5760.

We obtain the following result using Theorem A, an algorithm in [Mo]
and numerical calculation.

Theorem C. Let ` be a prime number less than 4.0 · 105. Then ` does
not divide hn for any positive integer n.

This corresponds to a result of [FK1], [FK2] that no prime number ` <
1.2 · 108 divides h2,n for any n.

By (1.1) and Theorem C, we obtain the following improvement upon
Theorem 1.4 of Horie:

Corollary D. Let ` be a prime number. If ` 6≡ ±1 (mod 27), then `
does not divide hn for any positive integer n.

2. Proof of Theorem A. We prove Theorem A by using Horie’s
method [H3]. We put ζn = exp(2π

√
−1/3n) and

(2.1) ηn =
ζn+1 − ζ−1

n+1

ζ1ζn+1 − ζ−1
1 ζ−1

n+1

for any positive integer n. Then ηn is a unit and contained in Bn. We call
ηn the nth Horie unit.

Every element α in Z[ζn] is uniquely expressed in the form

α =
2·3n−1−1∑

i=0

aiζ
i
n (ai ∈ Z).

For each such α and each σ ∈ Gal(Q(ζn+1)/Q(ζ1)), we define the element
ασ in the group ring Z[Gal(Q(ζn+1)/Q(ζ1))] by

ασ =
2·3n−1−1∑

i=0

aiσ
i.

Horie proved the following lemmas:

Lemma 2.1 (cf. [H2]). Let ` ≥ 5 be a prime number, σ a generator of
Gal(Q(ζn+1)/Q(ζ1)) and F a subfield of Q(ζn) containing the decomposition
field of ` in Q(ζn)/Q. Then ` divides the integer hn/hn−1 if and only if there
exists a prime ideal L of F dividing ` such that ηασn is an `th power of a
unit in Bn for any α in the ideal `L−1 of F .

Lemma 2.2 (cf. [H1]). Let ` ≥ 5 be a prime number and ϕ the Frobenius
automorphism of ` in Q(ζn+1)/Q. If an element β in Z[ζn+1] is an `th power
in Z[ζn+1], then βϕ − β` ∈ `2Z[ζn+1].

Moreover, we use the following lemma:
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Lemma 2.3. Let ai be elements in Z and ζ a primitive 3n+1th root of
unity. If

2·3n−1−1∑
i=0

aiζ
i ≡ 0 (mod `),

then aj ∈ `Z for 0 ≤ j ≤ 2 · 3n−1 − 1.

Let ` and ϕ be as in Lemma 2.2, ζ = ζ2
n+1 a primitive 3n+1th root of

unity, ω = ζ2
1 , σ a generator of Gal(Q(ζ)/Q(ω)) and recall

η =
1
ω
· ζ − 1
ωζ − 1

is the nth Horie unit. Let s be as in Theorem A and choose F = Q(ζs). We
assume that n ≥ s and ` divides hn/hn−1. Then, by Lemma 2.1, there exists
a prime ideal L in Q(ζs) dividing ` such that ηασ is an `th power of a unit
in Bn for any α in the ideal `L−1 of Q(ζs). Let

α =
2·3s−1−1∑
i=0

ai(ζ3n−s
n )i

be an element of `L−1 with ai ∈ Z and put τ = σ3n−s . Then ασ =∑2·3s−1−1
i=0 aiτ

i. Noting that

(β + γ)a` =
(
β` + γ` +

`−1∑
k=1

(
`

k

)
βkγ`−k

)a

≡ (β` + γ`)a + a(β` + γ`)a−1
`−1∑
k=1

(
`

k

)
βkγ`−k (mod `2)

for β, γ ∈ Z[ζ] and a ∈ Z, we obtain, mod `2,

(ζτ
i − 1)`ai ≡ (ζ`τ

i − 1)ai + ai(ζ`τ
i − 1)ai−1

`−1∑
k=1

(
`

k

)
ζkτ

i
(−1)`−k,

(ωζτ
i− 1)−`ai ≡ (ω`ζ`τ

i− 1)−ai − ai(ω`ζ`τ
i− 1)−ai−1

`−1∑
k=1

(
`

k

)
ωkζkτ

i
(−1)`−k.

