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Three-dimensional symmetric shift radix systems
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1. Introduction. In Akiyama et al. [1] a dynamical system called a
shift radix system has been introduced.

Definition 1.1 (cf. [1]). Let d ≥ 1 be an integer, r ∈ R
d, and let

τ̃r : Z
d → Z

d, a = (a1, . . . , ad) 7→ (a2, . . . , ad,−⌊ra⌋),

where ra = r1a1 + · · ·+ rdad, i.e., the inner product of the vectors r and a.
Then τ̃r is called a shift radix system (SRS for short) if

∀a ∈ Z
d ∃n ∈ N : τ̃n

r
(a) = 0.

SRS are related to number systems like β-expansions (cf. for instance
[8, 9, 11]) or canonical number systems (cf. for instance [10]). Indeed, they
form a unification and generalization of these notions of number systems.
More details about SRS and their relation to β-expansions and canonical
number systems can be found in [1–3, 13]. In this paper we want to deal
with a variant of SRS, the so-called symmetric shift radix systems.

Definition 1.2 (cf. [4]). Let d ≥ 1 be an integer, r ∈ R
d, and let

(1.1) τr : Z
d → Z

d, a = (a1, . . . , ad) 7→ (a2, . . . , ad,−⌊ra + 1/2⌋).

Then τr is called a symmetric shift radix system (SSRS for short) if

∀a ∈ Z
d ∃n ∈ N : τn

r
(a) = 0.

Observe that the only difference between the two definitions is the addi-
tional summand “+1/2” inside the floor function in (1.1).
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SSRS have already been treated by Akiyama and Scheicher [4]. It was
proved there that, analogously to the classical SRS, we have a strong rela-
tionship to certain notions of number systems. In particular SSRS form a
common generalization of symmetric β-expansions and symmetric canonical
number systems (SCNS). For completeness we recall the definition of these
number systems and summarize the results on their relation to SSRS.

Definition 1.3 (cf. [4]). Let β > 1 be a real non-integral number. The
unique representation of a positive γ ∈ R of the form

γ = dmβm + dm−1β
m−1 + dm−2β

m−2 + · · ·

for some m ∈ Z with dk ∈ (−(β + 1)/2, . . . , (β + 1)/2) ∩ Z, k ≤ m, such
that the condition

−
βk+1

2
≤

∑

i≤k

diβ
i <

βk+1

2

is satisfied for any k ≤ m, is called the symmetric β-expansion of γ. We
say that β has property (SF) if all γ ∈ Z[β−1] admit a finite symmetric
β-expansion.

In the same way as for property (F) of ordinary β-expansions (see [8])
it can be shown that a number β with property (SF) is necessarily a Pisot
number.

Theorem 1.4 (cf. [4, Theorem 3.6]). A Pisot number β with minimal

polynomial (x − β)(xd−1 + rd−1x
d−2 + · · · + r2x + r1) has Property (SF) if

and only if τ(r1,...,rd−1) is an SSRS.

There is a similar statement for SCNS whose definition we now recall.

Definition 1.5 (cf. [4]). Let P (x) = xd+ad−1x
d−1+· · ·+a1x+a0 ∈ Z[x],

|a0| ≥ 2, R := Z[x]/P (x)Z[x], X ∈ R the image of x under the canonical
epimorphism from Z[x] to R and N := [−|a0|/2, |a0|/2) ∩ Z. (P (x),N ) is
called a symmetric canonical number system (SCNS) if each R ∈ R can be
represented as

R =

n∑

i=0

liX
i, li ∈ N .

Theorem 1.6 (cf. [4, Theorem 2.1]). (P (x),N ) with P (x) = xd +
ad−1x

d−1 + · · · + a1x + a0 ∈ Z[x] and N := [−|a0|/2, |a0|/2) ∩ Z is an

SCNS if and only if τr is an SSRS , where r = (1/a0, ad−1/a0, . . . , a1/a0).

Now, in order to show the differences between SSRS and SRS, we de-
fine the following sets related to the behavior of the orbits of τ̃r and τr,
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respectively. Let

D̃d := {r ∈ R
d | ∀a ∈ Z

d ∃n, l ∈ N : τ̃k
r
(a) = τ̃k+l

r
(a) ∀k ≥ n},

D̃0
d := {r ∈ R

d | τ̃r is an SRS},

as well as

Dd := {r ∈ R
d | ∀a ∈ Z

d ∃n, l ∈ N : τk
r
(a) = τk+l

r
(a) ∀k ≥ n},

D0
d := {r ∈ R

d | τr is an SSRS}.

For r = (r1, . . . , rd) ∈ R
d, let

R(r) =




0 1 0 · · · 0
... 0

. . .
. . .

...
...

...
. . . 1 0

0 0 · · · 0 1

−r1 −r2 · · · −rd−1 −rd




.

For M ∈ R
d×d, denote by ̺(M) the spectral radius of M , i.e., the maximum

absolute value of the eigenvalues of M . For simplicity, we write ̺(r) :=
̺(R(r)). Let

Ed(ε) = {r ∈ R
d : ̺(r) < ε}.

It is known that Ed(ε) is a regular set, i.e., it coincides with the closure of
its interior.

