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1. Introduction. All groups considered in this paper are abelian, and
we shall use additive notation. Let G be such a group. If A, B ⊆ G, then
we let A + B = {a + b : a ∈ A, b ∈ B}. If g ∈ G, we let g + A = A + g
= {g} + A, and we call any such set a shift of A. The stabilizer of A is
stab(A) = {g ∈ G : g+A = A}; note that this is a subgroup of G. We define
Σ(A) = {∑a∈A′ a : A′ ⊆ A}, so Σ(A) is the set of group elements which
can be represented as sums of subsets of A. For any positive integer n, we
let Zn = Z/nZ.

In a lovely paper [2] which contains many of the ideas needed in our
proof, Erdős and Heilbronn proved that Σ(A) = G whenever G ∼= Zp for
a prime p and A ⊆ G \ {0} satisfies |A| ≥ 3

√
6p. They conjectured that

assuming |A| ≥ 2
√

p is sufficient; this was confirmed by Olson [4] and further
sharpened by Dias da Silva and Hamidoune [1].

Theorem 1.1. Let p be a prime and let A⊆Zp\{0}. If |A|> ⌊√4p−7⌋,
then Σ(A) = Zp.

To see that this theorem is essentially best possible, let A ⊆ Zp be the set
{−⌊√p⌋, . . . ,−1, 1, . . . , ⌊√p⌋} and note that ⌊p/2⌋ 6∈ Σ(A). Such a strong
conclusion does not hold in general abelian groups, due to the existence of
proper nontrivial subgroups. For instance, if H < G has [G : H] = 3 and
we take A = H, then Σ(A) = H even though A contains one third of the
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elements in G. In cyclic groups, Vu found a suitable assumption on A which
permits a similar conclusion.

Theorem 1.2 (Vu [6]). There exists a constant c so that Σ(A) = Zn

whenever A ⊆ Zn has size at least c
√

n and has the added property that

every number in A is relatively prime to n.

The constant in this theorem is quite large. It is derived from a very deep
theorem of Szemerédi and Vu [5] on arithmetic progressions in sumsets. Our
main theorem, which is quite elementary by comparison, can be used to
obtain Theorem 1.2 with a constant of c = 8.

Our main result gives a lower bound on |Σ(A)|, but before introducing
it, we shall pause to introduce Kneser’s addition theorem, an essential tool
in our proof. Moreover, a simple corollary of it gives a natural lower bound
on |Σ(A)| which is of interest.

Theorem 1.3 (Kneser [3]). Let A1, . . . , Am be finite nonempty subsets

of G. If H = stab(
∑m

i=1 Ai), then

∣

∣

∣

m
∑

i=1

Ai

∣

∣

∣
≥ |H|(1 − m) +

m
∑

i=1

|Ai + H|.

Corollary 1.4. Let A ⊆ G and set H = stab(Σ(A)). Then

|Σ(A)| ≥ |H| + |H| · |A \ H|.
Proof. Let A = {a1, . . . , am}. Then Σ(A) =

∑m
i=1{0, ai}, and we obtain

the desired bound by applying Kneser’s theorem to the right hand side of
this equation.

Our main theorem gives an alternative bound on |Σ(A)| which improves
upon that from the previous corollary in the case when |H| is small.

Theorem 1.5. Let A ⊆ G and set H = stab(Σ(A)). Then

|Σ(A)| ≥ |H| + 1
64 |A \ H|2.

As mentioned earlier, direct application of this result yields Theorem 1.1
with a weaker constant and Theorem 1.2 with the stronger constant c = 8.
To see this latter implication, let A ⊆ Zn have size ≥ 8

√
n, assume it has

the property that every element in A is relatively prime to n. Suppose (for a
contradiction) that Σ(A) 6= Zn. Then H = stab(Σ(A)) is a proper subgroup
of Zn, so A ∩ H = ∅ since every element in A generates the entire group.
But then our bound yields |Σ(A)| ≥ |H|+ 1

64 |A \H|2 > n—a contradiction.
With some extra work we can improve our constant 1/64 somewhat.

Indeed, it follows from our arguments that the same result holds with a
constant of “almost” 1/48. We suspect that Theorem 1.5 may almost hold
with 1/4 in place of 1/64: it seems likely that |Σ(A)| ≥ 1

4 |A \H|2 −O(|A|).
The extreme example we know of is essentially the same as that mentioned
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earlier in connection with Olson’s theorem. Namely, if A = {−n,−(n − 1),
. . . , n − 1, n} ⊆ Z, then |A| = 2n + 1, H = stab(Σ(A)) = {0}, and Σ(A) =
{−n(n − 1)/2, . . . , n(n − 1)/2} has size n(n − 1) + 1.