From these congruences and from the consequence

(ηασ)` − (ηασ)ϕ

ω−`ασ
=

2·3s−1−1∏
i=0

(ζτ
i − 1)`ai

(ωζτ i − 1)`ai
−

2·3s−1−1∏
i=0

(ζ`τ
i − 1)ai

(ω`ζ`τ i − 1)ai

≡ 0 (mod `2)
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of Lemmas 2.1 and 2.2, we obtain

2·3s−1−1∑
i=0

(
ai

ζ`τ i − 1

`−1∑
k=1

(
`

k

)
ζkτ

i
(−1)`−k

− ai

ω`ζ`τ i − 1

`−1∑
k=1

(
`

k

)
ωkζkτ

i
(−1)`−k

)
≡ 0 (mod `2),

since ζ`τ
i − 1 are prime to `. By the congruence(

`

k

)
≡ `(−1)k−1

k
(mod `2) (1 ≤ k ≤ `− 1),

we have
2·3s−1−1∑
i=0

(
ai

ζ`τ i − 1

`−1∑
k=1

`

k
ζkτ

i − ai

ω`ζ`τ i − 1

`−1∑
k=1

`

k
ωkζkτ

i

)
≡ 0 (mod `2).

Hence
2·3s−1−1∑
i=0

ai

`−1∑
k=1

1
k

(
1

ζ`τ i − 1
− ωk

ω`ζ`τ i − 1

)
ζkτ

i ≡ 0 (mod `).

By substituting (ζ3s)τ
i

= ζ3s , we obtain

0 ≡
2·3s−1−1∑
i=0

ai

`−1∑
k=1

1
k

(3s−1∑
j=0

(ζ`τ
i
)j − ωk

3s−1∑
j=0

(ω`ζ`τ
i
)j
)
ζkτ

i

≡
2·3s−1−1∑
i=0

ai

`−1∑
k=1

3s−1∑
j=0

1− ω`j+k

k
ζ(`j+k)τ i (mod `).

Now we have the following:

Lemma 2.4. Let α be as in Lemma 2.1 and

α =
2·3s−1−1∑
i=0

ai(ζ3n−s
n )i(2.2)

with ai ∈ Z. If ` divides hn/hn−1, then

2·3s−1−1∑
i=0

ai

`−1∑
k=1

3s−1∑
j=0

1− ω`j+k

k
ζ(`j+k)τ i ≡ 0 (mod `).

We put

S = {b03n−s+1 + b13n−s+2 + · · ·+ bs−13n | bj = 0, 1, 2 for 0 ≤ j ≤ s− 1}
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and define

S′ =
2·3s−1−1⋃
i=0

{r ∈ S | ζτ i−1 = ζr}.

Lemma 2.5. Let j and k be rational integers with 0 ≤ j ≤ 3s − 1,
1 ≤ k ≤ `− 1 and r ∈ S′. Let ` be a prime number with 5 ≤ ` < 3n−2s+1. If
(r+ 1)(`j + k) ≡ 2 · 3s−1`− 1 (mod 3n), then j = 2 · 3s−1− 1, k = `− 1 and
r = 0 or 3n.

Proof. We have

−3n−s+1 < (2 · 3s−1 − j)`− k − 1 < 3n−s+1

because 0 ≤ j ≤ 3s − 1, 1 ≤ k ≤ `− 1 and ` < 3n−2s+1.
Since (2 · 3s−1 − j)`− k − 1 ≡ 0 (mod 3n−s+1), we have

(2 · 3s−1 − j)`− k − 1 = 0.

Since 2 ≤ k+ 1 = (2 · 3s−1− j)` ≤ `, we have k = `− 1 and j = 2 · 3s−1− 1,
which implies r ≡ 0 (mod 3n). Hence either r = 0, r = 3n or r = 2 · 3n.
Since r ∈ S′, we have r = 0 or r = 3n.

Proof of Theorem A. The assertion is trivial when n = m`. So we assume
that there exists an integer n > m` such that ` divides hn/hn−1. Then
` < 3n−2s+1 and Lemma 2.4 yields

2·3s−1−1∑
i=0

ai

`−1∑
k=1

3s−1∑
j=0

1− ω`j+k

k
ζ(`j+k)τ i ≡ 0 (mod `)(2.3)

where ai is the rational integer defined by (2.2). Since ζ3n−s
n is a unit, we

may assume a0 6≡ 0 (mod `). From Lemmas 2.3 and 2.5, and (2.3), we have

a0
1− ω2

`− 1
ζ2·3s−1`−1 + a3s−1

1− ω2

`− 1
ζ(2·3s−1`−1)(3n+1) ≡ 0 (mod `).