We start by comparing the sets Dd and D̃d. Firstly, it can easily be seen
that their interiors are the same since from [1] we know that Ed(1) ⊂ D̃d ⊂
Ed(1) while in [4] it has been shown that

(1.2) Ed(1) ⊂ Dd ⊂ Ed(1).

We will dwell upon the set Dd in Section 2. However, the sets D0
d and D̃0

d

have different behavior. The properties of D̃0
d have been studied in [1–3]. In

[2, 13] special attention was paid to the two-dimensional case D̃0
2. It turns

out that the structure of D̃0
2 is very complicated and although large parts

of the set could be characterized, a full characterization is still outstanding.
An approximation of D̃0

2 is shown in Figure 1.

The sets D̃0
d for d ≥ 3 are not yet investigated in detail; however, com-

puter experiments indicate that D̃0
3 is hard to describe.

For the case of SSRS the situation becomes more pleasant at least for
low dimensions. Akiyama and Scheicher [4] presented the surprising result
that D0

2 has a really simple characterization (see Figure 2). They found out



150 A. Huszti et al.

Fig. 1. An approximation of D̃0

2

Fig. 2. The shape of D0

2

that

D0
2 = {(x, y) ∈ R

2 | x ≤ 1/2,−x− 1/2 < y ≤ x + 1/2}

\{(1/2, y) ∈ R
2 | 1/2 < y < 1},

i.e., D0
2 is an isosceles triangle together with some parts of its boundary. In

the present paper we are interested in the shape of the set D0
3. Amazingly,

we will see that D0
3 can be completely described as a simple as well as

interesting body.
The paper is organized as follows. In Section 2 we concentrate on Dd and

its relation to D0
d in general and specially if d = 3. Furthermore, we present

an algorithm that is useful for the description of D0
d. It was first presented

in [6] and later adapted for SSRS in [4]. In Section 3 we will state the exact
characterization of the setD0

3. In Section 4 we will prove this characterization
result by using the algorithm presented in Section 2 together with some other
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algorithms relating to bodies defined by polynomial inequalities such as the
cylindrical algebraic decomposition algorithm (cf. Collins [7]).

2. Construction of D0
3 from D3. Let us consider the set Dd. By (1.2),

apart from the boundary, Dd coincides with Ed(1) and their closures are
equal. As the minimal polynomial of R(r) is

(2.1) xd + rdx
d−1 + · · ·+ r2x + r1

the problem of characterizing Ed(ε) is equivalent to finding polynomials of
the form (2.1) whose roots lie inside the ε multiple of the unit ball. This
problem was already settled in [12, 15]. From these references we easily get
the following lemma.

Lemma 2.1. A vector r = (r1, . . . , rd) is in Ed(ε) if and only if the

Hermitian form

Hd(x0, . . . , xd−1) :=
d−1∑

i=0

∣∣∣
d−1∑

j=i

εd+i−jrd+i−j+1xj

∣∣∣
2
−

d−1∑

i=0

∣∣∣
d−1∑

j=i

εj−irj−i+1xj

∣∣∣
2

with rd+1 = 1 is positive definite.

Now we turn to the study of D0
d. For this matter we recall the following

definitions (cf. for instance Barnsley [5, Chapter IV, Definitions 3.1 and 3.2]).

Definition 2.2. Let τr with r ∈ R
d be given.

• Let x ∈ Z
d. Then the set {τn

r
(x) |n ∈ {0, 1, 2, . . .}} is called the orbit

of x.
• A point x ∈ Z

d is called a periodic point if there is a positive integer
L such that x = τL

r (x). The integer L is called a period of x.
• The orbit of a periodic point is called a cycle.

The set D0
d can be constructed from Dd by cutting out convex polyhedra.

For r = (r1, . . . , rd) ∈ Dd an element a = (a1, . . . , ad) ∈ Z
d\{0} is a non-zero

periodic point of τr of period L if a = τL
r

(a). From the definition of D0
d it

follows that the existence of such a periodic point is necessary and sufficient
for r 6∈ D0

d. Suppose that the orbit of a (which is in fact a cycle) consists of
the points

τ j
r
(a) = (a1+j, . . . , ad+j) (0 ≤ j ≤ L− 1),

where aL+1 = a1, . . . , aL+d−1 = ad−1. We denote such a cycle by

(a1, . . . , ad); ad+1, . . . , aL

and say that it is a cycle of τr or just a cycle of Dd.

Let a non-zero cycle π := (a1, . . . , ad); ad+1, . . . , aL be given. We may
ask for the set P (π) of all r ∈ Dd for that π occurs as a cycle of τr. By the
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definition of τr, an element r ∈ P (π) has to satisfy the system of L double
inequalities

(2.2) −1/2 ≤ r1a1+i + r2a2+i + · · ·+ rdad+i + ad+1+i < 1/2.