Theorem 1.5 may be bootstrapped to give a bound on subsequence sums.
If a is a sequence of elements in G, we let Σ(a) denote the set of all sums of
subsequences of a. Note that if a = (a1, . . . , an) and all the ai’s are distinct
then Σ(a) = Σ({a1, . . . , an}); so subsequence sums generalize the notion of
subset sums.

If H ≤ G, we call any element of G/H \ {H} a nontrivial H-coset of G.

We let ̺j
H(a) (for each j ∈ N) denote the number of nontrivial H-cosets

of G which contain at least j terms of a.

Theorem 1.6. Let a = (a1, . . . , an) be a sequence of elements in G, and

let H = stab(Σ(a)). Then

|Σ(a)| ≥ |H| + 1
64 |H| ·

∑

j∈N

(̺j
H(a))2.

2. Proofs. The goal of this section is to prove our main results, The-
orems 1.5 and 1.6. In fact, these theorems are easily seen to be equivalent,
and our approach will be to first prove Theorem 1.5 in the special case when
H = {0}, and then use this to prove the two main results in general.

Before we immerse ourselves in the details of the proof, let us sketch our
strategy. As in [2], the key goal is to show that in every set A ⊆ G with
|A| = 2(u + 1) we can find a subset B of size u + 1 such that Σ(B) is large,
provided Σ(A) has trivial stabilizer (Lemma 2.7). To establish this, we first
use an inductive hypothesis to find a set B of size u. Then we will try to
find an element c ∈ C = A \ B such that by appending c to B, the size of
S = Σ(B) grows significantly (thus maintaining our quadratic bound). In
other words, we want ∆S(c) := |(S + c) \ S| to be large. Special cases of
this task are dealt with in Lemma 2.4 (if “S is small”) and in Lemma 2.5
(if “S is big”). In the work-horse of our proof, Lemma 2.6, we use these two
to handle all possible cases.

We also need to introduce a couple of definitions. If G is a group and
B ⊆ G then a (directed) Cayley graph Cayley(G, B) is a graph with vertex-
set G and with an arc (g, g + b) for every g ∈ G and b ∈ B. If B ⊆ G then
we use 〈B〉 to denote the subgroup of G generated by B.

During the course of our proof we will often use Kneser’s theorem (The-
orem 1.3) and the following easy observations.

Observation 2.1. We have stab(S) ≤ stab(S +T ) whenever S, T ⊆ G.

In particular , if B ⊆ A, then stab(Σ(B)) ≤ stab(Σ(A)).

Observation 2.2. If A, B ⊆ G and |A| + |B| > |G|, then A + B = G.
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For every S ⊆ G and every x ∈ G, we define ΓS(x) = |(S + x) ∩ S| and
∆S(x) = |(S + x) \ S|. Note that ΓS(x) + ∆S(x) = |S| and that ∆S(x) =
∆G\S(x). More interestingly, the following observation shows that ∆S is
subadditive.

Observation 2.3 (Erdős and Heilbronn [2]). If x, y ∈G then ∆S(x+y)
≤ ∆S(x) + ∆S(y).

Proof. This is an immediate consequence of the following computation:

∆S(x + y) = |(S + x + y) \ S|
≤ |(S + x + y) \ (S + y)| + |(S + y) \ S|
= |(S + x) \ S| + |(S + y) \ S| = ∆S(x) + ∆S(y).

If Q, S ⊆ G, we define the deficiency of Q with respect to S to be
defS(Q) = min{|Q ∩ S|, |Q \ S|}.

Lemma 2.4. Let C, S be finite subsets of a group H such that defS(H)
≤ 1

2 |C|. Then |C|−1 ∑

c∈C ∆S(c) ≥ 1
2 defS(H). In particular , there exists

c ∈ C with ∆S(c) ≥ 1
2 defS(H).

Proof. Recall that ∆S(c) = ∆H\S(c) for every c. Hence, after possibly
replacing S with H \ S, we may assume that defS(H) = |S|. Our lemma
now follows from the inequalities below.

∑

c∈C

∆S(c) = |C| · |S| −
∑

c∈C

ΓS(c)

≥ |C| · |S| −
∑

h∈H

ΓS(h) = |C| · |S| − |S|2

≥ 1
2 |C| · |S| = 1

2 |C| · defS(H).

Lemma 2.5. Let C, S be finite subsets of a group H such that defS(H)
≥ 1

2 |C| and 〈C〉 = H. Then there exists c ∈ C with ∆S(c) ≥ 1
8 |C|.