Hence a0 ≡ 0 (mod `), which is a contradiction.

3. Lower bound of Mahler measure of relative units. Let α be
an algebraic number. Denote by d = degα its degree. Let

a(X − α1) · · · (X − αd)

be its minimal polynomial in Z[X]. We define the Mahler measure of α by

M(α) = |a|
d∏
j=1

max{1, |αj |}

(cf. [EW], [Wal]). From the definition we have:
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Proposition 1. Let α, β be algebraic numbers.

(1) Let r be a positive integer. If degαr = degα, then M(αr) = M(α)r.
(2) If α and β are algebraic integers with degαβ ≤ degα and degαβ ≤

deg β, then M(αβ) ≤M(α)M(β).
(3) If σ is an automorphism of Q(α), then M(ασ) = M(α).
(4) If α is a unit, then M(α−1) = M(α).

Schinzel showed that

M(α) ≥
(

1 +
√

5
2

)d/2
whenever α 6= ±1 is a totally real algebraic number of degree d (cf. [S] and
[EW, Theorem 1.14]).

Let F (x) be the minimal polynomial of a totally real unit ε. We point out
Remark 1.16 in [EW] and notice that F (1)F (−1) has an exponential lower
bound in some important cases as we will see in Lemma 3.3 below. Now
we can show the following inequality by tracing the proof of Theorem 1.14
in [EW].

Theorem 3.1. Let ε be a unit other than ±1 and O the ring of integers
of Q(ε). Assume ε− 1 ∈M and ε+ 1 ∈ N for some ideals M and N of O.
Then

M(ε) ≥
(
C1/d +

√
C2/d + 4

2

)d/2
where d = deg ε and C = (O : MN), the absolute norm of MN.

We come back to the field Bn and we put ζ = ζn+1. Let P be a prime
ideal in Q(ζ) dividing 3, and w(x) the normalized additive P-adic valuation
of x. Moreover, we let p be a prime ideal in Bn dividing 3, and v(x) the
normalized additive p-adic valuation of x. Then v(x) = 2 ·w(x) for x in Bn.
We denote by τ a generator of Gal(Bn/Bn−1) which satisfies ζτ = ζ3n+1.

Lemma 3.2. Let ε be a unit in Bn. If NrBn/Bn−1
(ε) = 1, then

v(ε− 1) ≥ 3n − 1
2

.

Proof. There exists x in Z[ζ] such that ε = x1−τ , by Hilbert’s The-
orem 90. Since P3 = (1 − ζ3) and (1 − ζ3)τ = 1 − ζ3, we may assume
w(x) = 0, 1, 2. Note that if α ∈ Z[ζ] then w(α− ατ ) ≥ 3n. Hence

w(ε− 1) = w
(
x− xτ

xτ

)
≥ 3n − 2,

that is, 2 · v(ε− 1) ≥ 3n − 2. Since v(ε− 1) is a rational integer, we obtain
the assertion.
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Remark. We put ω = ζ3n and recall the nth Horie unit

ηn =
ζ − ζ−1

ωζ − ω−1ζ−1
.

We have NrBn/Bn−1
(ηn) = 1 and

η−1
n − 1 =

ωζ − ω−1ζ−1 − ζ + ζ−1

ζ − ζ−1
=
ωζ2 − ω2 − ζ2 + 1

ζ2 − 1

=
(ω − 1)ζ2 − (ω − 1)(ω + 1)

ζ2 − 1
=

ω − 1
ζ2 − 1

(ζ2 + ω2).

Since (ζ2 − 1) = P, (ω − 1) = P3n and ζ2 + ω2 is a unit in Q(ζ), we have
(ηn−1) = P3n−1 in Q(ζ). Hence (ηn−1) = p(3n−1)/2, that is, the inequality
in Lemma 3.2 is best possible.

On the other hand,

η−1
n + 1 =

ωζ − ω−1ζ−1 + ζ − ζ−1

ζ − ζ−1
=
ωζ2 − ω2 + ζ2 − 1

ζ2 − 1

=
(ω + 1)ζ2 − (ω2 + 1)

ζ2 − 1
=
−ω2ζ2 + ω

ζ2 − 1
= −ωωζ

2 − 1
ζ2 − 1

.