Here i runs from 0 to L − 1 and aL+1 = a1, . . . , aL+d = ad. Such a system
characterizes a convex polyhedron, which is possibly degenerate or empty.
Therefore we will call P (π) a cutout polyhedron. Example 2.5 shows what
P (π) could look like for a given cycle in the three-dimensional case. Since
each point r ∈ P (π) has π as a cycle of the associated mapping τr, the set
P (π) has empty intersection with D0

d. Thus we get the representation

D0
d = Dd \

⋃

π 6=0

P (π),

where the union is extended over all non-zero cycles π. Since the set of cycles
can a priori be infinite, this expression is not suitable for calculations. The
following theorem shows how to reduce the set of possible cycles to a finite
set and gives an efficient algorithm for a closed subset H of intDd = Ed(1) to
determine H ∩ D0

d. It was presented for the first time for canonical number
systems in [6] and was further improved and adapted to SRS in [1, 2, 13]. In
[4] the algorithm was established for SSRS. Basically we will use this version.
Let ei be the ith canonical unit vector. For an r = (r1, . . . , rd) ∈ intDd,
denote by V(r) ⊂ Z

d the smallest set with the properties

(1) ±ei ∈ V(r), i = 1, . . . , d,
(2) (a1, . . . , ad) ∈ V(r)⇒ (a2, . . . , ad+1) ∈ V(r) where ad+1 satisfies

−1 < r1a1 + · · ·+ rdad + ad+1 < 1.

V(r) is called a set of witnesses for r. Additionally define G(V(r)) = V ×E
to be the graph with set of vertices V = V(r) and set of edges E ⊂ V × V
such that

∀a ∈ V : (a, τr(a)) ∈ E.

The set of vertices is exactly the same as in [1]. The edges are defined in a
different way. There exists only one outgoing edge for each vertex. We are
interested in the cyclic structure of such graphs. A cycle a1 → a2 → · · · →
aL → a1 in the graph G(V(r)) induces a periodic point of period L (and
therefore a cycle) for τr in an obvious way.

Theorem 2.3 (cf. [4, Theorem 4.2]). Let r1, . . . , rk ∈ Dd and let H :=
�(r1, . . . , rk) be the convex hull of r1, . . . , rk. Assume that H ⊂ intDd and is

sufficiently small in diameter. Then there exists an algorithm to construct

a finite directed graph G(H) = V × E with vertices V ⊂ Z
d and edges

E ⊂ V × V which satisfies

(1) ±ei ∈ V for all i = 1, . . . , d,
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(2) G(V(x)) is a subgraph of G(H) for all x ∈ H,
(3) H ∩ D0

d = H \
⋃

π P (π), where π runs through all cycles induced by

the non-zero primitive cycles of G(H).

Remark 2.4. Note that there are cycles in the graph G(H) that do not
correspond to a cycle of any τr. In this case we set P (π) = ∅ because the
set of inequalities in (2.2) has no solution.

Observe that the theorem can be extended to any convex set H ⊂ intDd

analogously to [13]. In our context the version presented in Theorem 2.3
suffices. In practice, the graph in Theorem 2.3 is constructed by successively
adding new vertices. Note that the “sufficiently small” restriction is essential.
It turns out that the size of the set of vertices in the graph in Theorem 2.3
can grow to infinity if H is chosen too large. For more details, see [4, 13].
For us it is only important to choose H in such a way that everything stays
finite. This can be realized by a suitable subdivision of a given set. We will
return to this problem in Section 4.

Theorem 2.3 proved to be a powerful tool for characterizing D0
d. If it

is used properly, D0
d ∩ H can be characterized for any closed H ⊂ intDd.

Thus, whenever there exists such an H with D0
d ⊂ H there is a chance to

characterize D0
d completely. That was the case for d = 2 and we will see that

this is also valid for d = 3. For classical SRS, there does not exist such a set
H for d ≥ 2.

Our aim is to characterize D0
3. We already know that

E3(1) ⊂ D3 ⊂ E3(1).

From Lemma 2.1 we calculate

(2.3) E3(1)={(x, y, z) ∈ R
3 | |x|<1, |y − xz|<1− x2, |x + z|< |y + 1|}.

The following example shows how a given cycle cuts out a polyhedron from
E3(1).

Example 2.5. Consider the cycle π := (1, 1,−1);−1, 0. It induces a
system of inequalities (2.2) which describes the polyhedron P (π). In our
case we get

P (π) = {(x, y, z) | −1/2 ≤ x + y − z − 1 < 1/2 ∧ −1/2 ≤ x− y − z < 1/2

∧ −1/2 ≤ −x− y + 1 < 1/2 ∧ −1/2 ≤ −x + z + 1 < 1/2

∧ −1/2 ≤ y + z − 1 < 1/2}.

By removing redundant inequalities, this reduces to

P (π) = {(x, y, z) | x+y− z−1 < 1/2∧x−y− z < 1/2∧−1/2 ≤ −x−y +1

∧ −x + z + 1 < 1/2 ∧ −1/2 ≤ y + z − 1}

yielding a polyhedron with five faces. P (π) only contains r ∈ Dd with
τ5
r ((1, 1,−1)) = (1, 1,−1), and hence P (π) has empty intersection with D0

3.
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Fig. 3. The position of P (π) in E3(1)

Figure 3 shows the position of P (π) in E3(1). It is easy to see that P (π)
really cuts out some part of D3.