Proof. By possibly replacing S with H \S we may assume that defS(H)
= |S| and therefore 1

2 |C| ≤ |S| ≤ 1
2 |H|. Now set r = ⌊4|S|/|C|⌋, let C∗ =

C ∪{0}, and let D =
∑r

i=1 C∗. Put K = stab(D) and let t = |C∗ + K|/|K|,
i.e., t is the number of K-cosets in H intersecting C∗. If t ≥ 2, then by
Kneser’s addition theorem, we have

|D| ≥ r|C∗ + K| − (r − 1)|K| = r

(

1 − 1

t

)

|C∗ + K| + |K|

≥ 4|S| − |C|
|C|

(

1 − 1

t

)

|C| + 1

t
|C|

= 2|S| + t − 2

t
(2|S| − |C|) ≥ 2|S|.
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If t = 1, then C ⊆ K and C generates H, so we must have H = K = D and
again |D| ≥ 2|S|. This brings us to the following easy inequality:

∑

d∈D

ΓS(d) ≤
∑

h∈H

ΓS(h) = |S|2 ≤ 1
2 |D| · |S|.

It follows that there exists d ∈ D with ΓS(d) ≤ 1
2 |S| and thus ∆S(d)

≥ 1
2 |S|. By construction, we may choose c1, . . . , cn ∈ C with n ≤ r so

that d =
∑n

i=1 ci. Now, by the subadditivity of ∆S we have 1
2 |S| ≤ ∆S(d) ≤

∑n
i=1 ∆S(ci) and it follows that there exists c ∈ C for which ∆S(c) ≥ 1

2r
|S| ≥

1
8 |C| as desired.

Lemma 2.6. Let A ⊆ G satisfy |A| = 2u+2 and stab(Σ(A)) = {0}. Let

{B, C} be a partition of A with |B| = u, and put S = Σ(B) and H = 〈C〉.
If u ≥ 16 and |H| ≥ 5

256u2 + 1
4u, then one of the following holds:

(1) |S| ≥ 1
16(u + 1)2.

(2) There exists c ∈ C so that ∆S(c) ≥ 1
8(u + 1).

Proof. Define an H-coset Q to be sparse if 0 < |Q ∩ S| < 1
4(u + 1) and

dense if |Q\S| < 1
4(u+1). If there is an H-coset Q with Q∩S 6= ∅ which is

neither sparse nor dense, then defS(Q) ≥ 1
4(u+1), so conclusion (2) follows

by applying either Lemma 2.4 or Lemma 2.5 to C and an appropriate shift
of Q ∩ S. Thus, we may assume that every H-coset which contains a point
of S is either sparse or dense.

If the sum of the deficiencies of the H-cosets (with respect to S) is at
least 1

4(u + 1), then by the averaging argument in Lemma 2.4, we find a

c ∈ C for which ∆S(c) ≥ 1
8(u + 1), and conclusion (2) is satisfied. Thus,

we may assume that the sum of the deficiencies of the H-cosets is at most
1
4(u + 1). Since |S| ≥ u this implies that there is at least one dense H-coset.

If R is a dense H-coset, then it follows from Observation 2.2 (and
|Σ(C)| ≥ |C| ≥ 1

4(u + 1)) that Σ(C) + (R ∩ S) = R. Consequently, if
there are no sparse H-cosets, then H ≤ stab(Σ(C) + S) = Σ(A), which
contradicts our assumptions. Thus, we may assume that there is at least
one sparse H-coset. In particular, S has nonempty intersection with at least
two H-cosets, so S 6⊆ H.

If there exist four distinct dense H-cosets Q1, . . . , Q4, then

|S| ≥
4

∑

i=1

|S ∩ Qi| = 4|H| −
4

∑

i=1

defS(Qi)

≥ 5
64u2 + u − 1

4(u + 1) ≥ 1
16(u + 1)2.

Thus, we may assume that there are at most three dense H-cosets. Now,
for every b ∈ B, define S+

b = b + Σ(B \ {b}) and S−
b = Σ(B \ {b}). Note

that S = S+
b ∪ S−

b .



192 M. DeVos et al.

Claim. If R is a dense H-coset and b ∈ B, then either R + b or R − b
is dense.

Proof. If b ∈ H, then the claim holds trivially, so we may assume b 6∈ H.
Let d = defS(R) and suppose (for a contradiction) that neither R + b nor
R−b is dense. Observe that S∩(R+b) contains (S−

b ∩R)+b and S∩(R−b)
contains (S+

b ∩ R) − b. Suppose (without loss) that |S−
b ∩ R| ≥ |S+

b ∩ R|.
Then we have

1
4(u + 1) > defS(R) + defS(R + b) ≥ d + |S−

b ∩ R|
≥ d + 1

2(|H| − d) ≥ 5
512u2 + 1

8u.