Hence η−1
n + 1 is a unit, that is, ηn + 1 is a unit.

Note that the absolute norm of p is 3. From Theorem 3.1 and Lemma
3.2, we conclude the following:

Lemma 3.3. Let ε be a unit in Bn with NrBn/Bn−1
(ε)=1 and put N=3n.

Then

M(ε) ≥
(

3(N−1)/2N +
√

3(N−1)/N + 4
2

)N/2
.

In particular, if n ≥ 4, then

M(ε) ≥
(

340/81 +
√

380/81 + 4
2

)N/2
.

4. Upper bound of Mahler measure of the Horie unit. We put
N = 3n and Θ = π/6N . Note the nth Horie unit can be written in terms of
real trigonometric functions as follows:

ηn =
ζn+1 − ζ−1

n+1

ζ1ζn+1 − ζ−1
1 ζ−1

n+1

=
sin(4Θ)

sin(4(1 +N)Θ)
.
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Let σ be a generator of Gal(Q(ζn+1)/Q(ζ1)) with ζσn+1 = ζ4
n+1. We have

M(ηn) =
N−1∏
i=0

max{1, |ησin |} =
∏

0≤j<3N
j≡1 (mod 3)

max
{

1,
∣∣∣∣ sin(4jΘ)
sin(4(j +N)Θ)

∣∣∣∣}

=
∏

0≤j<3N
j≡1 (mod 3)

max
{

1,
∣∣∣∣sin(4((2N − j) +N)Θ)

sin(4(2N − j)Θ)

∣∣∣∣}

=
∏

0≤j<3N
j≡−1 (mod 3)

max
{

1,
∣∣∣∣sin(4(j +N)Θ)

sin(4jΘ)

∣∣∣∣}.
On the other hand,

M(ηn) = M(η−1
n ) =

N−1∏
i=0

max{1, |(η−1
n )σ

i |}

=
∏

0≤j<3N
j≡1 (mod 3)

max
{

1,
∣∣∣∣sin(4(j +N)Θ)

sin(4jΘ)

∣∣∣∣}.
Hence

M(ηn)2 =
∏∗

0≤j<3N

max
{

1,
∣∣∣∣sin(4(j +N)Θ)

sin(4jΘ)

∣∣∣∣}

=
∏∗

0≤j<N

∏
0≤i<3

max
{

1,
∣∣∣∣sin(4(j + (i+ 1)N)Θ)

sin(4(j + iN)Θ)

∣∣∣∣},
where

∏∗ denotes the product over indices coprime with 3. Write the set
{|sin(4(j + iN)Θ)| | i = 0, 1, 2} as {s0, s1, s2} with s0 < s1, s2. Then∏

0≤i<3

max
{

1,
∣∣∣∣sin(4(j + (i+ 1)N)Θ)

sin(4(j + iN)Θ)

∣∣∣∣} =
{
s2/s0 if s1 < s2,
s1/s0 if s1 > s2,

=
max{s0, s1, s2}
min{s0, s1, s2}

.

The maximum on the right hand side can be found by considering the in-
equality

|sin(4jΘ + 4NiΘ)| ≥ |sin(4jΘ + 4N(i+ 1)Θ)|, |sin(4jΘ + 4N(i− 1)Θ)|.
Hence, the maximum is attained at i with

4jΘ + 4NiΘ ∈ (π/3, 2π/3) ∪ (4π/3, 5π/3),

or equivalently
j + iN ∈ (N/2, N) ∪ (2N, 5N/2).
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Similarly, the minimum is attained at i with

4jΘ + 4NiΘ ∈ (−π/6, π/6) ∪ (5π/6, 7π/6),

or equivalently

j + iN ∈ (−N/4, N/4) ∪ (5N/4, 7N/4).

Therefore,

M(ηn)2 =

∏∗
N/2<j<N |sin(4jΘ)| ·

∏∗
2N<j<5N/2 |sin(4jΘ)|∏∗

−N/4<j<N/4 |sin(4jΘ)| ·
∏∗

5N/4<j<7N/4 |sin(4jΘ)|
.