Later on we will need E3(1) and there some problems occur. Consider the
set which is obtained by changing all the strict inequalities (“<”) in (2.3) to
non-strict inequalities (“≤”). One may think that it equals E3(1), but this
is not the case. It can be easily seen that this set contains the unbounded
lines (1, λ, λ), λ ∈ R, and (−1, µ,−µ), µ ∈ R, which cannot be true for
E3(1). Hence, E3(1) is only a subset of this set. We will solve the problem
by adding some suitable inequalities. Let

E ′3 := {(x, y, z) ∈ R
3 | |x| ≤ 1 ∧ |y − xz| ≤ 1− x2

∧ |x + z| ≤ |y + 1| ∧ |y − 1| ≤ 2 ∧ |z| ≤ 3}

and consider the intersection of E ′3 with the hyperplane

Ac := {(x, y, z) ∈ R
3 | x− c = 0}

for constant c.

Lemma 2.6. For any c with |c| < 1 the intersection of E ′3 with the plane

Ac is the closed triangle △(A
(1)
c , A

(2)
c , A

(3)
c ) with A

(1)
c = (c,−1,−c), A

(2)
c =

(c, 1− 2c, c− 2), A
(3)
c = (c, 2c + 1, c + 2).

Proof. We have

E ′3 ∩Ac = {(c, y, z) ∈ R
3 | |y − cz| ≤ 1− c2 ∧ |c + z| ≤ |y + 1|

∧ |y − 1| ≤ 2 ∧ |z| ≤ 3}.

As all inequalities are linear, this is a convex set. It is quickly verified that

A
(1)
c , A

(2)
c , A

(3)
c ∈ E ′3 ∩ Ac. Thus △(A

(1)
c , A

(2)
c , A

(3)
c ) ⊂ E ′3 ∩ Ac. On the other

hand, consider the closed convex set

Bc := {(c, y, z) | y − cz ≤ 1− c2 ∧ c + z ≤ y + 1 ∧ −y − 1 ≤ c + z}.
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Observe that for its definition we used only inequalities that occurred in the
definition of E ′3∩Ac and hence we have E ′3∩Ac ⊂ Bc. Pairwise intersection of

the three boundary lines of Bc yields exactly the three points A
(1)
c , A

(2)
c , A

(3)
c

and therefore △(A
(1)
c , A

(2)
c , A

(3)
c ) = Bc ⊃ E ′3 ∩Ac.

Theorem 2.7. E3(1) = E ′3.

Proof. Obviously E ′3 is a closed set while E3(1) is open. We show that
int E ′3 = E3(1). From Lemma 2.6 we know

E ′3 ∩Ac = {(c, y, z) | y − cz ≤ 1− c2 ∧ c + z ≤ y + 1 ∧ −y − 1 ≤ c + z}

and as every point of E3(1) is inside E ′3 ∩Ac for some |c| < 1 we have

E ′3 =
⋃

|c|≤1

(E ′3 ∩Ac) ⊃ E3(1)

and therefore

int E ′3 ⊃ int E3(1) = E3(1).

On the other hand, denote by intAc
(E ′3 ∩Ac) the interior of the set E ′3 ∩Ac

(subspace topology) for |c| < 1, i.e., the open triangle defined in Lemma 2.6,
and observe that

int E ′3 =
⋃

|c|<1

intAc
(E ′3 ∩Ac)

as we can find a neighborhood around each point of intAc
(E ′3 ∩Ac), |c| < 1,

which is contained in E ′3. Further each point of intAc
(E ′3 ∩ Ac) satisfies the

conditions of E3(1) whenever |c| < 1. Hence

int E ′3 =
⋃

|c|<1

int(E ′3 ∩Ac) ⊂ E3(1).

Thus we have shown that int E ′3 = E3(1).

To prove the theorem we show E ′3 = int E ′3. We already know that int E ′3 =⋃
|c|<1 intAc

(E ′3 ∩ Ac). Hence we look at the convergent sequences of points

contained in
⋃

|c|<1 int(E ′3 ∩Ac). Such a sequence converges either to some

point in
⋃

|c|<1(E
′
3∩Ac) or to some point in one of the sets limc→±1(E ′3∩Ac).

From Lemma 2.6 we already have

E ′3 ∩Ac = △((c,−1,−c), (c, 1− 2c, c− 2), (c, 2c + 1, c + 2))

and we see that

lim
c→1

(E ′3 ∩Ac) = {(1, λ, λ) | −1 ≤ λ ≤ 3},

lim
c→−1

(E ′3 ∩Ac) = {(−1, λ,−λ) | −1 ≤ λ ≤ 3}
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which exactly correspond to the sets E ′3 ∩A±1. Thus

E3(1) = int E ′3 =
⋃

|c|≤1

(E ′3 ∩Ac) = E ′3

and we are done.

Finally, we have a representation of the closure of E3(1). In the proof of
Lemma 2.6 we already recognized that the number of inequalities to describe
E ′3 can be reduced. Indeed, by using an algorithm (Algorithm 3) which we
will present in Section 4, we gain

E3(1) = {(x, y, z) | |x + z| ≤ 1 + y ∧ y − xz ≤ 1− x2 ∧ |z| ≤ 3}.