This contradicts u ≥ 16, thus establishing the claim.

Let W ⊆ G/H be the set of all dense H-cosets and set w = |W |. We
have 1 ≤ w ≤ 3 by our earlier arguments, but it now follows from the claim
(and S 6⊆ H) that w ≥ 2, so w ∈ {2, 3}. For every b ∈ G, let Γb be the
subgraph of Cayley(G/H, b + H) induced by W . It follows from the claim
that Γb has no isolated vertices whenever b ∈ B \H. Thus, every such Γb is
either a directed path or a directed cycle. If the graphs Γb and Γb′ both have
an edge with the same ends, then either b′ +H = b+H or b′ +H = −b+H.
It follows that either every Γb is a directed cycle, or every Γb is a directed
path; in the latter case every pair of such paths have the same (unordered)
ends. If Γb is a directed cycle for some b ∈ B \ H, then B ⊆ 〈H ∪ {b}〉
and we find that there are no sparse H-cosets, contradicting our previous
conclusions.

Thus, we may assume that every Γb with b ∈ B \ H is a directed path.
List the dense H-cosets W1, . . . , Ww so that every Γb is a directed path with
ends W1 and Ww. Setting Q = W2 − W1 we find that W1, . . . , Ww is an
arithmetic progression in G/H with difference Q. Let W0 = W1 − Q and
Ww+1 = Ww + Q; note that {W0, Ww+1} ∩ {W1, . . . , Ww} = ∅.

Suppose first that |B \ H| ≥ w. Choose w distinct elements b1, . . . , bw ∈
B \ H and for each of them choose εi ∈ {−, +} so that εibi ∈ Q. Now, let
Z = W1 ∩ ⋂w

i=1 S−εi

bi
(in the exponent we treat {+,−} as a multiplicative

group with identity +). It follows from our construction that Z+
∑w

i=1 εibi ⊆
S ∩Ww+1. For every 1 ≤ i ≤ w we have (Sεi

bi
∩W1)− εibi ⊆ W0 ∩S, so each

W1 ∩S−εi

bi
contains all but at most |W0 ∩S| points of W1 ∩S. Thus, setting

d = defS(W1) we have the following inequalities (we use |H| ≥ |C| > u + 1
and |W0 ∩ S| < 1

4(u + 1)):

1
4(u + 1) > defS(W1) + defS(Ww+1) ≥ d + |Z|

≥ d + |H| − d − w|W0 ∩ S| ≥ u + 1 − w

4
(u + 1).
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However, this contradicts w ∈ {2, 3}. Thus |B \ H| < w. But then we must
have |B \ H| = w − 1, and we again find that there are no sparse H-cosets,
which contradicts our previous conclusions. This completes the proof.

Following Erdős and Heilbronn [2], we define a function L : N → N by
the following rule:

L(u) = min
A⊆G\{0} : |A|=2u

stab(Σ(A))={0}

max
B⊆A : |B|=u

|Σ(B)|.

We let L(u) = ∞ if no such set A exists. For every set B we have Σ(B) ⊇
B ∪ {0}, so trivially L(u) ≥ u + 1. Next we prove our main lemma which
gives a better lower bound on L(u).

Lemma 2.7. L(u) ≥ 1
16u2 for every u ∈ N.

Proof. We proceed by induction on u. Assume that the lemma holds for
all integers ≤ u and let A ⊆ G satisfy |A| = 2(u+1) and stab(Σ(A)) = {0}.
(If there is no such set, then we have defined L(u + 1) = ∞.) We will show
that there exists B′ ⊆ A with |B′| = u + 1 and |Σ(B′)| ≥ 1

16(u + 1)2. It
follows from our trivial bound L(u) ≥ u + 1 that we may assume u ≥ 16.