Thus, we get

M(ηn) =

∏∗
N/2<j<N sin(4jΘ)∏∗

0<j<N/4 sin(4jΘ) ·
∏∗

5N/4<j<3N/2 sin(4jΘ)

=

∏∗
N/2<j<N cos((4j − 3N)Θ)∏∗

0<j<N/4 sin(4jΘ) ·
∏∗

5N/4<j<3N/2 sin((6N − 4j)Θ)

=

∏∗
−N<4j−3N<N cos((4j − 3N)Θ)∏∗

0<j<N/4 sin(4jΘ) ·
∏∗

0<3N−2j<N/2 sin((6N − 4j)Θ)

=

∏∗
0<3N−4j<N cos((3N − 4j)Θ) ·

∏∗
0<4j−3N<N cos((4j − 3N)Θ)∏∗

0<4j<N sin(4jΘ) ·
∏∗

0<6N−4j<N sin((6N − 4j)Θ)
.

Noting that the ranges of the products are

{k ∈ Z | k ≡ +3N (mod 4), k 6≡ 0 (mod 3)} ∩ (0, π/3),
{k ∈ Z | k ≡ −3N (mod 4), k 6≡ 0 (mod 3)} ∩ (0, π/3),
{k ∈ Z | k ≡ 0 (mod 4), k 6≡ 0 (mod 3)} ∩ (0, π/3),
{k ∈ Z | k ≡ 2 (mod 4), k 6≡ 0 (mod 3)} ∩ (0, π/3),

we get

M(ηn) =

∏∗
0<k<N, 2-k cos(kΘ)∏∗
0<k<N, 2|k sin(kΘ)

.

Thus we have

(4.1)

M(ηn) =
cos((N − 2)Θ)
sin((N − 1)Θ)

·
∏

0<3K<N, 2-K

cos((3K − 2)Θ) · cos((3K + 2)Θ)
sin((3K − 1)Θ) · sin((3K + 1)Θ)

.

For (t, v) ∈ R2 such that 0 < t− v ≤ t ≤ t+ v < π/4, we have

∂

∂v
log

cos(t− v)
sin(t+ v)

= tan(t− v)− cot(t+ v) < 0.
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Thus

cot
(2N − 3)Θ

2
>

cos((N − 2)Θ)
sin((N − 1)Θ)

.

For (t, u, v) ∈ R3 such that 0 < t − u − v ≤ t − u + v ≤ t ≤ t + u − v ≤
t+ u+ v < π/4, put

g(t, u, v) = log
cos(t− u− v) cos(t+ u+ v)
sin(t− u+ v) sin(t+ u− v)

.

Then
∂

∂v
g(t, u, v) = tan(t−u− v)− tan(t+u+ v)− cot(t−u+ v) + cot(t+u− v).

Since

tan(t−u−v) ≤ tan t ≤ tan(t+u+v), cot(t−u+v) ≥ cot t ≥ cot(t+u−v),

it follows that
∂

∂v
g(t, u, v) ≤ 0.

Hence
g(t, u, v) ≤ g(t, u, 0).

Therefore, the factors in the product of (4.1) are estimated as follows:

cos((3K − 2)Θ) · cos((3K + 2)Θ)
sin((3K − 1)Θ) · sin((3K + 1)Θ)

≤ cot
(6K − 3)Θ

2
· cot

(6K + 3)Θ
2

.

Summing up, we get

M(ηn) ≤ cot
(2N − 3)Θ

2
·

∏
0<3K<N, 2-K

(
cot

(6K − 3)Θ
2

· cot
(6K + 3)Θ

2

)

=
∏

0<J<2N/3, 2-J

cot
Jπ

4N
.

Since
d2

dt2
log cot t = − d

dt

1
sin t cos t

= − d

dt

2
sin 2t

=
4 cos t

(sin 2t)2
> 0

for 0 < t < π/4, we have∑
0<J<2N/3, 2-J

log cot
Jπ

4N
≤ 2N

π

π/6�

0

log cot t dt.

Recall the Lobachevskĭı function ([GR], [Lo])

−
θ�

0

log cos t dt = θ log 2 +
∞∑
m=1

(−1)m

2m2
sin 2mθ
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and its companion function

−
θ�

0

log sin t dt = θ log 2 +
∞∑
m=1

1
2m2

sin 2mθ

for 0 ≤ θ < π/2. Subtracting, we get
θ�

0

log cot t dt =
∞∑
m=0

1
(2m+ 1)2

sin(2(2m+ 1)θ).