3. Statement of the main result. In this section we give a complete
description of D0

3. To this end we define the sets

S1 := {(x, y, z) | 2x− 2z ≥ 1 ∧ 2x + 2y + 2z > −1 ∧ 2x + 2y ≤ 1

∧ 2x ≤ 1 ∧ 2x− 2y + 2z ≤ 1},

S2 := {(x, y, z) | x− z ≤ −1 ∧ 2x− 2y + 2z ≤ 1 ∧ −2x + 2y ≤ 1

∧ 2x > −1},

S3 := {(x, y, z) | x− z > −1 ∧ 2x− 2y + 2z ≤ 1 ∧ −2x + 2y < 1, 2x > −1

∧ 2x− 2z < −1 ∧ 2x + 2y + 2z > −1},

S4 := {(x, y, z) | 2x− 2y + 2z ≤ 1 ∧ −2x + 2y ≤ 1 ∧ 2x− 2z = −1

∧ 2x + 2y + 2z > −1},

S5 := {(x, y, z) | −1 < 2x ≤ 1 ∧ −1 < 2x− 2z ≤ 1 ∧ 2x + 2y + 2z > −1

∧ 2x− 2y + 2z ≤ 1 ∧ 2x + 4y − 2z < 3 ∧ 2y ≤ 1}

and denote their union by

S :=
⋃

i∈{1,...,5}

Si.

Note that S1, S2, S3, S5 are polyhedra while S4 is a polygon. The following
theorem states the main result of the present paper.

Theorem 3.1. D0
3 = S.

Two views of the set D0
3 are depicted in Figures 4 and 5. For rotating

3D-pictures of D0
3 we refer the reader to the authors’ home pages [14].

We will prove this theorem in Section 4. Here we want to give an outline
of the proof. In a first step we will use Theorem 2.3 to show that

(3.1) S ⊆ D0
3.

For the opposite inclusion we need a set Π of non-zero cycles such that for
P :=

⋃
π∈Π P (π) we have

S ∪ P ⊇ D3.
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Fig. 4. A view of D0

3

Fig. 5. A view of D0

3

From (3.1) we can deduce S ∩ P = ∅. Thus,

S ⊇ D3 \ P ⊇ D
0
3.

Since D3 ⊂ E3(1) we are done if we can cover E3(1) with P ∪ S, i.e., if we
can show that

P ∪ S ⊇ E3(1).

4. Proof of the main result. We will prove our result in two parts
according to the outline given in the previous section. First of all, we set up
some notations.
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Notation 4.1. For a logical system J of inequalities which are com-
bined by ∧ and ∨, denote by X(J ) the set of all points that satisfy J . Let
P be a set of inequalities. Then

∧
P and

∨
P denote the systems

∧
I∈P I

and
∨

I∈P I, respectively.

Table 1. The 43 cycles needed to cut out D
0

3

L Cycles

π1 = (−1,−1,−1) π2 = (−1,−1, 0) π3 = (−1, 0, 1)
3

π4 = (0,−1, 0) π5 = (0,−1, 1)

4 π6 = (0,−1, 0);−1 π7 = (0,−1, 0); 1 π8 = (1,−1, 1);−1

π9 = (−2, 1,−1);−1, 1 π10 = (−2, 1, 0);−1, 2

π11 = (−1,−1, 1); 1, 0 π12 = (0,−2,−1); 1, 2

π13 = (0,−1, 1);−1, 0 π14 = (0, 1,−1); 1, 0
5

π15 = (0, 1, 0);−1,−1 π16 = (0, 1, 0);−1, 0

π17 = (0, 2, 1);−1,−2 π18 = (1,−1, 1);−1, 0

π19 = (1, 1,−1);−1, 0 π20 = (2,−1, 0); 1,−2

6 π21 = (0,−1, 0); 0, 1, 0 π22 = (1, 1, 0);−1,−1, 0

7 π23 = (0, 1,−1);−1, 1, 0,−1 π24 = (1, 1, 0);−1,−1,−1, 0

π25 = (−1,−1, 1); 1, 2, 0, 0,−2 π26 = (−1, 0, 0); 1, 0, 0,−1,−1

8 π27 = (−1, 1, 0);−1, 1,−1, 0, 1 π28 = (0, 0, 2); 1, 1,−1,−1,−2

π29 = (1, 1, 1); 0,−1,−1,−1, 0 π30 = (2, 1,−1);−2,−2,−1, 1, 2

π31 = (−1, 0, 0); 1, 1, 1, 0,−1,−1
9

π32 = (0, 1, 1); 1, 0,−1,−2,−2,−1

π33 = (−1,−1, 1); 0,−1, 1, 1,−1, 0, 1

π34 = (0,−2, 1); 1,−2, 0, 2,−1,−1, 2

10 π35 = (0,−1,−1);−1, 0, 0, 1, 1, 1, 0

π36 = (1, 2, 1); 1,−1,−1,−2,−1,−1, 1

π37 = (1, 2, 2); 1, 0,−1,−2,−2,−1, 0

π38 = (−2, 0, 1);−2, 1, 0,−2, 2,−1,−1, 2
11

π39 = (0, 1, 2); 2, 1, 0,−1,−2,−2,−2,−1

π40 = (−2, 2,−1); 0, 1,−2, 2,−2, 1, 0,−1, 2
12

π41 = (0, 1, 2); 2, 2, 1, 0,−1,−2,−2,−2,−1

13 π42 = (0, 1,−2); 2,−1,−1, 2,−2, 1, 0,−1, 1,−1

π43 = (0, 2, 2); 1,−1,−2,−2, 0, 1, 2, 1, 0,
22

−2,−2,−1, 1, 2, 2, 0,−1,−2,−1

For the rest of the section denote by Ti the set of inequalities that define
the set Si for i ∈ {1, . . . , 5}. These sets consist only of single inequalities.
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We have