Apply the lemma inductively to obtain a set B ⊆ A with |B| = u and
|Σ(B)| ≥ 1

16u2. Put C = A \ B. To apply Lemma 2.6, which is our aim, we
need a lower bound on the size of H = 〈C〉. We do this by estimating |Σ(C)|.
To this end, we apply the lemma inductively twice more: choose a set
C1 ⊆ C of size ⌈u/2⌉ with |Σ(C1)| ≥ 1

64u2 and (since 2⌈u/4⌉ + ⌈u/2⌉ ≤
2(u + 3)/4+(u + 1)/2 = u+2) a set C2 ⊆ C \C1 of size ⌈u/4⌉ with |Σ(C2)|
≥ 1

256u2. Put C3 = C \ (C1 ∪ C2). Now Σ(C) = Σ(C1) + Σ(C2) + Σ(C3).
Since Σ(C) has trivial stabilizer (Observation 2.1), Kneser’s theorem gives
the following inequality (in the last inequality we use the trivial bound
|Σ(X)| ≥ |X| + 1 if 0 6∈ X):

|Σ(C)| = |Σ(C1) + Σ(C2) + Σ(C3)|
≥ |Σ(C1)| + |Σ(C2)| + |Σ(C3)| − 2

≥ 5
256u2 + 1

4u − 1.

Let S = Σ(B) and recall that H = 〈C〉. Since Σ(C) has trivial stabilizer,
Σ(C) ⊂ H, so |H| ≥ 5

256u2 + 1
4u. Since u ≥ 16 by assumption, we may apply

Lemma 2.6 to deduce that either |S| ≥ 1
16(u + 1)2, in which case we are

finished, or there exists c ∈ C so that ∆S(c) ≥ 1
8(u + 1). In the latter case

we have

|Σ(B ∪ {c})| = |S + {0, c}| = |S| + ∆S(c)

≥ 1
16u2 + 1

8(u + 1) > 1
16(u + 1)2.

This completes the proof.



194 M. DeVos et al.

Lemma 2.8. If A ⊆ G satisfies stab(Σ(A)) = {0}, then

|Σ(A)| ≥ 1 + 1
64 |A \ {0}|2.

Proof. We may assume that 0 6∈ A since this has no effect on our bound.
Set |A| = u. The lemma holds trivially if u ≤ 8, so we may assume u > 8.
By the previous lemma we may choose a subset B ⊆ A of size ⌊u/2⌋ such
that |Σ(B)| ≥ L(⌊u/2⌋) ≥ (u − 1)2/64. Let C = A \ B. Then by Kneser’s
theorem we have

|Σ(A)| = |Σ(B) + Σ(C)| ≥ |Σ(B)| + |C| − 1

≥ 1
64u2 − 1

32u + 1
2u − 1 ≥ 1 + 1

64u2.

Note that by recursively applying Lemma 2.7 we can improve the con-
stant 1/64 to “almost” 1/48: In the above proof, we have used the fact that
|Σ(B)| ≥ L(|B|) (together with Lemma 2.7) to bound |Σ(B)|. On the other
hand, for |Σ(C)| we have used a straightforward bound |Σ(C)| ≥ |C| + 1.
We could instead use the same procedure recursively with C in place of A.
This yields

|Σ(A)| ≥ 1

16

(⌊

u

2

⌋2

+

⌊

u

4

⌋2

+

⌊

u

8

⌋2

+ · · ·
)

=
1

48
u2 − O(u) .

Next we prove our main theorem for sequences.

Proof of Theorem 1.6. For Q ∈ G/H we let c(Q) = |{1 ≤ j ≤ n :
aj ∈ Q}|. Let further s be the maximum of c(Q) for nontrivial cosets Q
(i.e., Q ∈ G/H \ {H}). Finally, put Aj = {Q : c(Q) ≥ j} and note that

|Aj | = ̺j
H(a). By applying Kneser’s theorem and Lemma 2.8 in the quotient

group G/H, we have

|Σ(a)| = |H| ·
∣

∣

∣

s
∑

j=1

Σ(Aj)
∣

∣

∣
≥ |H| ·

(

s
∑

j=1

|Σ(Aj)| − s + 1
)

≥ |H| + 1
64 |H| ·

∑

j∈N

(̺j
H(a))2,

which completes the proof.

Finally, we prove our main theorem for sets.

Proof of Theorem 1.5. Let A = {a1, . . . , an} and put a = (a1, . . . , an).
By applying Theorem 1.6 we have

|Σ(A)| = |Σ(a)| ≥ |H| + 1
64 |H| ·

∑

j∈N

(̺j
H(a))2.

Since A is a set, ̺j
H(a) = 0 for every j > |H|. Further

∑|H|
j=1 ̺j

H(a) =
|A \H|. It follows from this (and the Cauchy–Schwarz inequality) that |H| ·
∑

j∈N
(̺j

H(a))2 ≥ |A \ H|2. Combining this with the above inequality yields
the desired bound.



A quadratic lower bound for subset sums 195

References

[1] J. A. Dias da Silva and Y. O. Hamidoune, Cyclic spaces for Grassmann derivatives

and additive theory, Bull. London Math. Soc. 26 (1994), 140–146.
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