Substituting θ = π/6 yields
π/6�

0

log cot t dt =
∞∑
m=0

1
(2m+ 1)2

sin
(2m+ 1)π

3

=
√

3
2

(
1−

∞∑
m=1

(
1

(6m− 1)2
− 1

(6m+ 1)2

))
.

Since 1
(6m−1)2

− 1
(6m+1)2

> 0, the right hand side above is smaller than
√

3
2

(
1−

1000∑
m=1

(
1

(6m− 1)2
− 1

(6m+ 1)2

))
< 0.845785.

As 2
π 0.845785 < 0.53845, we deduce

Lemma 4.1. Let N = 3n. Then

M(ηn) ≤ exp(0.53845 ·N).

5. Minkowski’s Convex Body Theorem. Let ` ≥ 5 be a prime
number, n a positive integer and 3s the exact power of 3 dividing `2−1. We
put r = min{n, s} and c = 2 · 3r−1. In this section, we consider the mapping

µ : Q(ζr)→ Cc, α 7→ −→α := (αρ)ρ∈Gal(Q(ζr)/Q),

and the R-vector space

(5.1) V = R−→1 + R
−→
ζr + · · ·+ R

−−→
ζc−1
r
∼= Rc.

We put

X =
{c−1∑
i=0

ai
−→
ζir ∈ V

∣∣∣∣ |a0|+ |a1|+ · · ·+ |ac−1| ≤
`√
2

}
and define | · |1 on Z[ζr] by

|a0 + a1ζ
r + · · ·+ ac−1ζ

c−1
r |1 = |a0|+ |a1|+ · · ·+ |ac−1|.

We consider the volume vol(·) on V induced by the standard volume on Rc

via (5.1). For an ideal a of Q(ζr), we also denote by vol(a) the volume of the
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fundamental domain of the lattice µ(a). Then

vol(X) =
(
√

2`)c

c!
and vol(`L−1) = `c−f

where L is a prime ideal of Q(ζr) dividing `, and f is the inertia degree of
L in Q(ζr)/Q. Now we apply the Minkowski Convex Body Theorem to get:

Lemma 5.1. Let `, n, s, r, c and X be as above and L a prime ideal
of Q(ζr) dividing `. Denote by f the inertia degree of L in Q(ζr)/Q. If
`f > 2c/2 · c!, then there exists a non-zero α in X ∩ µ(`L−1). Therefore, if
`f > 2c/2 · c!, then there exists a non-zero α in `L−1 such that |α|1 ≤ `/

√
2.

Proof. Since `f > 2c/2 · c!, we have vol(X) > 2cvol(`L−1).

6. Proof of Theorem B. Let ` ≥ 5 be a prime number, 3s the exact
power of 3 dividing `2 − 1, and n a positive integer. By Theorem 1.1, we
may assume n ≥ 4. We put N = 3n, r = min{n, s} and c = 2 · 3r−1. We
denote by f the inertia degree of ` in Q(ζr)/Q. Assume that `f > 2c/2 · c!
and ` divides hn/hn−1. By Lemmas 2.1 and 5.1, there exist α in `L−1 and
a unit ε in Bn such that

(6.1) ηασn = ε`

and

(6.2) |α|1 <
`√
2
,

where L is a prime ideal in Q(ζr) dividing `. Since NrBn/Bn−1
(ηn) = 1, we

have NrBn/Bn−1
(ε) = 1. By Lemma 3.3,

(6.3) M(ε) ≥
(

340/81 +
√

380/81 + 4
2

)N/2
.

By taking the logarithm, we have

log
(

340/81 +
√

380/81 + 4
2

)
> log

(√
3 +
√

7
2

)
− 1

162
log 3 > 0.77661.

Hence

(6.4) M(ε) > exp(0.77661 ·N/2).

Since deg ε` = deg ε and deg ηασn ≤ deg ηn, we have

(6.5) M(ε`) = M(ε)`

and

(6.6) M(ηασn ) ≤M(ηn)|α|1 .
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By (6.1)–(6.6) and Lemma 4.1, we obtain

exp(0.77661 · ` ·N/2) < M(ε`) = M(ηασn ) ≤M(ηn)|α|1

≤ exp(0.53845 ·N · `/
√

2).

Hence 0.77661 ≤ 0.53845 ·
√

2 = 0.761483 . . . , a contradiction.
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