T1 := {2x− 2z ≥ 1, 2x + 2y + 2z > −1, 2x + 2y ≤ 1, 2x ≤ 1,

2x− 2y + 2z ≤ 1},

T2 := {x− z ≤ −1, 2x− 2y + 2z ≤ 1, −2x + 2y ≤ 1, 2x > −1},

T3 := {x− z > −1, 2x− 2y + 2z ≤ 1, −2x + 2y < 1, 2x > −1,

2x− 2z < −1, 2x + 2y + 2z > −1},

T4 := {2x− 2y + 2z ≤ 1, −2x + 2y ≤ 1, 2x− 2z ≤ −1, 2x− 2z ≥ −1,

2x + 2y + 2z > −1},

T5 := {−1 < 2x, 2x ≤ 1, −1 < 2x− 2z, 2x− 2z ≤ 1, 2x + 2y + 2z > −1,

2x− 2y + 2z ≤ 1, 2x + 4y − 2z < 3, 2y ≤ 1},

hence the equality of S4 and the two double inequalities of S5 are split into
single inequalities. Thus, Si = X(

∧
Ti) for i = 1, . . . , 5. Denote by T i the

set Ti with all the strict inequalities changed to non-strict ones. Since all
occurring inequalities are linear it can easily be checked that Si = X(

∧
T i).

Table 1 shows 43 different cycles with corresponding period L; we denote
the corresponding polyhedron by P (πj), where j ∈ {1, . . . , 43}.

Now for each i ∈ {1, . . . , 43} define Qi as the set of single inequalities
such that P (πi) = X(

∧
Qi). For instance, the set Q19 can be defined by

Q19 := {−1/2 ≤ x + y − z − 1, x + y − z − 1 < 1/2, −1/2 ≤ x− y − z,

x− y − z < 1/2, −1/2 ≤ −x− y + 1, −x− y + 1 < 1/2,

− 1/2 ≤ −x + z + 1, −x + z + 1 < 1/2, −1/2 ≤ y + z − 1,

y + z − 1 < 1/2}

(see also Example 2.5). Finally, we set

P :=
43⋃

j=1

P (πj).

Remark 4.2. We note that the construction of the set S as well as the
exhibition of the 43 cycles corresponding to relevant cutout polyhedra has
been achieved by extensive computer experiments. Up to now we do not
know an easy way that would lead to a list of all the cutouts needed to
get the set D0

3. To find an algorithmic way to construct all these cutouts
is desirable since it could lead to characterizations of D0

d even for higher
dimensions d.

Observe that no element of the 43 cycles given above contains elements
having modulus greater than 2. Up to now, we do not know the reason for

this fact. In order to characterize D̃0
2 we need cycles with elements that are

arbitrarily large (cf. [1, Sections 6 and 7]).
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4.1. Using the algorithm of Section 2. Theorem 2.3 shows the existence
of an algorithm for the construction of a graph G(H) = V × E which
can be used for finding all cycles of the mappings τr with parameters r

contained in the convex body H. Following [4], the graph is constructed
recursively. Define H = �(r1, . . . , rk) ⊂ intD3 to be the convex hull of
some points r1, . . . , rk. For z ∈ Z

d, let m(z) = mini∈{1,...,k}(−⌊riz⌋) and
M(z) = maxi∈{1,...,k}(−⌊riz⌋). Set

V0 := {±ei | i = 1, . . . , d}

and then successively calculate V1, V2, . . . by the rule

Vi+1 := Vi ∪ {(z2, . . . , zd, j) | z = (z1, . . . , zd) ∈ Vi, −M(−z) ≤ j ≤M(z)}.

For sets H having a sufficiently small diameter the iteration stabilizes, yield-
ing V := Vn = Vn+1 for some n ∈ N. The set of edges is constructed by

E := {(x, (z2, . . . , zd, j)) | x = (z1, . . . , zd) ∈ V, m(z) ≤ j ≤M(z)}.

Let Q be a system of linear, non-strict inequalities linked with ∧. Then
X(Q) forms a convex polyhedron that can be regarded as the convex hull
of finitely many points r1, . . . , rk. Suppose that X(Q) ⊂ E3(1). We want to
set up an algorithm that calculates the set of all cycles π whose associated
polyhedron P (π) has non-empty intersection with X(Q). Theorem 2.3 en-
sures the existence of such an algorithm only if X(Q) has sufficiently small
diameter. If the set X(Q) is too large, the graph G(X(Q)) is infinite. We
solve this problem in the following way. Suppose that, during the calculation
of |V |, we obtain a set Vi whose number of elements |Vi| exceeds an appro-
priate bound p. In this case we stop the calculation of V and divide X(Q)
into two parts for which we calculate the set V again. By recursively doing
this splitting procedure we eventually end up with sets whose diameter is
small enough (provided that p is chosen reasonably).

Suppose that X(Q) is the convex hull of its k vertices r1, . . . , rk. We do
not know these vertices explicitly. What we need is just m(z) and M(z) for
certain fixed values of z ∈ Z

d. However, as Q is given as a system of linear
inequalities, we easily see that

m(z) = min
r∈X(Q)

(−⌊rz⌋), M(z) = max
r∈X(Q)

(−⌊rz⌋).

The extremal values on the left hand side can now easily be calculated by
standard linear optimization.

The algorithm consists of two parts. The first part, Algorithm 1, con-
structs the set of vertices V of the graph G(X(Q)) for a given convex body
X(Q). Whenever during the calculation the size of this set exceeds a given
bound p, Algorithm 1 stops, returning an overflow. Otherwise it terminates
by returning V . Denote the application of Algorithm 1 with parameter Q
and bound p by VG(Q, p) (VG = vertices of the graph).
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Algorithm 1. Calculation of the set of vertices of G(X(Q)): VG

Input: Q, p
Output: V set of vertices
1: V ← {±ej | j = 1, . . . , d}
2: M ← ∅
3: while V 6= M do

4: if #V > p then

5: return(Overflow)
6: stop calculation
7: end if

8: N ← V \M
9: M ← V

10: for all (x1, . . . , xd) ∈ N do

11: i← min(r1,...,rd)∈X(Q)(⌊−
∑d

k=1 xkrk⌋)

12: j ← max(r1,...,rd)∈X(Q)(−⌊
∑d

k=1 xkrk⌋)
13: V ← V ∪ {(x2, . . . , xd, k) | k ∈ {i, . . . , j}}
14: end for

15: end while

16: return(V )

Algorithm 2 is recursive. As input we have Q and we write FC(Q) for
its application on Q (FC = find all cycles). Algorithm 2 evokes Algorithm 1
to calculate the set of vertices of G(X(Q)). If an overflow occurs, the set
X(Q) is split with respect to some hyperplane G(X1, . . . , Xd) = 0. Then
Algorithm 2 is applied on Q1 := (Q ∧ G(X1, . . . , Xd) ≤ 0) and Q2 :=
(Q∧G(X1, . . . , Xd) ≥ 0) separately. If there is no overflow and V is returned,
the set of edges E is calculated and all the cycles of the graph are extracted.
The cycles of the graph induce the cycles of τr we are searching for. Note
that the subsets Q1 and Q2 are again defined by finitely many non-strict
inequalities so that they can be treated by Algorithm 1 in the same way
as Q.

In our setting we need to apply Algorithm 2 to the sets defined by the
inequalities T i (i ∈ {1, . . . , 5}). All we need to specify is the subdividing
strategy and the bound p for |V |. As for the subdividing strategy we subdi-
vide a given set in two parts as follows. Let

mi := min
(x1,x2,x3)∈X(Q)

xi, i = 1, 2, 3,

Mi := max
(x1,x2,x3)∈X(Q)

xi, i = 1, 2, 3,

and j ∈ {1, 2, 3} be the smallest index for which Mj −mj = max(M1 −m1,
M2 −m2, M3 −m3).
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Algorithm 2. Search for all cycles within an area X(Q) (recursively): FC

Input: Q
Output: Π list of cycles
1: p← suitable bound
2: V ← VG(Q, p)
3: if ¬(overflow) then

4: E ← set of edges of G(X(Q))
5: Π ← cycles induced by the cycles of G(X(Q))
6: else

7: construct Q1, Q2

8: Π ← FC(Q1)
9: Π ← Π ∪ FC(Q2)

10: end if

11: return(Π)

The dividing hyperplane is now defined by

G(X1, X2, X3) = 0 with G(X1, X2, X3) := Xj −
Mj + mj

2
.

For the upper bound of the number of vertices it turns out that a choice
depending on the quantities Mj−mj is convenient. In particular, we choose
p = 20/(Mj −mj). Then we get the following result:

Lemma 4.3. FC(
∧

Ti) terminates for each i ∈ {1, . . . , 5}.

Proof. We implemented the algorithms for Ti with the above mentioned
subdivision strategy and bounds in Mathematica

r©. The program is available
on the authors’ homepages [14].

Theorem 4.4. Si ⊂ D0
3 for all i ∈ {1, . . . , 5}.

Proof. For each i ∈ {1, . . . , 5} the set X(
∧

T i) is the convex hull of
finitely many points. Moreover, X(

∧
T i) = Si. Denote by Πi the set of cycles

computed by the application of Algorithm 2 on
∧

T i. Hence Πi includes all
cycles associated to polyhedra having non-empty intersection with X(

∧
T i).

Now, according to (2.2), each of these cycles π ∈ Πi induces a system of
inequalities P(π). It turns out that for each π ∈ Πi we have

X
(
P(π) ∧

∧
Ti

)
= ∅ for each i ∈ {1, . . . , 5}

(an easy way for checking this is to apply the cylindrical algebraic decom-
position algorithm). Thus there is no cycle that yields a non-empty cutout
intersecting Si and therefore Si ⊂ D0

3.

4.2. Covering the set D3 \ D0
3 by cutout polyhedra. Fix Q1, . . . , Q43 to

be the sets of inequalities of the 43 polyhedra induced by the cycles given
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in Table 1, where Qj denotes just the reduced set of inequalities such that
X(

∧
Qj) yields the corresponding polyhedron for any j ∈ {1, . . . , 43}. “Re-

duced” means that all the redundant inequalities are removed.

Remark 4.5. It is not really necessary to work with the reduced systems
but the main algorithm works much faster and the reduction is not too
difficult to realize.

Algorithm 3. Reducing a list of inequalities: RL

Input: P set of inequalities
Output: P reduced set of inequalities
1: for all inequalities I ∈ P do

2: P ← P \ I
3: if X(

∧
P ∧ ¬I) 6= ∅ then

4: P ← P ∪ I
5: end if

6: end for

7: return(P )

The algorithm simply uses the fact that an inequality I is redundant for
a system S ∧ I if X(S ∧ I) = X(S) or, equivalently, X(S ∧¬I) = ∅. Denote
the application of Algorithm 3 with parameter P by RL(P ) (RL = reduce
list of inequalities).

At the end of Section 2 we found a parametrization of E3(1). We saw
that E3(1) = X(

∧
D) for

D := {x + z ≤ 1 + y, −1− y ≤ x + z, y − xz ≤ 1− x2, z ≤ 3, z ≥ −3}.

Let P be a list of sets of inequalities and G be a set of inequalities. We
want to verify if

⋃
P∈P X(

∧
P ) covers X(

∧
G). This is equivalent to

(4.1) X
(∧

G ∧ ¬
∨

P∈P

∧
P

)
= ∅.

In principle we could do this verification directly. For computational rea-
sons we are a little more restricted. (In fact the direct verification of (4.1)
overcharges Mathematica r©.) A verification of a claim of the shape (4.1) can
be done in a reasonable amount of time if #P ≤ 3. We give an algorithm
that solves this problem for general P and G by a subdivision process. The
idea is to split the set X(

∧
G) into suitable subsets and hope that each of

these subsets is covered by a smaller number of sets. First we state Algo-
rithm 4 which removes those sets from P that do not affect G, hence a set
P is removed when X(

∧
G) ∩ X(

∧
P ) = ∅. Denote the application of this

algorithm by RS(G,P) (RS = remove inequalities with respect to a set).



164 A. Huszti et al.

Algorithm 4. Removing those lists of inequalities that do not affect a given
set G: RS
Input: G, P
Output: P reduced list of inequalities
1: for all sets P ∈ P do

2: if X(
∧

G ∧
∧

P ) = ∅ then

3: P ← P \ P
4: end if

5: end for

6: return(P)

The main algorithm (Algorithm 5) is recursive. As an input we have again
P and G of the usual shape, where P is reduced by Algorithm 4. Whenever
the algorithm recognizes that a subset of X(

∧
G) is not fully covered by

the sets described in P, it returns this subset. Denote the application by
VC(G,P) (VC = verify covering). At first Algorithm 5 checks whether
#P ≤ 3. If this is the case we can verify whether (4.1) holds, otherwise we
choose an arbitrary inequality I ∈

⋃
P∈P P such that X(

∧
G∧I) 6= X(

∧
G).

There are two possibilities:

• There is such an inequality I. Then X(
∧

G) is split by adding I and
¬I, respectively, to G and Algorithm 5 is applied (recursively) on both
of these subsets. Algorithm 4 is used to possibly reduce P for each of
the subsets. These reduced sets form the second parameter.

• There is no such I. But this would mean that all the points of X(
∧

G)
satisfy all inequalities of

⋃
P∈P P . This is equivalent to X(

∧
G) ⊂

X(P ) for any P ∈ P and this implies that G and P satisfy (4.1).

Now, whenever (4.1) is not fulfilled, the set X(
∧

G) is not covered by
X(

∨
P∈P

∧
P ) and the algorithm returns the set X(

∧
G). The application of

Algorithm 5 terminates without any output if X(
∨

P∈P

∧
P ) covers X(

∧
G).

We can now state the main theorem of this subsection.

Theorem 4.6. The algorithm VC(D,P) terminates without yielding any

output for

P = {Q1, . . . , Q43, T1, . . . , T5}.

Proof. We implemented the algorithms in Mathematica
r©. The program

is available on the authors’ homepages [14].

Theorem 4.6 shows all the cutout polyhedra together with our set to
really cover all of E3(1) and thus cover D3. More precisely, the cutout poly-
hedra P (π1), . . . , P (π43) cover the whole set E3(1) \ S. Hence, in view of
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Algorithm 5. Checks if a set is covered by the union of others (recursively):
VC
Input: G, P
Output: subsets of X(

∧
G) that are not fully covered by X(

∨
P∈P

∧
P )

1: if #P ≤ 3 then

2: if X(G ∧ ¬
∨

P∈P

∧
P ) 6= ∅ then

3: return(X(
∧

G) is not fully covered)
4: end if

5: else

6: if ∃I ∈
⋃

P∈P P : X(
∧

G ∧ I) 6= ∅ then

7: VC(RL(G ∩ {I}), RS(G ∩ {I},P)
8: VC(RL(G ∩ {¬I}), RS(G ∩ {¬I},P)
9: end if

10: end if

Theorem 4.4 we get

E3(1) \ S ⊂
⋃

1≤i≤43

P (πi).

Together with Theorem 4.4 this yields Theorem 3.1 and we are done.
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